

COMPUTERIZED AUTOMATIC SYSTEMS

COMPREHENSIVE APPROACH TO PROTECTING DATA

AND THE INFORMATION SYSTEM INTEGRITY

Ulyana Dzelendzyak, PhD, As.-Prof., Nazar Mashtaler, PhD Student

Lviv Polytechnic National University, Ukraine; e-mail: uliana.y.dzelendziak@lpnu.ua

https://doi.org/10.23939/istcmtm2024.03.

Abstract. The article discusses key information security principles, focusing on confidentiality, integrity, availability,

traceability, and the DIE model (Distributed, Immutable, Ephemeral). Confidentiality emphasizes the importance of secrecy and

controlling access to prevent sensitive information from misappropriation. Integrity ensures that data remains accurate and

trustworthy, with measures to prevent unauthorized modifications. Availability highlights the necessity of reliable and timely

access to data, even in the face of potential system failures or disasters, by implementing safeguards like backups. Traceability, or

audit trails, ensures accountability by logging user actions, which is crucials for investigating suspicious activities or data loss.

The DIE model presents a modern approach to information security. Distributed systems minimize the impact of attacks by

avoiding a single point of failure and incorporating redundancies. Immutable systems maintain unalterable logs to quickly identify

and address anomalies, preventing malicious actors from covering up their actions. Ephemeral systems differentiate between

essential, long-term "pets" and disposable "cattle," advocating for a flexible infrastructure that can easily adapt to new challenges

and retire vulnerable legacy systems. This model enhances security by reducing the attack surface and ensuring that only

necessary, secure systems are maintained.

Key words: Information security, confidentiality, data integrity, system availability, traceability, access control, data

protection, distributed systems, immutability, and ephemeral infrastructure.

1. Introduction

In today’s digital landscape, ensuring information

and systems security is paramount. The article delves

into fundamental information security principles, emp-

hasizing the need for confidentiality, integrity,

availability, and traceability. These principles are crucial

for protecting sensitive data from unauthorized access,

ensuring its accuracy and reliability, and maintaining

consistent access to information. Additionally, the article

introduces the DIE model—Distributed, Immutable, and

Ephemeral—as a modern framework for enhancing

security. By leveraging distributed systems, organizations

can safeguard their assets and ensure robust security in an

increasingly complex environment. To connect with

protected resources and other services and systems, NET

applications typically need connection strings, passwords,

or other credentials that contain sensitive information.

These sensitive pieces of information are called secrets.

It's a best practice to exclude secrets in source code and

not to store secrets in source control. Instead, it would be

better to store the secrets in more secure locations [1]. A

good approach would be to separate the secrets for

accessing development and staging resources from the

ones used for accessing production resources [1, 5, 11].

2. Drawbacks

While core information security principles and the

DIE model offer substantial benefits, they are exploited

with certain drawbacks. Implementing strong confiden-

tiality measures can be complex and may hinder

operational flexibility. Ensuring data integrity requires

rigorous monitoring and control, which can be resource-

intensive and may slow down system performance.

Maintaining availability involves significant investment in

redundant systems and backup solutions, potentially

increasing costs. Traceability and auditing, while essential

for accountability, can raise privacy concerns and lead to

increased data management overhead. The DIE model’s

emphasis on distributed, immutable, and ephemeral

systems might introduce challenges such as integration

complexity, increased management of multiple

components, and potential difficulties in adapting legacy

systems to modern security practices.

3. Goal

To examine principles of information security that

are confidentiality, integrity, availability, and traceability

and to evaluate the effectiveness of the DIE model

(Distributed, Immutable, Ephemeral) in enhancing

security and their application in safeguarding data and

systems, offering insights into their practical implemen-

tation and the associated benefits and challenges.

