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The main aim of this work is to analyze the dynamics of a delayed business cycle model
described by partial differential equations (PDEs) in order to take into account the de-
preciation rate of capital stock and the diffusion effect. Firstly, the existence of solutions
and the economic equilibrium are carefully studied. Secondly, the local stability and the
existence of Hopf bifurcation are established. Finally, some numerical simulations are
presented to illustrate the analytical results.
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1. Introduction

Most mathematical models describing the dynamics business cycle like [1-4] assumed that the rate of
depreciation of stock capital was constant. However, this rate is not constant, and there are few models
that have investigated the dynamics of business cycle with variable depreciation rate. For instance,
Mao and Liu [5] studied the dynamics of business cycle model by considering that the depreciation of
capital as a decreasing function of capital stock. In 2023, Lasfar et al. [6] improved and generalized
the model of Mao and Liu [5] by proposing the following nonlinear system

% — a[I(Y (), K(t)) — 7Y (1)),

dK (1)

T I(Y(t —7), K(t — 72)) — 6(K)K(2),
where Y (t) represents the gross product, K (t) refers to capital stock at time ¢. 77 is the delay between
the investment decision and its execution. 75 is the time lag for the completion of investment. Further,
v € (0,1) is a coefficient called the saving constant. (Y, K) represents the investment function and it
is assumed to be continuously differentiable in R? with % > 0 and 86—[[( < 0. The parameter a denotes
the adjustment coefficient in the goods market. Finally, the depreciation rate function is represented
by 6(K).

On the other hand, the system (1) neglected the diffusion effects of economic activities and the
regional differences. Economists have noticed that the general diffusion of the economy allows a di-
versified production, with high added value and strong complementary between the various economic
sectors. In addition, the growth of economic activities is diffused by the increase in the rate of invest-
ment. So, it is important to study the dynamical behaviors of business cycle by taking into account
the diffusion effects.

Motivated by above economical and mathematical considerations, we propose a mathematical model
that takes into account both effects of variable depreciation rate and regional differences on the dy-
namics of business cycle. To do this, the present paper is organized as follows. Section 2 is devoted to
the formulation of the model and presents some preliminary results. In Section 3, the existence and
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uniqueness of solution are proved. In Section 4, we investigate the local stability of the economic equi-
librium and the existence of Hopf bifurcation. Some numerical simulations of our model are presented
in Section 5. Finally, the paper ends with a conclusion and future research.

2. Preliminaries and model formulation

In this section, we present our economic cycle model with variable depreciation rate by taking into
account the diffusion effect. This model is given by the following system of PDEs:

WD) _ gAY (4,2) + alI(Y (1, 2), K (1, 2)) 7Y (¢, 2)],
P (2)

OK(t
% = AK(t,x)+ I(Y(t —1,2), K(t —10,2)) — 0(K(t,2))K(t,x),
where Y (¢,2) and K(t,x) are the gross product and capital stock at location x and time ¢. A is the
Laplacian operator besides dy and dy are the diffusion coefficients of Y and K, respectively.
We consider model (2) with initial conditions:

Y(t7$) = <I>1(t,l’), K(t7$) = (1)2(t7$)7 (t,ﬂj‘) € [_7_70] Xﬁv (3)
where 7 = max{ry, 72}, and Neumann boundary conditions:
Y K
%—5288—5200n (0,400) x 012, (4)

where ) is the market capacity and 8% indicates the outward normal derivative on the smooth bound-
ary of2.

After that, we give the necessary definitions and results that are needed for the proofs of the main
results.

Lemma 1 (Ref. [7]). Let A, B and D be three constants with B # 0. Consider the following
problem

%—dgAuéA—B% reQ, t>0,
@zo,xeaa, t>0,
ov

u(0,2) = up(z), =€ Q.
Then u(zx,t) < maxug(z) e Bt + %(1 — e~ BY). Moreover, if B > 0, we have
€N
: A , A
u(x,t) < max{ =, maxug(z) p and limsupu(z,t) < —.
B’ .en t—+00 B

3. The existence and uniqueness of solution

To investigate the existence and boundedness of solutions of system (2)—(4), we introduce some nota-
tions.

Let X = C (ﬁ, Rz) be the Banach space of continuous functions from  into R? and C =
C ([-7,0], X) be the Banach space of continuous functions of [—7,0] into X with standard uniform
topology. For simplicity, we identify an element ¢ € C as a function from [—7,0] x € into R? defined
by ¢(s,z) = ¢(s)(z). For any continuous function w(:): [-7,b) — X for b > 0, we set w; € C by
wi(s) = w(t + s) for s € [—7,0].

