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This article contributes to the optimization of routes and circuits, aiming to enhance the
overall tourist experience in alighment with smart tourism objectives. Employing advanced
techniques and tools like A*, genetic algorithms, and geographic information systems, the
study aims to propose highly efficient paths for city exploration and touristic attraction
visits. It outlines future projections in optimization tools, attempting to integrate artificial
intelligence and machine learning technologies to create customized itineraries based on
user preferences. Acknowledging the existing limitations in the field, the article provides
a new solution characterized by optimized costs and reduced execution time. With its
primary focus on the city of Fez, the article aims to enhance smart tourism applications
by offering personalized and enriched experiences.

Keywords: smart tourism; routing approaches; route optimization; geographic informa-
tion system (GIS); point of interest (POI); A* algorithm; genetic algorithms.
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1. Introduction

Tourism is a rapidly rising business with a substantial worldwide economic impact. In 2018, the num-
ber of international tourists reached 1.4 billion according to the World Tourism Organization, and
this figure is anticipated to increase further in future years [1]. As the tourism sector grows, there is
an increasing demand for innovative solutions to improve the travel experience for tourists. Tourism
is a fiercely competitive sector, with travel destinations competing for tourists’ attention and money.
To stay competitive, destinations must constantly innovate and enhance their tourist experience. The
optimization of travel routes has attracted increased amounts of attention in recent years because of its
purpose of designing effective and personalized routes and circuits that make the best use of available
time and resources while providing visitors with a memorable experience. This is crucial in the context
of smart tourism, which uses technology to improve the travel experience and provide visitors with
individualized recommendations [2]. Route optimization is the process of using data and technology
to design tourist travel routes that are effective and entertaining [3|. Destinations and attractions can
offer more individualized and gratifying travel experiences to visitors while also making the best use of
their time and money by optimizing travel routes. However, with technological innovations, geospatial
data availability, and the development of smart city concepts, it is now possible to create intelligent
algorithms that can suggest optimal tourist routes, considering various factors such as historical land-
marks, cultural sites, popular attractions, walking distances, and local recommendations [4]. In our
last contribution to the field of smart tourism application, we made a first attempt to provide an
optimized touristic circuit using the heuristics of the genetic algorithm and Bing Maps API applied
to the city of Fez, but we encountered some limitations that made the pursuit of some improvement
necessary to overcome high-cost and technical problems [5].

This study was supported by the National Scientific and Technical Research Center of Morocco. This paper was completed
as part of project number 28/2020, funded by the Khawarizmi program.
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In this article, we will try to provide a new way to build and recommend optimal tourist circuits.
We hope that by doing so, we may contribute to efforts to create technological tools that can be used
to improve tourist experiences and encourage sustainable tourism practices. Our suggested method
has the potential to transform the way destinations organize and promote travel itineraries, hence
increasing destinations’ competitiveness in the global tourist market. This paper begins by reviewing
the relevant literature and existing heuristic tools that can be used in tourist route optimization. We
will then present the methodology used for data collection and analysis, including the integration
of geospatial data, tourist preferences, and local knowledge. Furthermore, we outline the method
and approach used to produce efficient and personalized itineraries for the proposed tourist route
optimization for the case study framework of the Old City of Fez. The framework will be evaluated
using real data. As previously stated, the fundamental purpose of this research paper is to propose
and build a novel tourist route optimization system. We hope to suggest an approach that truly
enhances the entire experience of tourists and creates a real smart touristic journey to discover a
certain city and its attractions by utilizing computational algorithms, geographical data analysis, and
tourist preferences. We predict that the suggested methodology will contribute to sustainable tourist
growth, greater visitor satisfaction, and the preservation of a city’s cultural heritage by improving the
visitor experience through effective path planning.

2. Literature review

The important methods that can be applied to planning and improving tourist routes are summarized
and presented in this section. For reference, various techniques are addressed and outlined in this
context.

