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In this paper, we consider the Moore—Gibson—Thompson—Fourier system made by coupling
the Moore-Gibson-Thompson (MGT) equation with the classical Fourier heat equation
known as the MGT-Fourier model. For ¢ = a8 — v > 0, the authors used the semi-group
method to prove the existence and uniqueness of global solutions and the exponential
stability of total energy. Our contribution will consist in studying numerical method based
on finite element discretization in the spacial variable x and finite difference schema in
time of the MGT—Fourier model. A discrete stability property and a priori error estimates
are proved. Finally, the numerical simulation agrees well with theoretical results.
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1. Introduction

Historically, the earliest appearance of The Moore-Gibson—Thompson (MGT) equation was in a Stokes
paper [1]. This equation was developed to represent wave propagation in viscous thermally relaxing
fluids [2-5]. Then, they considered the following equation system:

Uger + oy — BAuy — yAu = 0. (1)

Due to the substantial interest in the mathematical study of the MGT equation, there is a wide body
of literature with various papers and references available [6-9]. Many recent works applied the classical
model for heat propagation, which turns into the well-known equations for temperature 6 and heat
flux vector ¢
0y +cdivg=0 (2)
and
qg+rVO=0 (3)
with the constants ¢ and x being positive. Replacing (3) (Fourier’s law) into (2) results in the parabolic
heat equation shown below
0y — skAO = 0. (4)
In present paper, we consider the MGT equation using the Fourier’s law given by coupling (1) and
(4) in the following system
{ upt + u — BAug — yAu = —nAb, (5)
0r — KAO = nAuy + anAug.

Where x € Q, t € (0,00), and the function u = u(z,t) represents the vibration of flexible structures,
respectively, and § = 6(z,t) the temperature difference between the actual state and a reference
temperature. The standard MGT parameters, «, (3, 7, the thermal conductivity x > 0, the coupling
constant 1 # 0 and the domain © = [0, L]. The initial conditions are given by

u(x,0) =ug, ug(z,0) =uy, uy(x,0)=us, 6(x,0)=>0, (6)
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608 Smouk A., Radid A.

where wug, u1,us,0p: 8 — R are assigned initial data. The system is supplemented with the Dirichlet
boundary conditions

u(0,t) = u(L,t) = 6(0,t) = 6(L,t) = 0. (7)
Numerous studies [10,11] of the MGT system with Fourier’s law (5) show that the stability number
o=af—y

has a considerable impact on the MGT equation’s stability features.
Now, we introduce new variables y = u; + au, v = u; and using o = o8 — -y, consequently the
system (5) can be rewritten as

Yit — sz ~TAv+ nAf = 0,
o o (8)
0 — KAO — nAyt =0.

Then, the energy functlonal E(t) associated to (5)—(7) can be written as

[/ |ye|?da + ~ / ]Vy\ dx + — / |Vl dx+/ 0] dx} . 9)

The authors in [11] proved that the energy (9) decays exponentially for o > 0 and verifies
——a/ |Vl d(L’—/ﬁl/ \VO|*dz.

2. Numerical approximation

The system (5) with boundary conditions (7) and initial conditions (6) is approximated using finite

elements in this section. On the basis of finite differences in time and finite elements in space, we

present and investigate an implicit Euler type scheme. We establish the discrete energy decays.
Taking w = z;; we rewrite system (8)

wt——Ay——Av+nA0—0
0; — kKAO — nAw = 0.

To get the weak form associated to system (10), we multiply the equations by test functions (,v €
H'(0,1) and integrating by parts,

(we,¢) + 2 (Y9, V6) + (Y0, ¥¢) = (V0. ¥6) = 0,
(0, v) + k(VO,Vv) + n(Vw, Vv) = 0.