As in [6], we assume that the general investment function I(Y, K) satisfies the following hypothesis:
(Hp) There exist two constants A > 0 and ¢ > 0 such that |[I(Y,K)+ ¢K| < Aforall Y, K € R.

Also, we assume that the variable depreciation §(K) satisfies the following hypothesis:
(H2) There exists d; > 0 such that §(K) > ¢; for all K € R.

Based on these hypotheses, we have the following result.

Theorem 1. If (Hy) and (Hg) hold, then for any given initial ® € C there exists a unique solution
of problem (2)—-(4) defined on [0, +00). Furthermore, this solution is uniformly bounded.
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Proof. For each ¢ = (1, ¢2)" € C and z € Q, we define Z = (Z1,Z3): C — X by

Z1(p)(x) = a[I(¢1(0,2),92(0,7)) — v1(0, )],
Za(p)(@) = I(p1(=71, %), p2(—72,2)) — 6(02(0,2))p2(0, ).
Then problem (2)—(4) can be rewritten as the following abstract functional differential equation
u'(t) = Eu(t) + Z(u), t>0, (5)
u(0) = €C,
where u = (Y, K)T and Eu = (d1AY,dyAK)T. It is obvious that Z is locally Lipschitz in C, and as
in [8], we conclude that problem (5) has a unique local solution on [0, Tinax ), Wwhere Tihax is the maximal

existence time for solution of system (5).
From the second equation of (2) and (Hy) — (Ha), we get

88—[: —dAK < A— (61 + 9K,
0K
F

K(0,2) = ®3(0,2),z € Q.
According to Lemma 1, we have
A _
K(t,z) < max {—_,max (132(0795)} s V(t,z) €10, Tinax) x €2
01+7 zen
This implies that K is bounded.
According to the first equation of the system (2), we have

oY

- < —

(%7; diAY < o — avy,
o ="

Y(0,2) = ®1(0,2), x€Q.

Similarly to above, we obtain

aryy zeQ

where o = a(A +qv) with v = max{r‘:‘ra, max ¢2(0, z)}, which implies that Y is bounded. It follows
e

Y (t,z) < max {i,ma_x qﬁl(O,w)}, V(t,x) € [0, Tinax) X £,

from the standard theory for semilinear parabolic systems [9] that Ti.x = +00. This completes the
proof. ]

4. The economic equilibrium and its stability

4.1. The economic equilibrium
In the order to investigate the existence of equilibria of (2), we consider the following hypotheses:
(Hs) I(0,0) >0forallY >0, K >0;
S K)K+8(K) a1 8 (K)K+78(K) | ol
(Ha) fw—%+w<0foraﬂ}/>0,[(>0.
Theorem 2. If (Hy)—(Hy4) hold, then system (2) has an unique economic equilibrium of the form

E* (M, K*), where K* is the unique solution of the equation I(M,K) —)(K)K =0.

Proof. Economic equilibrium is the solution of the following system:

alI(Y, K) ~7¥] =0, .
{ I(Y,K) - §(K)K = 0. (
Then
0
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Substituting (7) in (6), we find
I <@K> ~§(K)K = 0.
Let V be the function defined on the interval [0, +00) by
V(K) =1 <5(K)K,K> (K K.
Using the assumptions (H;)—(Hy), we have V(0) = 1(0,0) > 0, Kl—ig-loo V(K) = —oo and
_ I(K)K +6(K) oI 70" (K)K +v0(K) N or

V(K < 0.
(K) v oY v oK
Therefore, there is a unique economic equilibrium E*(Y*, K*) where K* is the solution of the equation
V(K)=0and y* = 2K n

4.2. Stability analysis and Hopf bifurcation
In this section, we study the stability analysis of the economic equilibrium and the existence of Hopf
bifurcation.

Let Y =Y —Y* and K = K — K*. By substituting y and k into system (2) and linearizing, we get
the following system

83);; ) = d1AY(t,x) + afaY(t,x) + bK(t,z) — vV (t, x)],

oKt z) _ B AK(t,x) + ad(t — m,7) + bE( — 72) — 0K(1), ®)
0y oK

8_5_8_5_0’ t>0, z€dQ,

where a = g—{,(Y*,K*), b= g—[I{(Y*,K*) and § = K*§'(K*) + §(K*).