2.1. Evolutionary smart local search

Genetic algorithms traced their origins back to John Holland’s groundbreaking work in the 1960s,
which laid the foundations for the evolution of solutions through natural selection and genetic op-
erations. Since then, genetic algorithms have evolved and found a variety of applications, including
pathfinding, optimization and others [6-8|. Genetic algorithms involve a set of fundamental equations,
the cornerstone of which is the fitness function, which quantifies the quality of a solution (z):

Fitness(z) = Evaluation(z),

where Evaluation(x) represents the efficiency of the solution. In pathfinding applications, genetic
algorithms excel at encoding problems as sets of genes and then use genetic operations such as crossover
and mutation to iteratively refine these solutions. The success of genetic algorithms depends on the
meticulous encoding of genes. In path-finding problems, individual genes can represent the sequence of
traversed nodes. Crossover facilitates the exchange of information between parent solutions, generating
top-down solutions, while mutation randomly modifies solution genes, introducing potentially beneficial
variations. The effectiveness of genetic algorithms depends on the genetic operators chosen (crossover
and mutation rates), the design of the fitness function, the size of the population and the number of
generations [9]. In particular, genetic algorithms find fertile ground in intelligent tourism applications,
where they optimise travel itineraries according to factors such as desired attractions, travel time
constraints and user preferences [10]. Genetic algorithms can be adapted to discover optimal routes
that will evolve to better solutions/routes over time. Encoding the problem as a set of genes is crucial
to the success of genetic algorithms.

The new top solutions substitute for the former bad ones in the succeeding generations.

Initialization. The first generation is performed in a random way, allowing to cover the wide
spectrum of all possible solutions [8,11-13|. Sometimes, solutions can be separated into regions where
the best solutions are likely to be achieved. Let’s D = I} x I5... x I,, be a domain containing all
the feasible solutions of our problem. A numerical technique permitting to generate an uniform initial
solutions consists on decomposing I; using an appropriate step (said h;). In this case, the feasible
nodes (np, ... p,) of the considered discretisation constitute the initial population, where
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Np,epn = (P1R1, - Prn).
In this equation p;h; € I; and p; € N.

Fitness function. To create an appropriate fitness function, it is important to adopt a number
of good practices simplicity, reproducibility, and iterative development [14]. The most commonly used
formula is given by

Fitness = (weight) % (Objective function) — Penalty * (Constraint _infringed).

Selection. In each following generation, a subset of the surviving population is screened to breed
a newer generation [15]. The main screening techniques include roulette wheel selection and rank
selection.

Roulette wheel selection: linear ranking is often used. It allows the selection pressure to be set by the

parameter s, with values between 1.0 (no selection pressure) and 2.0 (high selection pressure). The
probability of rank positions is given by

P(R) = % <s (25— 2) ;}‘_i) ,

where 1 <i<nand1<s<2and N is the size of the current population.
Rank selection: probability of choosing individual i is equal to p; = f;/ (Zévzl fj), where f; is the
fitness of ¢ and NN is the size of the current population.

Crossover is a genetic process that aims to merge the DNA data of two individuals in order to
breed a new child [15]. In our case, we use multiple crossover, applied to 80% of the population with
a given ratio (R). Given two parents parent; and parents, a child child is obtained by

child = parenty + rand x R * (parenty — parenty),

where rand is a random real number from [0 1].

Mutation. This operator creates a kind of diversity in the population that helps to avoid bad
local minima. There are several types of mutation (for example, uniform mutation, Gaussian mutation
and heuristic mutation). We examine the use of the evolutionary algorithm to optimize tourist routes
in this research, outlining the advantages and limitations [16]. We further discuss the efficiency of this
approach in terms of route optimization [17].