Consider a subdivision 0 = 29 < 21 < ... < 2j-1 < x7 = 1 of the domain = [0, 1] such that z; = jh,
Vj=0,...,J with J > 0 and the space step h = 1/J, we take

Sh {g € H*(0,1)|g € C([0, L)), 9l(z;,2;4,) 1s a linear polynomial, with j=0,...,J — 1}

(10)

(11)

and
St ={fes"0) =) =o}.
Let the time step be At = T'/N for a final time T  and a positive integer N and t,, = nAt,n =0,...,N.

Using the backward Euler scheme, the finite element method for (11) is able to find, forn =1,..., N
and for all ¢;,, v, € S"

1 W n g n n
A7 — (wf —w ™, G) + L(Vyp, V) + Z (Yo}, V) — (Y8R, Ven) =0,
E(eﬁ — 07 o) 4+ K(VO}, Vup) + n(Vwy, Vo) = 0,
where
n U;LL B uz_l n n n n y yiTLL !
Uy, = T, Yy = Uy + auy, , and wy, = T, (13)

are approximations to w(t,), v(t,) + au(ty), ye(t,), respectively.
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Numerical approximation of the MGT system with Fourier’s law 609

This inequality will be used frequently:

1
(a1 = az,a1) = S [llar = aal* + lar |* = [laz]”]. (14)
A discrete form of the energy decay property satisfied by the solution of system (5) is the next result.

Theorem 1. Assume the discrete energy is:
1 ¥ o
gn:_< n2+_vn2+_vn2_’_9n2>.
n =5 (lwnl” + 2 IVyRll™ + ZIVeR]® + 105]
Then, the decay property
gr—ept

<0,
At

holds forn=1,2,...,N.
Proof. Taking (; = w} and vy, = 6} in (12),

At (wh wh -1 wh) —i—a(Vyh,th)—i-a(Vvh,th)—n(V@h,th) :O,
(15)

At (07 — 071,00 + K (VOR, VO +n (Vw), V) = 0.

Adding two equations of system (15), we have

n—1 n—1
wy —w wn v n n o n n o, — 0 ’en n n
(w Af; h) + — (Vo Vwg) + — (Vop, Vuh) + (% Aht h) K (VO VO = 0.
Recalling (13) and (14),
1 n n—1 n 1 n n—12 ni2 n—12
Kt(wh_wh 7wh) _E(Hwh_wh 1+ llwp 17 = llwy || ),
n Y (oyn VU~ VU
(Vyhvvwh)za Vyp, —h Az b )
= 5= (195 = V1P + IVBRIP = V1)
o n n o n VY Vy,
> (Vo, Vwy) = > <Vvh,hT>
_ 9 [ yr AR+ aul) — Ay + aup )
Ta (V0 Al
o Vol — V! L Aul — Ayt
_E<Wh’T —o\ VA
Vol — V n—1
-2 (v z,%) + 0 (Vof, Vop)
g n— n— n
= o7 (194 = Ve~ I+ VR I ~ 1945 1) + o VoI,
1 n n—1 pn 1 n—12 ni2 n—1
0= 000) = 5 (17— 01+ 01 — 07 1P)
thus,
1 n n— n n—
g (1w i)+ L (199 = Vo P+ VR — 199 P)
t oAl At IV = Vo 12+ [Vop|? = [[Vop %) + o[ Vop |2
1 n—1 n—1 n
+ gz (165 — 61 + g% — 6" 11) + sl VR = 0

Mathematical Modeling and Computing, Vol. 11, No. 3, pp.607-616 (2024)



610 Smouk A., Radid A.

We conclude that

1 _ _ _ _

= A7 (Hwﬁ _ wn 1”2 + sz”Q _ ”wz 1”2) o At (Hvyh VyZ 1H2 + Hvymp _ HVyZ 1H2)
+ —2 A~ (IVeh - Vor 2+ VR P = VR HIP) + o Vop |2

-1
T A 1 O Al P 1 e

2At h h At

n__en—1
So, e Agf < 0 and the theorem is demonstrated using the notion of discrete energy. ]

We now show the main error estimates result.