Let ¢ = C([-7,0],S) be the Banach space of continuous functions of [—7,0] into S, where S is
defined by
C0Y(t,xr)  OK(t,x)
RIS

S = {y,ICEWm(Q) =0, xeasz}.

Then (8) can be rewritten as follows
U'(t) = DAU + L(Uy),
where U = (V,K)T, D = diag(d;,ds) and L: ¢ — S defined by
L(¢) = A¢(0) + Bo(=7),

A (05 ) 5o (00)

Then the characteristic of system (10) is as follows
Ay — DAy — L(e*y) =0, y € dom(A)\{0}. 9)
Let —k* (k€ N=1{0,1,2,...}) be the eigenvalue of the operator A under the Neumann boundary
conditions on S and the corresponding eigenvectors take the form:
B = (0,007, B2=(0,00)", op=cos(kzx), k=0,1,2,...
and { 5&, 5%};:] construct a basis of the phase space S. Hence, we can expand in the form of Fourier
on the phase space S, which is as follows

with

se(3) 0 (08)
Thus,
(o () s (). nex
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Substituting (11) and (10) into (9), we can have
S ola—v)  ab 8
S omeme- (2050, 28 )| (%) o

The characteristic equation of (11) is as follows:

A+ dik? — ala —7) —ab
_ —AT] 2 —ATo S| = 07
ae A+ dok” —be + 90
which leads to
A2+ P1LEA + Dok + (J1€_)‘T1 + (A + 7“07;@)6_)‘72 =0, (12)
where
poe = [dik* — aa — 7)) (d2k? + 6), pri = (dy + d2)k* — a(a —7) + 0,
q1 = —aab, r = —b,
ro = —bldik* — afa — 7).
4.3. Thecase 1 =172 =0
The Eq. (12) reduces to
M e+ e =0, (13)

with
ok =Pok+q1+ "ok, Cik=DP1kTT1
If a < 7, then the coefficients of the equation (13) satisfy:
cir >0 and cop > 0.
Therefore, we have the following lemma.

Lemma 2. Ifa < -, then the economic equilibrium E* is locally asymptotically stable in the case
T — T9 = 0.

4.4. Thecase 1y #0and 7, =0
The Eq. (12) becomes
A2+ di A+ dog + qre ™ =0, (14)

with

dok = pok + 7ok, dig=p1E+T1
Let A =iw (w > 0) be a purely imaginary root of the equation (14). Then

—w? +idypw + dog + qre T =0.
Hence,

w? — do,; = q1 cos(wTy),
wdy k= qisin(wy),

which implies that

wh + (d ), — 2do p)w” + dg j — ¢f = 0. (15)
Let z = w?. Thus, the equation (15) becomes
f(2) =2+ (di, — 2dox)z + df . — af = 0. (16)

By calculations, we obtain
di = 2do g = [dik? — ala =) + [dah® — (b= 9)]* > 0,
g — @ = [k* — ala — )P [dok® — (b — 6)]* — o*a®b”.
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When k = 0, it is easy to show that
By~ = 020~ )b~ 5 — a?a?i?.
Clearly, if |a — ¥|(0 — b) > —ab, then Eq. (16) has no positive root.

However, if (A1): |a—~|(0—b) < —ab, then Eq. (16) has a unique positive root zg and thus Eq. (15)
has a positive root wp = y/zp. In this case, we have

9 .
Wy — d0,0> n 2]_7T7
q1 wo
at which Eq. (14) with £ = 0 has a pair of purely imaginary roots of the form +iwy and all roots of
Eq. (14), except £iwp, have no zero real parts. Then, by the general theory on characteristic equations
of delay differential equations from [10] (Theorem 4.1), we see that if a < v and (A;) hold, E* remains
stable for 7 < 7.
Let A(11) = v(71) +iw(m1) be a root of Eq. (14) satisfying v(71 ) = 0, w(71,0) = wp. We now verify
that

T1,j=—arccos< j=0,1,2,...,
wo

d(Re \)
dr
This will prove that there exists at least one eigenvalue with positive real part for 7 > 1,0. In addition,

the conditions for the existence of a Hopf bifurcation [10] are then satisfied yielding a periodic solution.
To this end, differentiating Eq. (14) with respect 71, we derive that

@‘4__ 2\ + dy T
dr TN digA Fdog) A

By direct calculations one obtain that

—1
sign { d(Re ) } = sign < Re <@>
dr A=iwg dr .
A=iwg

, 2wt +2d% . — 2dy
= sign ’
(dok — wi)? + widi

> 0.

