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1. Introduction

Most mathematical models describing the dynamics business cycle like [1–4] assumed that the rate of
depreciation of stock capital was constant. However, this rate is not constant, and there are few models
that have investigated the dynamics of business cycle with variable depreciation rate. For instance,
Mao and Liu [5] studied the dynamics of business cycle model by considering that the depreciation of
capital as a decreasing function of capital stock. In 2023, Lasfar et al. [6] improved and generalized
the model of Mao and Liu [5] by proposing the following nonlinear system











dY

dt
= α[I(Y (t),K(t))− γY (t)],

dK

dt
= I(Y (t− τ1),K(t− τ2))− δ(K)K(t),

(1)

where Y (t) represents the gross product, K(t) refers to capital stock at time t. τ1 is the delay between
the investment decision and its execution. τ2 is the time lag for the completion of investment. Further,
γ ∈ (0, 1) is a coefficient called the saving constant. I(Y,K) represents the investment function and it
is assumed to be continuously differentiable in R

2 with ∂I
∂Y

> 0 and ∂I
∂K

< 0. The parameter α denotes
the adjustment coefficient in the goods market. Finally, the depreciation rate function is represented
by δ(K).

On the other hand, the system (1) neglected the diffusion effects of economic activities and the
regional differences. Economists have noticed that the general diffusion of the economy allows a di-
versified production, with high added value and strong complementary between the various economic
sectors. In addition, the growth of economic activities is diffused by the increase in the rate of invest-
ment. So, it is important to study the dynamical behaviors of business cycle by taking into account
the diffusion effects.

Motivated by above economical and mathematical considerations, we propose a mathematical model
that takes into account both effects of variable depreciation rate and regional differences on the dy-
namics of business cycle. To do this, the present paper is organized as follows. Section 2 is devoted to
the formulation of the model and presents some preliminary results. In Section 3, the existence and

c© 2024 Lviv Polytechnic National University 617



618 Lasfar S., Hattaf K., Yousfi N.

uniqueness of solution are proved. In Section 4, we investigate the local stability of the economic equi-
librium and the existence of Hopf bifurcation. Some numerical simulations of our model are presented
in Section 5. Finally, the paper ends with a conclusion and future research.

2. Preliminaries and model formulation

In this section, we present our economic cycle model with variable depreciation rate by taking into
account the diffusion effect. This model is given by the following system of PDEs:











∂Y (t, x)

∂t
= d1∆Y (t, x) + α[I(Y (t, x),K(t, x)) − γY (t, x)],

∂K(t, x)

∂t
= d2∆K(t, x) + I(Y (t− τ1, x),K(t− τ2, x))− δ(K(t, x))K(t, x),

(2)

where Y (t, x) and K(t, x) are the gross product and capital stock at location x and time t. ∆ is the
Laplacian operator besides d1 and d2 are the diffusion coefficients of Y and K, respectively.

We consider model (2) with initial conditions:

Y (t, x) = Φ1(t, x), K(t, x) = Φ2(t, x), (t, x) ∈ [−τ, 0]× Ω, (3)

where τ = max{τ1, τ2}, and Neumann boundary conditions:

∂Y

∂ξ
=

∂K

∂ξ
= 0 on (0,+∞)× ∂Ω, (4)

where Ω is the market capacity and ∂
∂ξ

indicates the outward normal derivative on the smooth bound-
ary ∂Ω.

After that, we give the necessary definitions and results that are needed for the proofs of the main
results.

Lemma 1 (Ref. [7]). Let A, B and D be three constants with B 6= 0. Consider the following
problem



















∂u

∂t
− d2∆u 6 A−Bu, x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x), x ∈ Ω̄.

Then u(x, t) 6 max
x∈Ω

u0(x) e
−Bt + A

B
(1− e−Bt). Moreover, if B > 0, we have

u(x, t) 6 max

{

A

B
,max
x∈Ω

u0(x)

}

and lim sup
t→+∞

u(x, t) 6
A

B
.

3. The existence and uniqueness of solution

To investigate the existence and boundedness of solutions of system (2)–(4), we introduce some nota-
tions.