4. Integrating Foundational Principles and

Modern Frameworks for Robust Information

Security

In information security, four foundational prin-

ciples are paramount: confidentiality, integrity, avai-

lability, and traceability are shown in Fig 1. Confiden-

mailto:uliana.y.dzelendziak@lpnu.ua

Measuring equipment and metrology. Vol. 85, No. 3, 2024 48

tiality ensures that sensitive information remains

protected from unauthorized access through effective

access control measures. Integrity focuses on mainta-

ining the accuracy and trustworthiness of data by

preventing unauthorized modifications and ensuring

proper monitoring and preservation. Availability emp-

hasizes the importance of reliable and timely access to

data, with safeguards in place to protect against data loss

due to system failures, natural disasters, or cyberattacks.

Finally, traceability, or audit trails, is crucial for

accountability, providing detailed logs of user actions to

monitor and prevent suspicious activities and data loss.

These principles collectively form the backbone of a

robust information security strategy [2].

Fig. 1 Schema of information security

Confidentiality is the necessary level of designed

secrecy when current information or documents are

created, updated, or transmitted. Confidentiality depends

on measures to prevent sensitive information from

falling into the wrong hands. Access control is the key to

confidentiality whether through sophisticated computer

programs or old-fashioned locks and keys [11].

Integrity focuses on maintaining trustworthiness

and ensuring the accuracy of the information. Data

should not undergo any unauthorized changes throug-

hout its lifecycle. Modifications require monitoring to

ensure proper treatment and preservation of information.

For example, how do you prevent unauthorized users

from altering data? It is common to assign permissions

only to a handful of people, enable version control, and

store data backups to prevent accidental deletion of our

information.

Availability concerns the systems and is

significant for the reliability and timely access to data.

Organizations have to put reasonable safeguards against

data loss in unpredictable events such as system failure,

natural disasters, or, as we have seen in recent cases,

ransomware attacks. Having a backup copy of data

ensures your business can continue to operate in such

occurrences [2, 3, 12].

Traceability, known as audit trail, is a

prerequisite for accountability. Traceability is ensured by

providing a detailed log of the actions performed by a

user who can be held responsible in occurrences such as:

• Suspicious activities from employees after

business hours or on their last working day: Ex-

employees tend to leave with company data on their

previous work days. A solution that monitors and audits

such suspicious activities could help prevent possible

data leakage before it is too late.

• Loss of data: Employee activities like

deleting important documents un/intentionally could be

commonly seen in eDiscovery or legal investigations.

The DIE Model of Information Security:

Distributed, Immutable and Ephemeral shown on Fig 2.

Distributed. A single target is far easier to attack

than multiple ones. In the modern age of DDoS attacks,

where bad actors take advantage of brute force and

thousands of bots to disrupt a single entry point,

companies must avoid putting all their (security) eggs in

one basket. A distributed system limits the impact of any

attack by confining it to a single space. It also has built-

in redundancies, so if one system is compromised, it’s

possible to recover the system. There’s never a single

point of weakness to exploit.

Immutable. The first hint that there’s a problem

in security is an anomaly. The program doesn’t behave

as it should. So, the first thing bad actors do is eliminate

evidence of the abnormality. Immutable logs make it

impossible to cover up the anomalies. A change in a

transparent system is quickly discovered, traced, and

contained. This strategy is also good when security holes

occur without malice, as the action that created this risk

is traceable to a single action. Remedial measures are

possible before exploitation.

Ephemeral. Administrators must break data and

systems down to “pets and cattle.” Pets are long-term

necessities and cattle are dispensable. The more cattle,

the better. A flexible network infrastructure made of

cattle is also immutable. This means a temporary

computing/logic layer over a persistent, secure data la-

yer. It's safe to change and stop using legacy apps

because they're no longer needed. Legacy programs are

among the most vulnerable to attack—because bad ac-

tors have had time to learn their weaknesses—so it’s best

to eliminate them. An ephemeral infrastructure meets

new challenges to protect indispensable assets [12].

Measuring equipment and metrology. Vol. 85, No. 3, 2024 49

Fig. 2 Model of Information Security

Security Development Lifecycle. The Security

Development Lifecycle (SDL) comprises a set of

practices designed to ensure security and compliance

requirements (Fig 3). Developed by Microsoft, the SDL

aims to assist engineers in creating more secure software

by minimizing the number and severity of vulnerabilities

[4,6]. In a military context, the principles of confi-

dentiality, integrity, availability, and traceability are

crucial for ensuring the security and effectiveness of

operations. Confidentiality safeguards classified infor-

mation, such as intelligence and strategic plans, from

unauthorized access. This is vital for maintaining opera-

tional security and preventing adversaries from exploi-

ting sensitive data. Integrity ensures that information

remains accurate and trustworthy preventing risks. Last

would arise from tampered data, such as altered

navigational coordinates or compromised mission orders.