T=T1,0

= sign { f;(zo) } )
(do — w§)? + wiid?
where zg = wg . Hence, the transversal condition holds and a Hopf bifurcation occurs at w = wy,
T| = T1,0-
In addition, if iw; is a solution of (14) with k& > 1, we get
wi + (df g — 2do g )wi + dg i — qi = 0.
On the other hand, we have
d(2),k — @ > [dy — ala—7)]?[d2 — (b—0)]* — a?a®V?, for all k > 1.
If (A2): |di — a(a—7)| (d2 + & — b) > —aab, then Eq. (14) with k£ > 1 has no purely imaginary roots.
Therefore, we have the following result.
Theorem 3. For 19 = 0, we have the following conclusion.

If a <~ and (A1) — (As2) hold, then the economic equilibrium E* is locally asymptotically stable for
71 < 71,0 and unstable for 71 > 119. In addition, the system (1) undergoes Hopf bifurcation at E*

T jeN.

1 wi—do,o
when 71 = 71,9, where 1 ; = oo arceos ( === + 20

45. Thecase 1y #0, 72 #0

In this case, we consider Eq. (12) with 75 > 0 and 71 in the stable regions. Regards 75 as a parameter
of bifurcation. From Ruan and Wei [11]|, we have the following result.

Mathematical Modeling and Computing, Vol. 11, No. 3, pp.617-630 (2024)



Dynamics of a diffusive business cycle model with two delays and variable depreciation rate 623

Lemma 3. If all roots of equation (14) have negative real parts for 7 > 0, then there exists a
75 (T1) > 0 such that when 0 < 19 < 75(71) all roots of equation (12) have negative real parts.

Proof. The left hand side of Eq. (12) is analytic in A and 79. From [11], we deduce when 7 varies, the
sum of the multiplicities of zeros of the left hand side of equation Eq. (12) in the open right half-plane
can change only if a zero on or cross the imaginary axis. ]

Theorem 4. For 7 in the stable regions and 1o > 0, we have
(i) If f(z) = 0 has no positive roots, there exists a 75 (1) such that the economic equilibrium E*
is locally asymptotically stable when o € [0, 75 (71)).
(ii) If a < v and (A1) — (As2) hold, then for any 11 € [0,71), there exists a 75 (1) such that the
economic equilibrium E* is locally asymptotically stable when 1o € [0, 75 (71)).

Proof. The proof of (i) is immediate from Lemma 3 and Theorem 3 (i).

Now, we prove (ii). When a < v and (A;) — (Ag) are satisfied, it follows from Theorem 3 that the
economic equilibrium is locally asymptotically stable for 7 € [0,71,9). Then all roots of Eq. (14) have
negative real parts. According to Lemma 3, there exists a 75 (71) > 0, such that when 0 < 7o < 75(71)
all roots of equation (12) have negative real parts. Hence, the economic equilibrium E* is locally
asymptotically stable when 7o € [0, 75 (71)). [

It is clear that Hopf bifurcation occurs at 75 (71) if the conditions of Lemma 3 or Theorem 4 are
satisfied.

4.6. Study of special case
In this subsection, we consider the following business cycle model:

O =AY (1,2) + alI(Y (1), K (1) — 7Y (1], an
% — BLAK () + I(Y (¢ —7), K(t — 7)) — §(K)K(2).

This system is a particular case of system (2) with 71 = 75 = 7. From Theorems 1 and 2, we have the
following results.
Corollary 1.
(i) If (Hy) and (H9) hold, then for any initial condition (®1, ®2) € C, there exists a unique solution
of system (17) defined on [0,400) and this solution is uniformly bounded.
(ii)) If (H1)-(H4) hold, then system (17) has a unique economic equilibrium of the form
E* (M, K*), where K* is the unique solution of the equation I(@, K) —§(K)K =0.