Let X = C
(

Ω,R2
)

be the Banach space of continuous functions from Ω into R
2 and C =

C ([−τ, 0],X) be the Banach space of continuous functions of [−τ, 0] into X with standard uniform
topology. For simplicity, we identify an element φ ∈ C as a function from [−τ, 0] × Ω into R

2 defined
by φ(s, x) = φ(s)(x). For any continuous function ω(·) : [−τ, b) → X for b > 0, we set ωt ∈ C by
ωt(s) = ω(t+ s) for s ∈ [−τ, 0].

As in [6], we assume that the general investment function I(Y,K) satisfies the following hypothesis:
(H1) There exist two constants A > 0 and q̄ > 0 such that |I(Y,K) + q̄K| 6 A for all Y,K ∈ R.

Also, we assume that the variable depreciation δ(K) satisfies the following hypothesis:
(H2) There exists δ1 > 0 such that δ(K) > δ1 for all K ∈ R.

Based on these hypotheses, we have the following result.

Theorem 1. If (H1) and (H2) hold, then for any given initial Φ ∈ C there exists a unique solution
of problem (2)–(4) defined on [0,+∞). Furthermore, this solution is uniformly bounded.
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Proof. For each ϕ = (ϕ1, ϕ2)
T ∈ C and x ∈ Ω, we define Z = (Z1, Z2) : C → X by

Z1(ϕ)(x) = α[I(ϕ1(0, x), ϕ2(0, x)) − γϕ1(0, x)],

Z2(ϕ)(x) = I(ϕ1(−τ1, x), ϕ2(−τ2, x))− δ(ϕ2(0, x))ϕ2(0, x).

Then problem (2)–(4) can be rewritten as the following abstract functional differential equation
{

u′(t) = Eu(t) + Z(ut), t > 0,
u(0) = φ ∈ C, (5)

where u = (Y,K)T and Eu = (d1∆Y, d2∆K)T . It is obvious that Z is locally Lipschitz in C, and as
in [8], we conclude that problem (5) has a unique local solution on [0, Tmax), where Tmax is the maximal
existence time for solution of system (5).

From the second equation of (2) and (H1)− (H2), we get


















∂K

∂t
− d2∆K 6 A− (δ1 + q̄)K,

∂K

∂ξ
= 0,

K(0, x) = Φ2(0, x), x ∈ Ω̄.

According to Lemma 1, we have

K(t, x) 6 max

{

A

δ1 + q
,max
x∈Ω

Φ2(0, x)

}

, ∀(t, x) ∈ [0, Tmax)× Ω.

This implies that K is bounded.
According to the first equation of the system (2), we have



















∂Y

∂t
− d1∆Y 6 ̺− αγY,

∂Y

∂ξ
= 0,

Y (0, x) = Φ1(0, x), x ∈ Ω.

Similarly to above, we obtain

Y (t, x) 6 max

{

̺

αγ
,max
x∈Ω

φ1(0, x)

}

, ∀(t, x) ∈ [0, Tmax)× Ω,

where ̺ = α(A + qν) with ν = max{ A
δ1+q

,max
x∈Ω

φ2(0, x)}, which implies that Y is bounded. It follows

from the standard theory for semilinear parabolic systems [9] that Tmax = +∞. This completes the
proof. �

4. The economic equilibrium and its stability

4.1. The economic equilibrium

In the order to investigate the existence of equilibria of (2), we consider the following hypotheses:

(H3) I(0, 0) > 0 for all Y > 0, K > 0;

(H4)
δ′(K)K+δ(K)

γ
∂I
∂Y

− γδ′(K)K+γδ(K)
γ

+ ∂I
∂K

< 0 for all Y > 0, K > 0.

Theorem 2. If (H1)–(H4) hold, then system (2) has an unique economic equilibrium of the form

E∗( δ(K∗)K∗

γ
,K∗), where K∗ is the unique solution of the equation I( δ(K)K

γ
,K)− δ(K)K = 0.

Proof. Economic equilibrium is the solution of the following system:
{

α[I(Y,K)− γY ] = 0,
I(Y,K)− δ(K)K = 0.

(6)

Then

Y =
δ(K)K

γ
. (7)
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Substituting (7) in (6), we find

I

(

δ(K)K

γ
,K

)

− δ(K)K = 0.

Let V be the function defined on the interval [0,+∞) by

V (K) = I

(

δ(K)K

γ
,K

)

− δ(K)K.