Theorem 2. For any discretization parameters h and At, there exists a positive constant C' inde-

pendent from h and At such that for all {¢},vi}550 C Sk,
max {[lw" —wi|” + [Vy" = Vyp|? +[|Vo" — Vop|? + (6" — 6317}

o<n<N

N
< CALY (Jf — 6w |>+ [ Vi — 6V + [V — 59 |2 + 6 — 607
i=1
HVw' = VG +[1V0" = Vo [*) + € max {Jlw” = GI* + 10" - vp|*}
\n\
N-1
(\w _ o (i — z—l—l H +H92_U — (o - i—l—l)H2>
i=1
+C ([w” —wpl? + Vy” = Vypl? + Vo = Vup|* + 16° = 631%) .
where 6g' = (¢* — g~ 1)/At.
Proof. First, we subtract the first variational equation in (11) at time ¢ = ¢, for a test function
¢ =(, €SP C S and the first discrete variational equation in (12) to obtain

o
(wf = Sujt, Ch) + = (V" = Vit V) + = (V" = Ve, VG)
— (V0" =V, V() =0, V¢ € S)
and so, we have
n n n n n n n n o n n n n
(wy — dwp, w" —wyp) + %(Vy = Vyp, V(w"™ —wp)) + E(Vv — Vo, V(w" — w}p))
— n(V@” - Vo, V(w" — wZ))
o
= (wy — dwp,w" — Cp) + %(Vy” — Vyi, V(w" = () + E(an — VR, V(w™ = ()
—n(VO" = VOR, V(w" — ), VG, € SE.
Taking into account that
(wy = dwy, w" —wyp) = (wi —ow™, w" —wy) + (dw" — dwp, w" —wy)

e ),

1
wf = dul, 0" =) + s (o = wf 2~

(
(
(Vy" = Vi, V(" = wp)) = (Vy}' = 0Vy;, Vy" = Vi)
(Vy' = 0Vy", Vy" = Vyp) + (6Vy" = 6Vy;, Vy" — Vyp)
(Vyi' = 6Vy", Vy" — Vyp)
+ a7 (VY = Vo) IP = Ve = V%),
(Vo™ = Vo, V(yf' = oupy)) (16)
= (Vv = Vo, V((vf' + au) — (dvy, + adu}l)))
= (Vo™ = 6V, V(v — ovp)) + (Vo™ — Vi, V(up — ouj))
= (V" = 6V, V(v} — up)) + o(Vo" = Vi, V(" — vf))

(Vo™ = Vo, V(w™ — wp)) =
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Numerical approximation of the MGT system with Fourier’s law 611

= (Vo™ = 6V, V(0] — 60})) + af[Vo" — Vop |
> (va — 0V, Vo — Vup) + a||[Vo" — vor|?

2At (Vo™ — V|2 — Vo™t — sz_le) )

Secondly, we subtract the second variation equation in (11) at time ¢ = ¢,, for a test function v = vy, €
St c S and the second discrete variation equation in (12) to obtain
(0F — 603, vp) + Kk (VO" = V0O, Vup) +n(Vw" — Vwy, Vo) =0,
and so, we have
(07 — 667,60 — 07) + k(VO" — VO, V(0" — 07)) +n(Vw" — Vwp, V(0" — 67))
— (01 — 607, 0™ — vp) + £ (VO™ — VO, V(6" — vp)) + (V" — Vwp, V(0" —vp)).
Taking into consideration
(07 — 00y, 0™ —wp) = (07 — 60", 6™ — 07) + (59" —60;,0" —6y)

> (0 — 00", 6" — 6) + s (10— ORI — 0 - 6.