2.2. A¥* algorithm

The A* algorithm was initially proposed by Hart, Nilsson, and Raphael in 1968. Since then, it has
been applied in a wide range of fields, including the planning of touristic routes [18]. A* is a Dijkstra’s
algorithm extension that combines components of the best-first and breadth-first search methods,
enables particularly adept at finding optimal paths while taking heuristic information into account.
By using a heuristic-driven approach, the algorithm is able to efficiently explore the search space and
find the best solution in a significantly shorter computation time. In its basic form, the A* algorithm
depends on two elements: the cost function and the heuristic function. The cost function f(n) estimates
the total cost of the optimal path from the starting node to a given node n by combining the actual
cost from the starting node to n g(n) and the estimated cost from n to the goal node h(n):

f(n) = g(n) + h(n).
These functions are used by A* to intelligently explore the search space, giving lower f(n) nodes priority
and effectively guiding the search toward the optimal solution. The commonly employed heuristic
options often involve using the Manhattan distance, which calculates the total of absolute coordinate
variations and is typically suitable for grid-like structures. Alternatively, the Euclidean distance, which
measures the straight-line distance, is frequently used for continuous environments [19].

The A* algorithm shows its utility in its application to tourist itinerary optimization by identi-
fying the best route while considering various factors, such as attraction appeal, time, and distance.
Researchers have customized the A* algorithm by including heuristics related to tourism, such as user
preferences, popularity of attractions, and geographical constraints [20]. For instance, when attempt-
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ing to suggest an optimal route that balances travel distance and tourism value, a heuristic function
might take into account both the distance between touristic sites and their attractiveness ratings. The
details of the A* algorithm are provided in Algorithm 1.

Algorithm 1 A* algorithm used in this work.

// Initialisation step
OpenList: O + {s}
ClosedList: C + {}
// Cost function initialisation
g(s) =0 // since the cost from the start to itself is 0
h(s)
while O # &
// the Main Loop of A*
: Select the node n € O with the lowest f(n) = g(n) + h(n) value
9:  if n is the goal then

10: Reconstruct the path
11: return (path)
12:  else
13: for each successor m of n
14: Compute g(m) = g(n) + cost(n,m)
15: Compute h(m) // heuristic estimate from m to goal
16: Compute f(m) = g(m)+ h(m)
17: for each successor m
18: if m € C and g(m) > g(e) then
// e is the existing successor
19: Skip m
20: if m ¢ O then
21: O+~ 0ouU{m} //addmtoO
22: else if m € O and g(m) < g(e) then
23: Update g(m)
24: Recalculate f(m)
25: C+CU{n} //addntoC //Node Closure step
26: if goal is not reached and O = @ then
27 return (no path)

2.3. Geographic information systems

Finally, in this field, geographic information systems are used to optimize tourist routes, and GIS
allows for the effective administration, analysis, and display of geographical data pertaining to points
of interest, transit networks, and other important elements. By using GIS tools and techniques,
researchers and practitioners may construct sophisticated algorithms and models that consider many
variables, such as distances, trip durations, traffic conditions, and visitor preferences [21|. GIS has
various advantages for planning tourism routes or circuits; it enables the integration of many data
sources, such as geolocation data, tourist behaviour data, and real-time information, allowing for
thorough and dynamic analysis. Second, GIS make it easier to identify the best routes by considering
not only distances but also characteristics such as attraction popularity, accessibility, and temporal
connections. Furthermore, a GIS allows for the display of outcomes by offering interactive maps and
visual representations that improve decision-making and communication with stakeholders [22].

This paper proposes a full approach to optimizing tourist routes and circuits that combines GIS,
the genetic algorithm and the A* algorithm. We hope to create a solid and efficient framework for gen-
erating and improving tourist itineraries by combining these various methodologies. This study seeks
to provide a complete and extensible strategy for optimizing tourist routes and circuits by integrating
GIS, the evolutionary algorithm and the A* algorithm. We hope to demonstrate the usefulness and ap-
plication of this integrated technique for improving tourist experiences, supporting sustainable tourism
practices, and encouraging efficient resource allocation through empirical research and assessment.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 966-977 (2024)



970 Benchekroun Y., Senba H., Haddouch K., El Moutaouakil K.

3. Proposed approach

Fez was chosen as our smart tourism contribution hub and as the focus point for data collection due to
its prominence as one of Morocco’s most famous touristic cities, notably its historical medina, which
is recognized as the world’s largest car-free urban area. To provide a thorough and representative
dataset, 74 points of interest (POIs) were chosen for data collection. The dataset used in the following
applications and tests comprises 2707 nodes from Fez’s Old Medina, confirming the relevance and
correctness of the results. The data were collected during the period from March to May, which is a
period of considerable fluctuation and the peak tourist season in Fez. It is worth mentioning that the
data collection took place during the revival of the city’s tourism sector, following a two-year period
of severe limitations due to the COVID-19 pandemic. This window of opportunity allowed for the
assessment of new dynamics and trends in the city’s tourist sector.