Using the assumptions (H1)–(H4), we have V (0) = I(0, 0) > 0, lim
K→+∞

V (K) = −∞ and

V ′(K) =
δ′(K)K + δ(K)

γ

∂I

∂Y
− γδ′(K)K + γδ(K)

γ
+

∂I

∂K
< 0.

Therefore, there is a unique economic equilibrium E∗(Y ∗,K∗) where K∗ is the solution of the equation

V (K) = 0 and Y ∗ = δ(K∗)K∗

γ
. �

4.2. Stability analysis and Hopf bifurcation

In this section, we study the stability analysis of the economic equilibrium and the existence of Hopf
bifurcation.

Let Y = Y −Y ∗ and K = K −K∗. By substituting y and k into system (2) and linearizing, we get
the following system



























∂Y(t, x)
∂t

= d1∆Y(t, x) + α[aY(t, x) + bK(t, x)− γY(t, x)],
∂K(t, x)

∂t
= d2∆K(t, x) + aY(t− τ1, x) + bK(t− τ2)− δ̄K(t),

∂Y
∂ξ

=
∂K
∂ξ

= 0, t > 0, x ∈ ∂Ω,

(8)

where a = ∂I
∂Y

(Y ∗,K∗), b = ∂I
∂K

(Y ∗,K∗) and δ̄ = K∗δ′(K∗) + δ(K∗).
Let ζ = C([−τ, 0],S) be the Banach space of continuous functions of [−τ, 0] into S, where S is

defined by

S =

{

Y,K ∈ W 2,2(Ω):
∂Y(t, x)

∂ξ
=

∂K(t, x)

∂ξ
= 0, x ∈ ∂Ω

}

.

Then (8) can be rewritten as follows

U ′(t) = D∆U + L(Ut),

where U = (Y,K)T , D = diag(d1, d2) and L : ζ → S defined by

L(φ) = Aφ(0) + Bφ(−τ),

with

A =

(

α(a− γ) αb

0 −δ̄

)

and B =

(

0 0
a b

)

.

Then the characteristic of system (10) is as follows

λy −D∆y − L
(

eλy
)

= 0, y ∈ dom(∆)\{0}. (9)

Let −k2 (k ∈ N = {0, 1, 2, . . .}) be the eigenvalue of the operator ∆ under the Neumann boundary
conditions on S and the corresponding eigenvectors take the form:

β1
k = (σk, 0)

T , β2
k = (0, σk)

T , σk = cos(kx), k = 0, 1, 2, . . .

and
{

β1
k , β

2
k

}+∞
k=0

construct a basis of the phase space S. Hence, we can expand in the form of Fourier
on the phase space S, which is as follows

y =
∞
∑

k=0

Y T
k

(

β1
k

β2
k

)

, Yk =

( 〈

y, β1
k

〉

〈

y, β2
k

〉

)

. (10)

Thus,

L

(

φT

(

β1
k

β2
k

))

= L(φ)T
(

β1
k

β2
k

)

, k ∈ N. (11)
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Substituting (11) and (10) into (9), we can have
∞
∑

k=0

Y T
k

[

(

λI2 +Dk2
)

−
(

α(a− γ) α b

a e−λτ1 β e−λτ2 − δ̄

)](

β1
k

β2
k

)

= 0.

The characteristic equation of (11) is as follows:
∣

∣

∣

∣

λ+ d1k
2 − α(a − γ) −α b

−a e−λτ1 λ+ d2k
2 − b e−λτ2 + δ̄

∣

∣

∣

∣

= 0,

which leads to

λ2 + p1,kλ+ p0,k + q1e
−λτ1 + (r1λ+ r0,k)e

−λτ2 = 0, (12)

where

p0,k = [d1k
2 − α(a− γ)](d2k

2 + δ̄), p1,k = (d1 + d2)k
2 − α(a− γ) + δ̄,

q1 = −αa b, r1 = −b,

r0,k = −b[d1k
2 − α(a− γ)].

4.3. The case τ1 = τ2 = 0

The Eq. (12) reduces to

λ2 + c1,kλ+ c0,k = 0, (13)

with

c0,k = p0,k + q1 + r0,k, c1,k = p1,k + r1.