Next, we discuss the stability analysis of system (17). In this case, Eq. (12) becomes

A2+ PLEA+DPok + (@1 + 1A+ ro,k)e_)‘T =0. (18)
When 7 = 0, all roots of Eq. (18) have negative real parts if a < . Hence, E* is locally asymptotically
stable.
For 7 > 0, let iw (w > 0) is a root of (18), then we have
{ —w? + pox = —(q1 + rox) cos(wT) — wry sin(wr),
wp1k = (q1 + rok) sin(wr) — wry cos(w),
which leads to

wt + [p%k — 2pok — rﬂwz + [pg,k — (1 + ro,k)Q] =0. (19)
Letting z = w?, Eq. (19) can be written as
9(z) = 2%+ [Pt = 2poje — ]z + [Ph s — (a1 + rog)’] = 0. (20)

Clearly, if a < 7 and g(z) has no positive roots, then the economic equilibrium E* of (17) is locally
asymptotically stable for all 7 > 0. If not, for certain ky € N, if Eq.(20) has positive roots, preserving
generality, we suppose that Eq. (20) with k = k¢ has two positive roots z, (n = 1,2). Hence, Eq. (19)
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has two positive roots w, = /z, and there exist two sequences of critical values of 7 given by

1
7' = — arccos

)

wa(ripuk + g1+ rox) — pog(q + To,k)) LT
J Wy,

(q1 +70k)? — T3 Wn
where j € N.

Let A(1) = o(7)+iw(7) be the root of Eq. (18) satisfying o(7}") = 0 and w(7]') = wy,. Differentiating
Eq. (18) with respect to 7, we get

A\ 2\ + p1k r T
<E> AN+ pieA+pok) | AFA+t @ tror) A

Let
0= min {770}, wi= wn,-

o =T,
0 ne{l,2}

By a simple calculation, we have

, { d(Re \) } . { 2(wy? = pog) + Pl — i }
sign = sign
dr T=T§

T%W(’)‘z + (g1 +710k)?

/ *
. 9 (%) }
= sign { " # 0,
riwg? + (1 + o)
where 25 = wgz. We can deduce the following conclusions.

Theorem 5. Assume that a < . Then we have
(i) If g(#) = 0 has no positive roots, then the economic equilibrium E* of system (17) is locally
asymptotically stable for all T > 0.
(ii) If g(z) = 0 has positive roots, then system (17) undergoes a Hopf bifurcation at E* when
T = 7. Further, the economic equilibrium E* is locally asymptotically stable when T € [0, )
and unstable for T > 7 .

5. Numerical simulation

This section presents numerical simulation for our analytical results. Here, we take I(Y, K) = e);y +

I+
%, where ¢ < 0, ¢ > 0. The depreciation rate function is chosen as §(K) = d; + 610;[6(1, where
0 <01 <dg. Let a=3,g=-0.5,e=0.01, 61 =0.2, 61 = 0.8, v = 0.3, d; = do = 0.1. In this case,
our model has an economic steady state £*(0.7652,0.9096). By a simple computation, we can obtain
a = 0.1436, b = —0.4939. Now, we examine the dynamics of the system (2) for different values of 7
and 79.

First, we choose 71 # 0 and 75 = 0. Based on Theorem 3, we deduce that the economic steady
state E* is locally asymptotically stable for all 7 € [0,710) and it is unstable for all 71 > 71 with
71,0 ~ 5.6531. Figures 1, 2, 3 and 4 illustrate this finding. When 7 = 71 o, the model (2) undergoes a
Hopf bifurcation at the economic steady state E* according to Theorem 3. Figures 5 and 6 show such
result.

Based on the preceding, the stable region for 7 is I = [0, 5.6531). If we pick out 7 = 7 = 0.5 € I,
then we get 75 = 2.0521. Based on Theorem 4 (ii), £*(0.7652,0.9096) is locally asymptotically stable
when 7 € [0,75). Figures 7, 8, 9 and 10 illustrate this results.

For 71 = 75 = 7, the conditions of Theorem 5 (ii) are established. Then system (2) undergoes a
Hopf bifurcation at £*(0.7652,0.9096) when 7 = 7§ ~ 1.837. Further, E* is locally asymptotically
stable for all 7 € [0, 7)) and it is unstable for all 7 > 7. This outcome is depicted in Figures 11-16.
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Fig. 1. Diffusive business cycle of system (2) when 71 = 1.5 and 75 = 0.
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Fig. 2. The economic steady state E* is stable when 7 = 1.5, , = 0 at x = 5.
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Fig. 3. Diffusive business cycle of system (2) when 71 = 6.5 and 75 = 0.
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Fig. 4. The economic steady state E* is unstable when 71 = 6.5 and 75 = 0 at © = 5.
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Fig. 5. Diffusive business cycle of system (2) 7 = 710 and 7 = 0.
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Fig. 6. System (2) undergoes Hopf bifurcation at the economic steady state E* when 7 = 719 and » = 0 at

T =25.
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Fig. 7. Diffusive business cycle of system (2) when 71 = 0.5 and 75 = 2.
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Fig. 8. The economic equilibrium E* is stable when 7y = 0.5 and 7, = 2 at z = 5.
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Fig. 9. Diffusive business cycle of system (2) when 71 = 0.5 and 75 = 3.75.