We performed a set of experiments on the dataset using various tool combinations to assess the
effectiveness of each recommendation in optimizing the circuit primarily in terms of distance while
ensuring that the results were delivered within a reasonable execution time frame. In our previous
paper, we introduced the use of the genetic algorithm in conjunction with the Bing Maps API. Building
upon that, this paper expands on optimization techniques by employing both the genetic algorithm
and the A* algorithm.

The mentioned tests will be carried out on a collection of 15 points of interest (POIs), as shown
in Table 1, each with its own ID. These 15 POIs were chosen after consulting with local guides and
considering the highest possible count of POIs that a tourist could visit in a single day. Furthermore,
the POI list was thoughtfully selected to cover some of the most engaged sites within Fez’s historical
Medina. These choices were determined using suggestions from trustworthy sources such as TripAd-
visor, as well as other apps and surveys. Another essential consideration in the selection process was
the enduring impression produced by each POI. These specific POls are the ones most warmly recalled
by tourists following their visit to Fez, according to inputs and feedback from local guides and data
surveys.

Table 1. Test POlIs.

POI ID Latitude Longitude

Jenan Shil JS 34.0600149 | —4.9875509
Bab Boujloud BB | 34.0616817 | —4.9840568
Batha Museum MBA | 34.0602058 | —4.9827331
Belghazi Museum MBE | 34.0638983 | —4.9763294
Algaraouine Library BA | 34.0642525 | —4.9728404
Bab Elguissa BE | 34.0691503 | —4.9758189
Moulay Idriss MI 34.064718 —4.974954
Bab Ftouh BF | 34.0600152 | —4.96492

Sidi Ahmed Tijani SAT | 34.0663754 | —4.9735924
Ennejarin Museum ME | 34.0647942 | —4.9758579
Rssif Mosque MR | 34.0626764 | —4.973418
Bab Sidi Boujida BSB | 34.0668303 | —4.9661479
Palais El Glaoui PEG | 34.0588653 | —4.9771708
Mederssa Cherratine | MC | 34.0641862 | —4.9737061
Mederssa Seffarine MS | 34.0638068 | —4.9727539

In this proposed approach, we use the genetic algorithm to generate the range of the population
of possible solutions (mutations, crossing, etc.); then, we proceed to the test of fitness according to
the A* algorithm. Thus, to obtain the fitness function through A*, we need a certain kind of data
input, which includes the different touristic locations (points of interest; POIs) as well as the pathways
between these locations.

The genetic algorithm’s configuration details are provided in Table 2 below, highlighting key pa-
rameters such as the crossover rate (the likelihood of chromosome swapping, representing circuits), the
mutation rate (indicating the probability of circuit alteration), the maximum number of generations
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and the minimum fitness threshold for a circuit. The chosen parameters for the genetic algorithm were
adjusted to balance exploration and exploitation in determining the order of visiting tourist POlIs.

Table 2. Parameters of the Genetic Algorithm.

Parameter Value Description

Crossover rate 0.6 The probability of two chromosomes exchanging ge-
netic information. Crossover involves the selection
of random genes from the chromosomes and subse-
quently swapping all genes beyond that point

Mutations rate 0.1 The probability that a single bit within a chromo-
some undergoes a flip or change

Min fitness 0 The adaptation value needed to attain an optimal
level of fitness

Generations 200/500 | Number of generations

With a crossover rate of 0.6, the algorithm prioritizes diverse combinations of visit sequences,
fostering exploration to discover various tour routes. Similarly, a mutation rate of 0.1 allows controlled
alterations, slightly adjusting the visit order without deviating significantly from potentially efficient
sequences. By setting the minimum fitness condition to the best visit order, the algorithm aims to
identify the most advantageous itineraries. We experimented with two numbers of iterations, 200 and
500, to assess the significant impact of the number of iterations on the results obtained, aiming to
better understand its influence on the quality of the generated tour routes.