If a < γ, then the coefficients of the equation (13) satisfy:

c1,k > 0 and c0,k > 0.

Therefore, we have the following lemma.

Lemma 2. If a < γ, then the economic equilibrium E∗ is locally asymptotically stable in the case
τ1 = τ2 = 0.

4.4. The case τ1 6= 0 and τ2 = 0

The Eq. (12) becomes

λ2 + d1,kλ+ d0,k + q1e
−λτ1 = 0, (14)

with

d0,k = p0,k + r0,k, d1,k = p1,k + r1.

Let λ = iω (ω > 0) be a purely imaginary root of the equation (14). Then

−ω2 + i d1,kω + d0,k + q1e
−iωτ1 = 0.

Hence,
{

ω2 − d0,k = q1 cos(ωτ1),
ω d1,k = q1 sin(ωτ1),

which implies that

ω4 + (d21,k − 2d0,k)ω
2 + d20,k − q21 = 0. (15)

Let z = ω2. Thus, the equation (15) becomes

f(z) = z2 + (d21,k − 2d0,k)z + d20,k − q21 = 0. (16)

By calculations, we obtain

d21,k − 2d0,k = [d1k
2 − α(a− γ)]2 + [d2k

2 − (b− δ̄)]2 > 0,

d20,k − q21 = [d1k
2 − α(a− γ)]2[d2k

2 − (b− δ̄)]2 − α2a2b2.
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622 Lasfar S., Hattaf K., Yousfi N.

When k = 0, it is easy to show that

d20,0 − q21 = α2(a− γ)2(b− δ̄)2 − α2a2b2.

Clearly, if |a− γ|(δ̄ − b) > −ab, then Eq. (16) has no positive root.
However, if (A1): |a−γ|(δ̄−b) < −ab, then Eq. (16) has a unique positive root z0 and thus Eq. (15)

has a positive root ω0 =
√
z0. In this case, we have

τ1,j =
1

ω0
arccos

(

ω2
0 − d0,0

q1

)

+
2jπ

ω0
, j = 0, 1, 2, . . . ,

at which Eq. (14) with k = 0 has a pair of purely imaginary roots of the form ±iω0 and all roots of
Eq. (14), except ±iω0, have no zero real parts. Then, by the general theory on characteristic equations
of delay differential equations from [10] (Theorem 4.1), we see that if a < γ and (A1) hold, E∗ remains
stable for τ1 < τ1,0.

Let λ(τ1) = v(τ1) + iω(τ1) be a root of Eq. (14) satisfying v(τ1,0) = 0, ω(τ1,0) = ω0. We now verify
that

d(Re λ)

dτ

∣

∣

∣

∣

τ=τ1,0

> 0.

This will prove that there exists at least one eigenvalue with positive real part for τ > 1, 0. In addition,
the conditions for the existence of a Hopf bifurcation [10] are then satisfied yielding a periodic solution.
To this end, differentiating Eq. (14) with respect τ1, we derive that

(

dλ

dτ

)−1

= − 2λ+ d1,k

λ (λ2 + d1,kλ+ d0,k)
− τ1

λ
.

By direct calculations one obtain that

sign

{

d(Reλ)

dτ

}

λ=iω0

= sign

{

Re

(

dλ

dτ

)−1
}

λ=iω0

= sign

{

2ω2
0 + 2d21,k − 2d0,k

(d0,k − ω2
0)

2 + ω2
0d

2
1,k

}

= sign

{

f ′(z0)

(d0,k − ω2
0)

2 + ω2
0d

2
1,k

}

,

where z0 = ω2
0 . Hence, the transversal condition holds and a Hopf bifurcation occurs at ω = ω0,

τ1 = τ1,0.
In addition, if iω1 is a solution of (14) with k > 1, we get

ω4
1 + (d21,k − 2d0,k)ω

2
1 + d20,k − q21 = 0.

On the other hand, we have

d20,k − q21 > [d1 − α(a− γ)]2[d2 − (b− δ̄)]2 − α2a2b2, for all k > 1.

If (A2): |d1 −α(a− γ)|
(

d2 + δ̄ − b
)

> −αab, then Eq. (14) with k > 1 has no purely imaginary roots.
Therefore, we have the following result.