Availability is equally important, as military operations

often depend on real-time access to critical systems and

information; any disruption could hinder decision-

making and jeopardize mission success. Finally,

traceability provides accountability and enables thorough

analysis by maintaining detailed logs of actions and

decisions. This is essential for detecting unauthorized

activities, investigating security breaches, and learning

from operations to improve future strategies. Together,

these principles form the foundation for the secure and

effective functioning of military operations, ensuring

that forces can respond swiftly and accurately to external

and internal threats.

Secure Software Development Life Cycle (SSDLC)

Fig. 3 SSDLC model

Training and Awareness. Security is a collective

responsibility within an organization. Developers, DevOps

engineers, and program and product managers must

understand fundamental security principles and integrate

security into software and services. This integration must

balance business needs and user value. A comprehensive

understanding of attackers' perspectives, objectives, and

potential strategies enhances security awareness and

elevates the collective level [1, 2].

Defining Security Requirements. The consi-

deration of security and privacy is crucial in the

development of secure applications and systems. Secu-

Measuring equipment and metrology. Vol. 85, No. 3, 2024 50

rity requirements must be continuously updated to reflect

changes in functionality and the threat landscape,

regardless of the development methodology. Factors

influencing security requirements include legal and

industry regulations, internal standards and coding

practices, previous incidents, and known threats [4].

Metrics and Compliance Reporting. Defining

minimum acceptable levels of security quality and

holding engineering teams accountable is vital. The early

definition helps teams understand risks, identify and fix

security defects during development, and maintain

standards throughout the project. Establishing a

meaningful bug bar involves defining severity thresholds

for security vulnerabilities and adhering to these thre-

sholds. To effectively track key performance indicators

(KPIs) and ensure the completion of security tasks, it is

essential to utilize bug tracking or work tracking

mechanisms. These mechanisms should allow for

security defects and work items to be clearly labeled and

marked with their appropriate severity, facilitating

accurate tracking and reporting.

Threat Modelling. When dealing with high-

security risk environments, it is crucial to engage in

threat modeling. This methodology can be implemented

at the component, application, or system scale, allowing

development teams to consider, record, and deliberate on

the security implications of their working environment.

By following a systematic approach to potential threats,

teams can efficiently and cost-effectively pinpoint

vulnerabilities, evaluate risks, choose security measures,

and implement suitable mitigations [7].

Design Requirements. SDL encompasses

assurance activities that help engineers implement secure

features. This process typically relies on security compo-

nents such as cryptography, authentication, authori-

zation, and logging. These features must be meticulously

engineered to achieve the desired security outcomes.

Cryptography Standards. With the proliferation

of mobile and cloud computing, it is critically important

to ensure that all data, including security-sensitive

information and management and control data, is

protected from unintended disclosure or alteration during

transmission or storage. Encryption is the primary

method used to achieve this protection. Incorrect use of

any aspect of cryptography can have catastrophic

consequences, necessitating the development of clear

encryption standards detailing every element of the

encryption implementation. These standards have to be

established by experts. A general guideline is to use only

industry-vetted encryption libraries and ensure their

implementation.

Managing Security Risks of Third-Party

Components. The majority of modern software projects

incorporate third-party components, both commercial

and open-source. Maintaining an accurate inventory of

third-party components and having a response plan for

newly discovered vulnerabilities are essential stage in

mitigating this risk. Depending on it, the type of used

component, and the potential impact of a security

vulnerability, additional validation seems to be necessary

[8].

Using Approved Tools. Defining and publishing

a list of approved tools, an associated security checks,

such as compiler/linker options and warnings, is essen-

tial. Engineers should aim to use the latest versions of

approved tools, including compiler versions, to benefit

from new security analysis functionalities and pro-

tections.