To be able to source the data input for the A* algorithm, we used a collaborative GIS named
OpenStreetMap, from which we first extracted pathways (in shape format) in the test zone of the Old
Medina of Fez; then, we imported the data into the spatial databases (PostGis extension to be able to
read geospatial data; PostgreSQL to manage the database as a whole).

Once the importation was complete, a problem was noticed regarding the intersections, a problem
that could have distorted the results and misrepresented reality, e.g., we have a pathway going under
a bridge. On the map, an intersection point that is not a real intersection can be observed; thus, we
cannot suggest that the user on the bridge go left or right on the road because it does not correspond to
any real route. Thus, for similar cases where there are bridges or underground pathways, we proceeded
to data management by breaking down and slicing the itinerary into two or more pathways and hence
creating identified nodes (vertices) in the extremity of each pathway that identifies each route between
a given starting and arrival point.

The next step was geocoding the collected field data (Fez Old Medina). The data were regrouped
in Excel sheet format according to name, address, and attribute range (X, Y (latitude and longitude));
geocoding consists of converting these attributes into geospatial data, which constitute the input for
the algorithm (pathways and POIs). Once the A* algorithm is provided with the input, we can proceed
with the process and iterations to define the critical route/path.

To be more specific with an illustration from our context, we have obtained the starting/departure
points with a number N of POIs that we are going to visit combined with the pathways and vertices
(nodes) data from the databases; the first thing that will be executed is to locate and link the POlIs
(that are not on the pathways) to the actual pathways on the map. This task was performed by
locating the nearest node (vertex) to the POI, creating a direct link and adding it to the map so that
the whole graph would always be closed. Once the graph (circuit) is closed, we inject the data into the
A* algorithm. A spatial intersection between point A and point B was performed to define potential
pathways between two points, after which the critical pathway was ultimately selected.

The chosen heuristic function for our experimental test in the A* algorithm was the Manhattan
distance, often referred to as h(n). The Manhattan distance between two points is given by

h(n) = |zgoal — xn|+ |ygoal — yn|,

where (xgoal,ygoal) represents the coordinates of the goal node, and (xn,yn) represents the coordi-
nates of the current node. The workflow of the proposed smart algorithm is illustrated in Figure 1.
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Fig. 1. Workflow of the proposed approach.

4. Experimental test and results

The experimental tests were conducted using a Core i7 laptop equipped with 8 cores, 8 GB of RAM,
and an HDD hard drive. The laptop was connected to a network with a download speed of 2 Gb/s and
an upload speed of 1 Gb/s, utilizing an optical fiber connection.

Please consult Table 1 for details of the test series conducted on a selection of 15 points of interest
(POIs). It is important to note that this number was determined based on suggestions from local
guides regarding the maximum number of points of interest (POIs) a tourist can explore in one day.
The results of our proposed method are presented below.
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Table 3. Results of Genetic algorithms and A*.