Theorem 3. For τ2 = 0, we have the following conclusion.
If a < γ and (A1) − (A2) hold, then the economic equilibrium E∗ is locally asymptotically stable for
τ1 < τ1,0 and unstable for τ1 > τ1,0. In addition, the system (1) undergoes Hopf bifurcation at E∗

when τ1 = τ1,0, where τ1,j =
1
ω0

arccos
(

ω2

0
−d0,0
q1

)

+ 2jπ
ω0

, j ∈ N.

4.5. The case τ1 6= 0, τ2 6= 0

In this case, we consider Eq. (12) with τ2 > 0 and τ1 in the stable regions. Regards τ2 as a parameter
of bifurcation. From Ruan and Wei [11], we have the following result.
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Lemma 3. If all roots of equation (14) have negative real parts for τ1 > 0, then there exists a
τ∗2 (τ1) > 0 such that when 0 6 τ2 < τ∗2 (τ1) all roots of equation (12) have negative real parts.

Proof. The left hand side of Eq. (12) is analytic in λ and τ2. From [11], we deduce when τ2 varies, the
sum of the multiplicities of zeros of the left hand side of equation Eq. (12) in the open right half-plane
can change only if a zero on or cross the imaginary axis. �

Theorem 4. For τ1 in the stable regions and τ2 > 0, we have
(i) If f(z) = 0 has no positive roots, there exists a τ∗2 (τ1) such that the economic equilibrium E∗

is locally asymptotically stable when τ2 ∈ [0, τ∗2 (τ1)).
(ii) If a < γ and (A1) − (A2) hold, then for any τ1 ∈ [0, τ1,0), there exists a τ∗2 (τ1) such that the

economic equilibrium E∗ is locally asymptotically stable when τ2 ∈ [0, τ∗2 (τ1)).

Proof. The proof of (i) is immediate from Lemma 3 and Theorem 3 (i).
Now, we prove (ii). When a < γ and (A1)− (A2) are satisfied, it follows from Theorem 3 that the

economic equilibrium is locally asymptotically stable for τ1 ∈ [0, τ1,0). Then all roots of Eq. (14) have
negative real parts. According to Lemma 3, there exists a τ∗2 (τ1) > 0, such that when 0 6 τ2 < τ∗2 (τ1)
all roots of equation (12) have negative real parts. Hence, the economic equilibrium E∗ is locally
asymptotically stable when τ2 ∈ [0, τ∗2 (τ1)). �

It is clear that Hopf bifurcation occurs at τ∗2 (τ1) if the conditions of Lemma 3 or Theorem 4 are
satisfied.

4.6. Study of special case

In this subsection, we consider the following business cycle model:










dY

dt
= d1∆Y (t, x) + α[I(Y (t),K(t)) − γY (t)],

dK

dt
= d2∆K(t, x) + I(Y (t− τ),K(t− τ))− δ(K)K(t).

(17)

This system is a particular case of system (2) with τ1 = τ2 = τ . From Theorems 1 and 2, we have the
following results.

Corollary 1.
(i) If (H1) and (H2) hold, then for any initial condition (Φ1,Φ2) ∈ C, there exists a unique solution

of system (17) defined on [0,+∞) and this solution is uniformly bounded.
(ii) If (H1)–(H4) hold, then system (17) has a unique economic equilibrium of the form

E∗(δ(K∗)K∗

γ
,K∗), where K∗ is the unique solution of the equation I

( δ(K)K
γ

,K
)

− δ(K)K = 0.

Next, we discuss the stability analysis of system (17). In this case, Eq. (12) becomes

λ2 + p1,kλ+ p0,k + (q1 + r1λ+ r0,k)e
−λτ = 0. (18)

When τ = 0, all roots of Eq. (18) have negative real parts if a < γ. Hence, E∗ is locally asymptotically
stable.