Static Analysis Security Testing (SAST).

SAST involves analyzing the source code before

compilation, providing a scalable method of security

code review and ensuring compliance with secure coding

policies. SAST is typically integrated into the commit

pipeline to identify vulnerabilities when the software is

built or packaged. Some tools integrate into the

developer environment to detect and replace unsafe or

banned functions with safer alternatives during active

coding. The optimal frequency for performing SAST

varies, and development teams should deploy multiple

tactics to balance productivity with adequate security

coverage.

Dynamic Analysis Security Testing (DAST).

DAST involves performing runtime verification of fully

compiled or packaged software to identify functionality

issues that are apparent only when all components are

integrated and running. DAST typically uses tools or

prebuilt attacks to monitor application behavior for

memory corruption, user privilege issues, and other cri-

tical security problems. Similarly to SAST, DAST does

not have a one-size-fits-all solution [9]. While some

tools, such as web application scanning tools, can be

integrated into the continuous integration and delivery

pipeline, others, such as fuzzing, require different

approaches.

Penetration Testing. Penetration testing is a

comprehensive security analysis performed by skilled

security professionals simulating the actions of a hacker.

The objective is to uncover potential vulnerabilities as

the results of coding errors, system configuration faults,

or operational deployment weaknesses. Penetration tests

often find the variety of vulnerabilities and are typically

performed together with automated and manual code

reviews, providing a higher level of analysis than would

otherwise be possible [10].

Establish a Standard Incident Response

Process. Having an Incident Response Plan is crucial for

helping to address new threats that can emerge over time.

An incident response plan should be developed in

Measuring equipment and metrology. Vol. 85, No. 3, 2024 51

collaboration with dedicated Product Security Incident

Response Team (PSIRT). It should outline who to contact

in the event of a security emergency and establish the

protocol for addressing security issues, including plans for

code inherited from other groups within the organization

and for third-party code. It's important to test the incident

response plan before it's needed [9].

In a military context, integrating security prin-

ciples becomes crucial for ensuring operational

resilience and system integrity. These principles include

training and awareness, defining security requirements,

metrics and compliance reporting, threat modeling,

design requirements, cryptography standards, manage-

ment of third-party components, use of approved tools,

static and dynamic analysis, penetration testing, and

incident response.

Training and awareness help elevate the col-

lective security posture, enabling personnel to anticipate

and counter adversarial tactics. Continuous refinement of

security requirements, informed by evolving threats and

regulatory standards, ensures that military systems

remain robust and compliant. Metrics and compliance

reporting facilitate the early identification and

remediation of vulnerabilities, while threat modeling

allows for systematic risk assessment and mitigation

across various system levels.

Cryptography and design requirements are

fundamental for safeguarding sensitive communications,

with the proper management of third-party components

mitigating risks associated with external dependencies.

The use of static and dynamic analysis, along with

penetration testing, provides a rigorous evaluation of

software security, ensuring that systems deployed in the

field are resilient against sophisticated attacks. Finally, a

well-defined incident response process is critical for

enabling rapid and effective recovery from security

breaches, thereby maintaining mission continuity and

operational readiness.

These integrated security measures are essential

for sustaining the strategic and tactical advantages

necessary for military effectiveness.

Monitoring and Observability. In the realm of

system management and performance analysis, the

concepts of monitoring and observability play pivotal

roles. Both are essential for maintaining robust and

reliable systems. In this scientific discourse, we dissect

these concepts, elucidating their nuances and impli-

cations. More details Cons are described in Table.

An alert serves as a notification intended for

human consumption. It is dispatched to systems such as

bug or ticket queues, email aliases, or pagers. However,

paging a human is a costly endeavor. Interruptions

disrupt workflow, whether at work or during personal

time. Frequent alerts lead to noise, obscuring critical

issues. Effective alerting systems strike a delicate

balance between signal and noise.[2, 13].

Table. Monitoring vs Observability

Monitoring Observability

Monitoring identifies what's going on Observability explains why something is happening and

provides actionable information.