From (16) and using several times Cauchy’s inequality (17)

biby < eb? + ebg, bi,ba,e €ER, >0, (17)
it follows that
1 n n||2 n—1 1 n||2 n—1 n—1(2
g (" o™t =) g S (V" = Tyl = [Vt = Ty )
+ —2 A7 (Vo™ — Vo2 — ||Vt — Vo~ b2 )+ o[V — Vull|]? — (VO™ — VO, V™ — Vw})

<O (Jlwp = dw™|* + [Jw" — wit|* + [|Vy — Vy" [ + [[Vy" — Vy) > + [ Vei — Vo
H[Vor = V)2 + V8" — VIR + [w"™ — Gull* + [ V™ = VEull?)
+ (Sw™ — dwi, w™ — ), V¢, € Sh. (18)
Using a similar formula, we get the following estimates: for all vy, € Sé‘ ,
(16" = 611> = 11"~ = 657 1%) + sl VO™ — VO | + n(Vw" — Vuwy, VO™ — Vo)
< C(107 = 60" + 110" = G31* + [IVO" = VOR|* + [[Vw" — Vi |* + 10" — v
+[|VO" = Vup|?) + (60" — 607, 0™ — vy).  (19)

Combining estimates (18) and (19) it follows that, for all ¢y, v, € SB,
1

2At

s (7 = w1 = = 1)+ (9 =Sk 19 = 1)
+ m (HVU Vfu;fHQ — HVU"_l — Vo~ lH ) + || V" — VUZH2 — (V" — Vo, Vuw" — Vuwy)
1 n n n— n— n n n n n n
(16 = 2 — 87— ) 4 sV — SR (T — Vs, VO - V67)

< O([Jwp = dw"|* + [lw™ — wi|* + Vi = Vy™ 2 + [ Vy" = Vyp | + [ Vop — Vo'
+{[Vo" = V)| + V8" = VORI + [[w" = Gll* + [[Vw" = VG[* + (167 — 667> + 116" — 631
+ (VO — VOR|? + [V — Vi ||? + 0" — vp|* + [ V" — Vup|?)
+ (dw™ — dwy, w" — ) + (00" — 06,0 — vy,) .
By multiplying the above estimations by At and adding up to n, we get, for all {j, vy € Sg,
[w" = wit||* + [IVy"™ = Vy) > + [[Vo"™ = Vo ||* + 16" — 672
< CALY  (Jlwf = sw'|* + [lw' — wi® +[|Vy; = V'[I> + VY = Vil + Vo — Vo' |2

1=0
+ Vo' = Vo |2 + V0" = VO + [V’ — VG I17 + 116 — 667> + 16" — 61
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+ V0" = VO + [’ = GI* + IV’ =V |[* + 16" = vj||* + V0" = Vv [1?)
+ ALY (6w — dwj, w' — ¢) + (66" — 66}, 6" — v}))
1=0
+C ([lw” = whl* + V" = VyI*[V® = Vop[* + [16° = 6311%) -

Finally, taking into consideration
Atz (&wZ - (571)2,11)2 - C}ZL) = (wTL - U)Z,wn - CFTLL) + (U)?L - y17w1 - C}IL)
i=1 n—1
+Z (wi —wh i — ¢ - (wz‘+1 _ iizﬂ)) 7
i=1
ALY (807 = 66;,0" — v}) = (0" — 05, 0™ — vf) + (65 — 0°,0" — vj)

i=1 n—1
+ (00— 0;,0" — v} — (07 —upth),
=1

S0, we achieve adequate a priori error estimates by applying a discrete variant of Gronwall’s inequality

(see [12]). [
The estimates in the previous theorem can be applied to determine the convergence order of the

approximations provided by the discrete problem (12). As an example, we assume the regularity:

we H*(0,7;L%0,1)) N H* (0,T; H'(0,1)) N C* ([0,T}; H*(0,1)) ,

0 € H*(0,7;L%*0,1)) N H' (0,T; H'(0,1)) N C ([0,T]; H*(0, 1)),
we obtain the algorithm’s linear convergence by using particular results on finite element approximation
(see [13]) and earlier estimates derived in [12]. Here is our result.

Corollary 1. Due to the assumptions of Theorem 2, there exists a positive constant C' > 0 that is

independent of the discretization parameters h and At, such that
Jmax {[|w" — wil? + VY™ = Vi |® + Vo™ = Vop|? + 16" — 07117} < C(h + At).