For τ > 0, let iω (ω > 0) is a root of (18), then we have
{

−ω2 + p0,k = −(q1 + r0,k) cos(ωτ)− ωr1 sin(ωτ),
ωp1,k = (q1 + r0,k) sin(ωτ)− ωr1 cos(ωτ),

which leads to

ω4 +
[

p21,k − 2p0,k − r21
]

ω2 +
[

p20,k − (q1 + r0,k)
2
]

= 0. (19)

Letting z = ω2, Eq. (19) can be written as

g(z) = z2 +
[

p21,k − 2p0,k − r21
]

z +
[

p20,k − (q1 + r0,k)
2
]

= 0. (20)

Clearly, if a < γ and g(z) has no positive roots, then the economic equilibrium E∗ of (17) is locally
asymptotically stable for all τ > 0. If not, for certain k0 ∈ N, if Eq.(20) has positive roots, preserving
generality, we suppose that Eq. (20) with k = k0 has two positive roots zn (n = 1, 2). Hence, Eq. (19)
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has two positive roots ωn =
√
zn and there exist two sequences of critical values of τ given by

τnj =
1

ωn
arccos

(

ω2
n(r1p1,k + q1 + r0,k)− p0,k(q1 + r0,k)

(q1 + r0,k)2 − r1ω2
n

)

+
2jπ

ωn
,

where j ∈ N.
Let λ(τ) = σ(τ)+iω(τ) be the root of Eq. (18) satisfying σ(τnj ) = 0 and ω(τnj ) = ωn. Differentiating

Eq. (18) with respect to τ , we get
(

dλ

dτ

)−1

= − 2λ+ p1,k

λ(λ2 + p1,kλ+ p0,k)
+

r1

λ(r1λ+ q1 + r0,k)
− τ

λ
.

Let

τ∗0 = τn0

0 = min
n∈{1,2}

{τn0 } , ω∗
0 = ωn0

.

By a simple calculation, we have

sign

{

d(Reλ)

dτ

}

τ=τ∗
0

= sign

{

2(ω∗
0
2 − p0,k) + p21,k − r21

r21ω
∗
0
2 + (q1 + r0,k)2

}

= sign

{

g′(z∗0)

r21ω
∗
0
2 + (q1 + r0,k)2

}

6= 0,

where z∗0 = ω∗
0
2. We can deduce the following conclusions.

Theorem 5. Assume that a < γ. Then we have
(i) If g(z) = 0 has no positive roots, then the economic equilibrium E∗ of system (17) is locally

asymptotically stable for all τ > 0.
(ii) If g(z) = 0 has positive roots, then system (17) undergoes a Hopf bifurcation at E∗ when

τ = τ∗0 . Further, the economic equilibrium E∗ is locally asymptotically stable when τ ∈ [0, τ∗0 )
and unstable for τ > τ∗0 .

5. Numerical simulation

This section presents numerical simulation for our analytical results. Here, we take I(Y,K) = eY

1+eY
+

qK√
1+εK2

, where q < 0, ε > 0. The depreciation rate function is chosen as δ(K) = δ1 +
δ0−δ1
1+K

, where

0 < δ1 < δ0. Let α = 3, q = −0.5, ε = 0.01, δ1 = 0.2, δ1 = 0.8, γ = 0.3, d1 = d2 = 0.1. In this case,
our model has an economic steady state E∗(0.7652, 0.9096). By a simple computation, we can obtain
a = 0.1436, b = −0.4939. Now, we examine the dynamics of the system (2) for different values of τ1
and τ2.

First, we choose τ1 6= 0 and τ2 = 0. Based on Theorem 3, we deduce that the economic steady
state E∗ is locally asymptotically stable for all τ ∈ [0, τ1,0) and it is unstable for all τ1 > τ1,0 with
τ1,0 ≈ 5.6531. Figures 1, 2, 3 and 4 illustrate this finding. When τ1 = τ1,0, the model (2) undergoes a
Hopf bifurcation at the economic steady state E∗ according to Theorem 3. Figures 5 and 6 show such
result.

Based on the preceding, the stable region for τ1 is I = [0, 5.6531). If we pick out τ1 = τ∗1 = 0.5 ∈ I,
then we get τ∗2 = 2.0521. Based on Theorem 4 (ii), E∗(0.7652, 0.9096) is locally asymptotically stable
when τ2 ∈ [0, τ∗2 ). Figures 7, 8, 9 and 10 illustrate this results.