Monitoring is designed around the collection of metrics and

log files

Observable systems inherently provide data on their

condition through instrumentation (telemetry)

Built around known entities - decide what to monitor Collect and enriches monitoring data; adds other data

sources and answers questions that could never have been

asked before

Good for establishing overall health state. Poor

performance is an unhealthy state

Designed for granular vision, context and debugging

Monitoring remains a key task for IT Operations, DevOps

and SREs (Site Reliability Engineer)

Observability includes monitoring but prolongs it. It is both

a result and a culture

Monitoring revolves around collecting metrics

and log files. It focuses on established entities—known

aspects of the system. Monitoring is adept at establishing

overall health states, flagging poor performance as an

unhealthy condition. It remains a core responsibility for

IT Operations, DevOps, and Site Reliability Engineers

[13-14].

Observability extends beyond monitoring. It

embraces a culture and mindset. Observable systems

inherently provide data through instrumentation

(telemetry). Observability enriches monitoring by

answering questions that were previously unasked. It

thrives on granular vision, contextual understanding, and

debugging prowess. The “why” behind system behavior

drives observability [14].

5. Conclusions

In the constantly evolving field of information

security, it is crucial along with modern frameworks to

adopt a comprehensive approach that incorporates

fundamental principles. This is essential to protect

sensitive data and maintain the integrity of systems. The

key principles of confidentiality, integrity, availability,

Measuring equipment and metrology. Vol. 85, No. 3, 2024 52

and traceability form the foundation for safeguarding

information, ensuring its accuracy, enabling reliable

access, and providing comprehensive accountability

through robust audit mechanisms.

The incorporation of the DIE (Distributed,

Immutable, Ephemeral) model introduces a modern

paradigm in security architecture. This model leverages

distributed systems to mitigate single points of failure,

employs immutable logs to enhance transparency and

traceability, and adopts an ephemeral infrastructure to

phase out legacy vulnerabilities. As a result, it offers a

resilient structure that addresses current and emerging

threats.

The Security Development Lifecycle (SDL)

further augments this security posture by integrating

security considerations throughout the software deve-

lopment process. Through systematic training programs,

the continuous refinement of security requirements, and

the application of rigorous testing methodologies—such

as Static Analysis Security Testing (SAST) and Dynamic

Analysis Security Testing (DAST)—the SDL ensures

that security is a foundational element in software design

and implementation. Additionally, the SDL emphasizes

the critical importance of managing third-party

components, utilizing approved tools, and establishing a

robust incident response framework, all of which

contribute to a comprehensive security strategy.

After integrating these principles, models, and

methodologies, organizations can build a highly resilient

and secure information system architecture. This

integrated approach is essential for minimizing

vulnerabilities, ensuring regulatory compliance, and

protecting data assets in an increasingly complex and

adversarial digital landscape. The fundamental principles

of confidentiality, integrity, availability, and traceability

are vital for securing classified and mission-critical data.

They ensure the accuracy of information essential for

strategic decision-making and maintain access to

systems under all conditions. The DIE model introduces

a resilient security architecture that mitigates single

points of failure, enhances transparency through

immutable logs, and reduces vulnerabilities by

eliminating legacy systems. These aspects are crucial in

countering advanced and evolving threats. The SDL

integrates security throughout the software development

process, embedding rigorous testing methodologies and

systematic management of third-party components to

ensure the reliability and security of military systems.

This approach is essential in minimizing vulnerabilities,

ensuring compliance with stringent defense standards,

and protecting critical data assets in an increasingly

adversarial digital environment.

6. Gratitude

The authors express their gratitude to the staff of

Department of Information and Measuring Technologies

for help in their work.

7. Mutual claims of authors

The authors have no claims against each other.

References

[1] Mark G. Graff, Kenneth R. van Wyk, Secure

Coding: Principles and Practices, O'Reilly Media,

Inc., 2023. https://www.amazon.com/Secure-

Coding-Principles-Mark-Graff/dp/0596002424

[2] Welcome to the OWASP Top 10 – 2021 OWASP

2022. [Online]. Available https://owasp.org/Top10/

[3] Paco Hope, Ben Walther, Web Security Testing

Cookbook, O'Reilly Media, Inc., 2008.

https://www.oreilly.com/library/view/web-security-

testing/9780596514839/

[4] Secure coding guidelines, Microsoft 2021. [Online].