The numerical schemes were implemented using MATLAB on a Intel Core i5-6006U CPU @ 2.00 GHz.

3. Numerical simulation

Now, we give some numerical tests to validate the theoretical results.

3.1. Example 1: error estimate

The goal of the first example is to demonstrate the correctness and efficiency of the suggested fully
discrete example. As a result, we will address this problem:

wy — gAy — gAfu +nA0 = fin (0,1) x (0,7),

0, — kAO —nAw = g in (0,1) x (0,7),

u(z,0) = up(z), we(x,0) =wui(x), forae x€(0,1), (20)

u(,0) = ug(z), 0(x,0) =0p(x) forae xe€(0,1),

u(0,t) = u(l,t) =0(0,t) =0(1,t) =0 forae. te(0,7),
with the following data:

T=1 a=10"% g=1, ~=10"2% n=10"2 k=10"% (21)
In (20), the supply terms f and g are given by the following expressions, for all (x,t) € (0,1) x (0,7,
flat)=¢ (28+2v+(1+a)z—(1+ a)z? + 2n 7 cos(mx) — naw? sin(rz))

(22)
g(z,t) = et’ (2n + 2an + xsin(rz) — 2k7 cos(mz) + kam?sin(nz)) .
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Numerical approximation of the MGT system with Fourier’s law 613

Obviously, the analysis described in the preceding part may be easily applied to this slightly changed
case. For all z € (0,1), the initial conditions are defined by

uo(x) = up(x) = ug(z) = (1 — x),
0o(z) = xsin(nx).
The exact solution to (20) can be easily obtained by
u(z,t) = e'z(x — 1), O(x,t) = ewsin(rz), V(x,t)€[0,1] x [0,T].
The discretized solutions of (21) using implicit Euler type scheme based on finite differences in time

step n and finite elements in space and taking account of v = u;, y = v + au and w = y; which are
given by the following system

(U™ — AtV =U""!,

VP+aU"-Y" =0",

Y- AW =Y

MW" + gm RY™ + gRAt VP At RO" = MWL 4 F™,
(M + Kk AtR)O" + n At RW™ = MO" ! + G",

where the vectors U™ = (u})o<i<s, V" = (v])o<i<g, W™ = (w])o<i<s, Y" = (y')o<i<s and O" =
(0M)o<i<J, for the matrices M and R are the mass matrix and the stiffness matrix respectively and F™
and G" are supply terms.

Consequently, the numerical errors provided by Table 1. Errors for T = 1.
e {0 w4 VY~ VR 4 Vo - VeR? 4 e - 6Py T AT Fow
S 25 004 13323

are displayed in Table 1 for some discretization parameters values. Fur- 50 0.02 _ 0.6615
thermore, we plot errors in Figure 1 and logarithmic errors in Figure 2 100 0.0l 0.3306
based on the specified parameter h + At. We conclude that the con- 200 0.005 0.1663
vergence is linear as demonstrated in the previous section for a given 400 0.0025 0.0845

regularity of the continuous solution.

Error evolution 05 log(Error) of evolution
14 : : . T :
1.2 ot
o 0.5
< 0.8 S
o g 1+
D W
0.6 2
- 15t
0.4
21
0.2
0 ‘ ‘ ‘ 25
0 0.02 0.04 0.06 0.08 -5 -4 -3 -2
h+dt log(h+dt)
Fig. 1. Asymptotic behavior of Error. Fig. 2. Asymptotic behavior of log(Error).

3.2. Example 2: discrete energy
Assume that the supply terms have vanished and that the final time is T = 80. We also use the
following data: a = 1, 8 = 3, v = 2, n = 4, kK = 1, and the following initial conditions, for all

x € (0,1), u1(z) = ug(x) = sin(rz)?,

IS
o
&

I

Mathematical Modeling and Computing, Vol. 11, No. 3, pp.607-616 (2024)



614 Smouk A., Radid A.

Taking the parameters h = 2At = 0.0025 and the discrete energy:
1 ¥ o
& =5 (Ihl? + 2IVyi 2 + 2o + 16312)
Figures 3 and 4 show the evolution of discrete energy and discrete logarithmic energy. We can easily

see that the energy decays exponentially.