For τ1 = τ2 = τ , the conditions of Theorem 5 (ii) are established. Then system (2) undergoes a
Hopf bifurcation at E∗(0.7652, 0.9096) when τ = τ∗0 ≈ 1.837. Further, E∗ is locally asymptotically
stable for all τ ∈ [0, τ∗0 ) and it is unstable for all τ > τ∗0 . This outcome is depicted in Figures 11–16.
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Fig. 1. Diffusive business cycle of system (2) when τ1 = 1.5 and τ2 = 0.
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Fig. 2. The economic steady state E∗ is stable when τ1 = 1.5, τ2 = 0 at x = 5.

Fig. 3. Diffusive business cycle of system (2) when τ1 = 6.5 and τ2 = 0.
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Fig. 4. The economic steady state E∗ is unstable when τ1 = 6.5 and τ2 = 0 at x = 5.
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Fig. 5. Diffusive business cycle of system (2) τ1 = τ1,0 and τ2 = 0.
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Fig. 6. System (2) undergoes Hopf bifurcation at the economic steady state E∗ when τ1 = τ1,0 and τ2 = 0 at
x = 5.

Fig. 7. Diffusive business cycle of system (2) when τ1 = 0.5 and τ2 = 2.
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Fig. 8. The economic equilibrium E∗ is stable when τ1 = 0.5 and τ2 = 2 at x = 5.
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Fig. 9. Diffusive business cycle of system (2) when τ1 = 0.5 and τ2 = 3.75.
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Fig. 10. The economic steady state E∗ is unstable when τ1 = 0.5 and τ2 = 3.75 at x = 5.

Fig. 11. Diffusive business cycle of system (2) when τ1 = τ2 = 2.
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Fig. 12. The economic steady state E∗ is unstable when τ1 = τ2 = 2 at x = 5.
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Fig. 13. Diffusive business cycle of system (2) when τ1 = τ2 = τ = τ∗
0
.
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Fig. 14. System (2) undergoes Hopf bifurcation at the economic steady state E∗ when τ1 = τ2 = τ∗
0

at x = 5.

Fig. 15. Diffusive business cycle of system (2) when τ1 = τ2 = 1.5.
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Fig. 16. The economic steady state E∗ is stable when τ1 = τ2 = 1.5 at x = 5.
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6. Conclusion

In this study, we have developed a mathematical model that describes the dynamics of delayed economic
cycles with variable depreciation rate. This developed model was built by systems of PDEs to study the
impact of diffusion effect. We firstly have demonstrated the existence and uniqueness of the solution
and the economic equilibrium of our model. In addition, we have shown the local asymptotic stability
under some conditions and prove that the introduction of delay can lead to a Hopf bifurcation at
economic equilibrium. Finally, our numerical simulations confirm the theoretical results by illustrating
the effect of delays on the spatiotemporal dynamics of our model and the occurrence of the Hopf
bifurcation.

On the other side, memory is an important characteristic in economical systems that refers to
the collective and historical knowledge, experiences and information that society has accumulated over
time. Therefore, it very interesting to investigate the effect of memory on the spatiotemporal dynamics
by means of Hattaf fractional and fractal fractional operators introduced in [12–14]. This well be the
objective of our future research.
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Динамiка моделi дифузiйного бiзнес-циклу з двома затримками
та змiнною нормою амортизацiї

Ласфар С.1, Хаттаф К.1,2, Юсфi Н.1

1Лабораторiя аналiзу, моделювання та симулювання (LAMS),
Факультет наук Бен М’Сiк, Унiверситет Хасана II,

п.с. 7955 Сiдi Осман, Касабланка, Марокко
2Наукова група з моделювання та викладання математики (ERMEM),

Регiональний центр освiти i пiдготовки професiй (CRMEF),
20340 Дерб Галеф, Касабланка, Марокко

Основною метою цiєї статтi є аналiз динамiки моделi вiдкладеного бiзнес-циклу, яка
описується рiвняннями в частинних похiдних (PDE), щоб врахувати швидкiсть амор-
тизацiї основного капiталу та ефект дифузiї. По-перше, ретельно вивчається iсну-
вання розв’язкiв i економiчна рiвновага. По-друге, встановлено локальну стiйкiсть
та iснування бiфуркацiї Хопфа. Накiнець, для iлюстрацiї аналiтичних результатiв
представлено декiлька чисельних симуляцiй.

Ключовi слова: дiловий цикл; норма амортизацiї; дифузiйний ефект; бiфуркацiя
Хопфа; стiйкiсть.
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