Available: https://learn.microsoft.com/en-us/dotnet/

standard/security/secure-coding-guidelines

[5] Mark J. Price. C# 9 and .NET 5 – Modern Cross-

Platform Development: Build intelligent apps,

websites, and services with Blazor, ASP.NET Core,

and Entity Framework Core using Visual Studio

Code, 5th ed; Packt Publishing: 35 Livery Street

Birmingham B3, 2PB, UK, 2020.

https://www.amazon.com/NET-Cross-Platform-

Development-intelligent-

Framework/dp/180056810X

[6] Samuele Resca. Hands-On RESTful Web Services

with ASP.NET Core 3 1st ed; Packt Publishing: 35

Livery Street Birmingham B3, 2PB, UK, 2019.

https://www.amazon.com/Hands-RESTful-Services-

ASP-NET-Core/dp/1789537614

[7] Secure development and deployment guidance,

National Cyber Security Centre. [Online]. Available:

https://www.ncsc.gov.uk/collection/developers-

collection

[8] Adam Freeman. Pro ASP.NET Core 6: Develop

Cloud-Ready Web Applications Using MVC,

Blazor, and Razor Pages, 9th ed; Appres: London,

UK, 2022. https://www.amazon.com/Pro-ASP-NET-

Core-Cloud-Ready-Applications/dp/1484279565

[9] Cesar de la Torre, Bill Wagner, Mike Rousos, NET

Microservices Architecture for Containerized .NET

Applications, One Microsoft Way Redmond,

Washington 98052-6399, 2022. https://learn.

microsoft.com/en-us/dotnet/architecture/

microservices/

http://www.amazon.com/Secure-
http://www.oreilly.com/library/view/web-security-
http://www.amazon.com/NET-Cross-Platform-
http://www.amazon.com/Hands-RESTful-Services-
http://www.ncsc.gov.uk/collection/developers-
http://www.amazon.com/Pro-ASP-NET-

Measuring equipment and metrology. Vol. 85, No. 3, 2024 53

[10] V. Samotyy, U. Dzelendzyak, N. Mashtaler,

“A Comparative Study of Data Annotations and Fluent

Validation in. NET”, International Journal of

Computing, Vol. 23, iss. 1, p. 72–77, 2024, doi:

10.47839/ijc.23.1.3437.

[11] Suliman Alazmi; Daniel Conte De Leon, “A

Systematic Literature Review on the Characteristics

and Effectiveness of Web Application Vulnerability

Scanners”, IEEE Access, Vol. 10, p. 33200 - 33219,

2022, doi: 10.1109/ACCESS.2022.3161522

[12] Andreas Dann, Henrik Plate, Ben Hermann,

Serena Elisa Ponta, Eric Bodden, “Identifying

Challenges for OSS Vulnerability Scanners - A Study

& Test Suite”, IEEE Transactions on Software

Engineering, Vol. 48, p. 3613 - 3625, 2022, doi:

10.1109/ TSE.2021.3101739.

[13] Ishan Siddiqui, Ankit Pandey, Saurabh Jain,

Hetang Kothadia, Renuka Agrawal, Neha Chankhore,

“Comprehensive Monitoring and Observability with

Jenkins and Grafana: A Review of Integration

Strategies, Best Practices, and Emerging Trends”,

Comprehensive Monitoring and Observability with

Jenkins and Grafana: A Review of Integration

Strategies, Best Practices, and Emerging Trends ,

Ankara, Turkiye, 26-28 October 2023, doi:

10.1109/ISMSIT58785.2023.10304904.

[14] Muhammad Usman, Simone Ferlin, Anna

Brunstrom, Javid Taheri, “A Survey on Observability

of Distributed Edge & Container- Based

Microservices”, IEEE Access, Vol. 10, p. 86904 -

86919 , 2022, doi: 10.1109/ ACCESS.2022.3193102.