The discrete energy The discrete logarithme of energy

25 20
20
15 .
S
w E
10 -
5 L
0 ‘ : ‘ -100 : : :
0 20 40 60 80 0 20 40 60 80
t" t"
Fig. 3. Natural scale behavior of & Fig. 4. Semi-log scale behavior of &£}'.

3.3. Example 3: the exact solution
In this last example, we will plot the exact solutions of problems (1)—(3). Again, we suppose (22) and
thedata: T=1,a=10"1, =107, v =103, n=10"2, k = 1072,
If the initial conditions are the next
uo(x) = up(x) = ug(z) = z(x — 1), Vxe (0,1),
Oo(x) = xsin(rx), V€ (0,1),
using the values h = 0.005 and At = 0.0025 the solution to discrete problem (12) is plotted in Figures 5
and 6. From these pictures, we can conclude that the solutions decay to zero.

The evolution in time and space of u x10° L
P The evolution in time and space of 6 x10°

12
x10° 2.5 x 10”7

15 10

10

ot

=o

0 0 t

Fig.5. Evolution of uj. Fig. 6. Evolution of 0} .

4. Conclusion

In this paper, we carried out the numerical study of the MGT system with the Laplace—Dirichlet
operator —A taking into account Fourier’s law in one dimension with Dirichlet boundary conditions.
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Numerical approximation of the MGT system with Fourier’s law 615

Firstly, we introduced a numerical scheme based on finite element discretization P1 in space variable and
the finite difference scheme in time which allows us to approach discrete energy. Also, we demonstrated
the property of energy decay. Then, a priori error estimates for the semi-discrete and fully discrete
schemes are established. Finally some numerical experiments were carried out for this system, the
order of convergence of which agrees with that expected from the theories.
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HucenbHa anpokcumauyis cuctemmn MI'T 3i 3akoHom Pyp'e

Cmyx A., Pamin A.

Daxyavmem mamemamury ma tnpopmamury Yrieepcumemy Xacana I,
FSAC, Jlabopamopisa gyrndamernmanvroi ma npuraadnoi mamemamuru, Kacabaanxa, Mapoxko

Y it poboti posrasmgaerbes cucrema Mypa-T'iocona—Tommncona—Pyp’e, sika oTpuMaHa
o0’ennanuam pisugnasg Mypa-Ti6cona—Tomncona (MGT) 3 kiacuuHuM DIBHAHHIM Terl-
sionposigrocti @yp’e, Bimoma sk Mmoueab MGT-Oyp'e. g o = af — v > 0 aBropu
BUKOPUCTAJIN METO/T MBIPYII, OO JTOBECTH iICHYBAHHS Ta €IUHICTD IJIOOAJILHUX PO3B’I3KiB
Ta €KCIMOHEHIIAJIbHY CTIKicTh MOBHOI eHepril. Ham BHecOK mossrae y BUBUEHHI UHCEb-
HOT'O METOJTy, AKWil 3aCHOBAHUH Ha CKIHYEHHO-eJIEMEHTHIN JUCKPETU3AIIil 38 TPOCTOPOBOIO
3MIHHOIO T Ta CKiHYEHHO-pi3HuUIEBil cxemi 3a yacom mozaeai MGT-®@yp’e. doBeneno Bia-
CTHUBICTb JUCKPETHOI CTifKOCTi Ta ampiopHi orinku moxnoku. Hakimerb, 1ncioBe MOIeTIo-
BaHHH J00P€e Y3rO/KYEThC 3 TEOPETUIHUMU Pe3yJIbTaTaMu.

Knwouosi cnosa: pisranns MGT; saxon Qyp’e; wuceavrna cmitikicmv; memod ckinven-
HUL eNCMENNIB; YUCEADHE MOOCAIOBAHH.A.
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