NP ET Dist Route Iters
15 4.80 9.34 BB-BE-BSB-BF-BA-MR-MS-MC-SAT-MBE-ME-MI-PEG- 200
MBA-JS-BB
15 4.80 9.24 BB-JS-MBA-MR-MS-BA-MC-SAT-MI-MBE-ME-BE-BSB-BF- 200
PEG-BB
15 4.81 8.81 BB-JS-BE-SAT-MI-ME-MBE-MS-MC-BA-BSB-BF-MR-PEG- 200
MBA-BB
15 5.03 8.48 BB-JS-MBA-PEG-MR-MS-MC-BA-BF-BSB-BE-SAT-MI-ME- 500
MBE-BB
15 5.06 8.98 BB-MBA-PEG-MBE-ME-BE-SAT-BA-MC-MS-BSB-BF-MR- 500
MI-JS-BB
15 5.06 9.13 BB-JS-MBA-PEG-MR-MS-SAT-BE-ME-MI-MC-BA-BSB-BF- 500
MBE-BB
12 3.36 8.05 BB-JS-MBA-MBE-ME-BE-SAT-MI-BA-BSB-BF-MR-BB 200
12 3.52 8.05 BB-JS-MBA-MBE-ME-BE-SAT-MI-BA-BSB-BF-MR-BB 200
12 3.27 8.01 BB-JS-MBA-MBE-MR-BF-BSB-BA-SAT-BE-MI-ME-BB 200
12 3.43 7.7 BB-JS-BE-SAT-BSB-BF-MR-BA-MI-ME-MBE-MBA-BB 500
12 3.42 7.75 BB-JS-MBA-MBE-ME-MI-BA-MR-BF-BSB-SAT-BE-BB 500
12 3.56 7.86 BB-JS-MBA-MBE-MI-BA-MR-BF-BSB-SAT-BE-ME-BB 500
10 2.29 7.20 BB-JS-MBA-ME-BE-SAT-BA-BF-MI-MBE-BB 200
10 2.40 7.07 BB-JS-MBA-MBE-ME-MI-BF-BA-SAT-BE-BB 200
10 2.38 7.07 BB-JS-MBA-MBE-ME-MI-BF-BA-SAT-BE -BB 200
10 2.75 7.18 BB-ME-BE-SAT-BA-BF-MI-MBE-MBA-JS-BB 500
10 2.45 7.20 BB-JS-MBA-ME-BE-SAT-BA-BF-MI-MBE-BB 500
10 2.46 7.09 BB-JS-BE-SAT-BA-BF-MI-ME-MBE-MBA-BB 500
8 1.55 6.88 BB-BE-SAT-BA-BF-MBE-MBA-JS-BB 200
8 1.71 6.88 BB-JS-MBA-MBE-BF-BA-SAT-BE-BB 200
8 1.61 7.05 BB-JS-MBA-BE-SAT-BA-BF-MBE-BB 200
8 1.74 6.90 BB-JS-BE-SAT-BA-BF-MBE-MBA-BB 500
8 1.68 6.90 BB-JS-BE-SAT-BA-BF-MBE-MBA-BB 500
8 1.67 7.05 BB-JS-MBA-BE-SAT-BA-BF-MBE-BB 500
5 0.63 4.12 BB-BA-MBE-MBA-JS-BB 200
5 0.62 4.12 BB-BA-MBE-MBA-JS-BB 200
5 0.62 4.12 BB-JS-MBA-MBE-BA-BB 200
5 0.71 4.12 BB-JS-MBA-MBE-BA-BB 500
5 0.71 4.12 BB-JS-MBA-MBE-BA-BB 500
5 0.73 4.12 BB-BA-MBE-MBA-JS-BB 500

Legend of Table 3:

— NP is the number of selected POls,
— ET is the execution time in seconds,
— Dist is the distance in KM,

— Iters is the number of iterations.

As the APIs were not needed to extract the distances between POIs, the execution time was
considerably shorter, the circuits contained an average of 10 POls to visit, and the execution time
ranged between 2 and 3 seconds on average.

The chart below depicts a noticeable correlation between the number of POIs and execution time,
as expected: the greater the number of points of interest (POIs) is, the greater the execution time.

Snapshots of different suggested circuits are mapped below.

The suggested critical circuit for 15 POIs was proposed within 5 second timeframe and had an

approximate length of 9 km.
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5. Discussion and conclusion

The current paper essentially aims to provide a new approach to create and suggest optimized routes
and circuits, and as a follow-up article, we attempt to overcome the limitations of the approach from
our last work [5], which is the high cost in terms of execution time and use cost. The approach to avoid
the high cost and improve the poor execution time of the method of Genetic algorithms and Bing Maps
API involves trying to go past the use of the API and the A* algorithm alongside the collaborative
GIS. The method has an acceptable execution time and overall circuit distance without any cost.
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Regarding the perspectives to be expected next, the main one is to include some neural networks,
AI, and machine learning modules so that we can efficiently optimize the execution time amid other
parameters.