15 T T T T T 13
13
12}
12F
11
11
1k
1 A
> X 0.9 X 09
081 08
05
07r h 07t
0.6 H 06
o . . . . . 05 . . . . . 05
0 50 100 150 200 250 300 0 50 100 150 200 250 300 o 05 1 15
Y
t t

Fig. 10. The economic steady state E* is unstable when 7 = 0.5 and 7 = 3.75 at z = 5.
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Fig. 11. Diffusive business cycle of system (2) when 71 = 75 = 2.
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Fig.12. The economic steady state E* is unstable when 7 = 7 =2 at x = 5.
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Fig. 13. Diffusive business cycle of system (2) when 7 = 12 =7 = 7.
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Fig.14. System (2) undergoes Hopf bifurcation at the economic steady state E* when 7 = 75 = 73 at © = 5.
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Fig.16. The economic steady state E* is stable when 7 = 7 = 1.5 at x = 5.
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6. Conclusion

In this study, we have developed a mathematical model that describes the dynamics of delayed economic
cycles with variable depreciation rate. This developed model was built by systems of PDEs to study the
impact of diffusion effect. We firstly have demonstrated the existence and uniqueness of the solution
and the economic equilibrium of our model. In addition, we have shown the local asymptotic stability
under some conditions and prove that the introduction of delay can lead to a Hopf bifurcation at
economic equilibrium. Finally, our numerical simulations confirm the theoretical results by illustrating
the effect of delays on the spatiotemporal dynamics of our model and the occurrence of the Hopf
bifurcation.

On the other side, memory is an important characteristic in economical systems that refers to
the collective and historical knowledge, experiences and information that society has accumulated over
time. Therefore, it very interesting to investigate the effect of memory on the spatiotemporal dynamics
by means of Hattaf fractional and fractal fractional operators introduced in [12-14]. This well be the
objective of our future research.
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OvHamika mopeni audysiiHoro GisHec-UMKAy 3 ABOMAa 3aTPUMKaAMU
Ta 3MIHHOIO HOPMOIO aMopTu3auii

Jlacdap C.', Xarrap K.12, FOcdi H.!

LTa6opamopia ananisy, modearocanmna ma cumymosarns (LAMS),
Daxyarvmem waykx Ben M’Cix, Ynisepcumem Xacana 11,
n.c. 7955 Cidi Ocman, Kacabaranxa, Mapokko
2 Hayxosa 2pyna 3 modemosarns ma euxaadanns mamemamuru (ERMEM),
Pezionaavrutds yenmp ocsimu i nidzomosku npogecitc (CRMEF),
20340 Jlep6 TI'nned, Kacabranka, Mapoxko

OCHOBHOIO METOIO IIi€] CTATTI € aHAJI3 JUHAMIKE MOJEJ BiIK/IaJIeHOro OI3HEC-IUKILY, sIKa
OIMCYETHCsI PIBHIHAAMY B YacTuHHUX noxigaux (PDE), mo6 BpaxyBaTu IBHIKICTH aMOp-
TU3aIlil OCHOBHOIO KamiTayty Ta edekt mudyaii. [lo-nepire, peTenbHO BUBYAETHCS iCHY-
BaHHsI PO3B’s3KiB 1 eKOHOMiIUHaA piBHOBara. llo-zapyre, BCTAHOBJIEHO JIOKAJBHY CTIifKiCTBH
Ta icayBanas Oidypkamii Xomnda. Hakinemns, mis imocTparil aHadiTHIHNX pPE3yJIbTATIB
[IPEJICTABJIEHO JIEKIIbKA IMCEJIBHIX CUMYJISITA.

Kntouosi cnoBsa: dinosuti yuka; nopma amopmusdayis; dudysitinui epexm; Gidyprayis
Xondga; cmitixicmo.
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