The approach and tests that are being addressed have been centered on improving the routes
considering a single criterion, namely, distance. However, in the future, we want to incorporate more
constraints into the optimization algorithm. This allows us to design a multi-objective function with
various costs rather than merely using distance as the single cost parameter, as earlier approaches
realized.

Therefore, combining endeavours in the realm of Al and machine learning with multi-objective
optimization will make our solution a solid addition to the new world of smart tourism and provide
real benefits to the touristic experience in the city of Fez.
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Appendix
Snapshots of different proposed circuits based on the number of POIs are shown below:
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Fig. 4. Itinerary for 5 POls.
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Fig. 5. Itinerary for 8 POls.
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Fig. 6. Itinerary for 12 POls.

OnTumizauia TypucTMHHOro MapLupyTy 3a A0NOMOrot KomMbiHoOBaHOro
anroputmy A* Ta reHeTU4HOro anropmTmy

Benuexpyn 0., Cenba X., Xamayx K., FEap Myrayakin K.

Jlabopamopis inotcenepii, cucmem i 3acmocysats,
Hauionanrvna wronra npuksadnur nHayx ENSA,
Vuisepcumem Cidi Moxameda Bern A6desna — Dec, Mapoxxo

IIs craTTs cpusie onTUMi3alil MApIIPYTIB 1 CXeM, CIIPSIMOBAHUX Ha TMOKPAIEHHS 3ara/ib-
HOT'O TYPUCTHUYIHOTO JOCBily BiJIIIOBiHO /0 IIiJielt pO3yMHOTO Typu3My. BUKOPUCTOBYOYN
NepeIOBl METOM Ta IHCTPYMEHTH, Takl ak A* | reHeTHYHI aJrOpUTMH Ta CUCTEMHU I'eOTPa-
diunol iHdOopMAIil, 11e TOC/TIIZKEHHS Ma€ Ha MET1 3aIIPOIIOHY BATH BUCOKOEMEK TUBHI MIJISXA
JI7IsT TOCJTiJI2KEHHST MiCTa Ta BiJIBi/lyBaHHS TYPUCTHUYIHUX BU3HAYHUX ITaM SITOK. BiH okpec-
JIFOE MaOyTHI MPOrHO3u B 00JIacTi IHCTPYMEHTIB ONITUMI3allil, HAMAralounch iIHTErPyBaTH
TEXHOJIOTII NITYYHOr'O IHTEJIEKTY Ta MAIIIMHHOIO HABYAHHS JIJISI CTBOPEHHS 1H/IMBI Ty aJIbHIX
MAapIIpyTiB HAa OCHOBI BIIOJ0OaHL KOPUCTYBadiB. Busnaioun icuHyiodi oOMexKeHHs B IIiif 00-
JIACTi, CTATTS MPOIMOHYE HOBE PIllIeHHS, IO XapaKTePU3YETHCS ONMTUMI30BAHIMU BUTPATAMUI
Ta CKOPOYEHUM YaCOM BUKOHAHHSI. 3 OIVIS/Iy Ha Te, [0 OCHOBHA yBAara MPUILISETHCA MICTY
Qec, 119 CTATTS CIPIMOBAHA HA BJIOCKOHAJIEHHS IHTEJIEKTYAJIbHUX TYPUCTUYHUAX IIPOTPAM,
MIPOIIOHYIOYN TTEPCOHATI30BaHM Ta 30aradeHuii J0CBiI.

Knrouosi cnoBa: posymnuts mypudm; medodu Maputpymuaayii; onmumidayis Mapuwpy-
my; eeothdopmaniting cucmema (GIS); 06’exm inmepecy (POI); A* anzopumm; 2enemusy-
HI AN20PUMMU.
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