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Modeling of the impurity diffusion process in a layer under the action of a system of random
point sources is carried out. Mass sources of different power are uniformly distributed in
a certain internal interval, that may also coincide with the entire region of the layer. The
statistics of random sources is given. The solution of the initial-boundary value problem
is found as the sum of the homogeneous problem solution and the convolution of the
Green’s function with the system of the random point sources. Averaging of the solution
is performed on the internal subinterval and in the entire body region. The formulas for
the variance, correlation function of the concentration field and coefficient of correlation
are expressed in terms of the second moment of random mass sources. Software modules
are developed for simulating the behavior of the averaged concentration, variance and
correlation function. Their numerical analysis also is performed. General properties of
the considered function are determined depending on the problem parameters.

Keywords: mathematical modeling; diffusion; random point source; correlation function;

variance; correlation coefficient.

2010 MSC: 35K20, 93B18, 60G60 DOI: 10.23939/mmc2024.03.631

1. Introduction

In practical applications today, significant emphasis is placed on the challenges of accurately describing
the impact of random point mass sources on the concentration of migrating impurity components in
both homogeneous and heterogeneous media. The insights gained from such research are important,
offering practical applications across a range of scientific disciplines and related industries including
physics, chemistry, ecology and engineering. These studies are instrumental in developing formalized
models that delineate the relationships between individual system components or distinct processes
occurring within them [1]. In this context, examining the second moments of the field is key [2,3], as it
enhances our understanding of the transport and interaction of impurity substances in various media.

A key aspect of this study is its practical contribution towards addressing pressing environmental
pollution issues, particularly those related to pollution and quality control in manufacturing processes.
By analyzing the interactions between random point mass sources and impurity substances, this re-
search promises to enhance the prediction and management of pollution levels. For instance, the
study [4] employs cumulative functions generated in Monte Carlo modeling to monitor the efficiency
of observed welding procedures.

In [5], a statistical mathematical model of radionuclide migration in an underground nuclear waste
repository was developed, based on a linear partial differential equation of the diffusion-convection type.
This partial differential equation has a large number of locally equally spatially distributed sources on
the median plane of the porous area. The model is obtained by extending a model with a deterministic
averaged source. Similarly, in [6], the time dependence of the concentration of a pollutant carried by
diffusion and convection from a large number of similar local sources was studied. A mathematical
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model describing the global evolution of such a system was studied, and numerical modeling was carried
out assuming a random distribution for each local source.

The authors [7,8] constructed and investigated a mathematical model of the mass exchange process
taking into account the local structure of the medium and the cascade decay of impurity particles,
and obtained key systems of model equations for double- and tripple-heterodiffusion. In [9], an exact
solution of the contact initial-boundary value problem for the diffusion of impurity particles in a body
with a two-phase periodic layered structure was constructed, and the regularities of concentration
distribution depending on different values of the substance decay intensity coefficient were analyzed.

Problems with point mass sources can arise in various fields, for example, in analyzing the motion
and stability of systems of point masses, in the presence of radioactive radiation in a body, and when
it is necessary to consider the gravitational interaction of point masses, etc. In this case, the specific
location of the point source may be unknown.

In [10], the mathematical model has been developed for the diffusion of impurity particles in a layer
under the action of a system of randomly located point mass sources within a given internal interval.
The field of migrating particles concentration averaged over uniform distribution has been found and
investigated. This article is a continuation of [10] focused on finding and studying the second moments
of the field within the scope of the same mathematical model, and aimed at development of advanced
mathematical apparatus for describing random transport processes.

2. Mathematical model

The diffusion process of impurity substances in a layer with thickness x0 under the action of a system
of randomly located point mass sources ωi(δ(x − x̂i)), where ωi is the power of the i-th source, and δ
represents the Dirac delta function [11], within a certain internal interval, is described by the boundary
problem of mass transfer (1)–(3) in the article [10]. It is assumed, that the points x = x̂i of the located
internal mass sources are random and uniformly distributed within the body region, as shown in
Figure 1 of the article [10], and that contribution of each source to the system is equally probable. The
statistics of the random sources are also defined, where N is the number of point sources included in
the system.

The solution to the stochastic diffusion problem with the first-order initial and boundary conditions
has been found as a sum of the solution to the homogeneous boundary problem solution and the
convolution of the Green’s function with the system of random point sources. Following the formal
averaging procedure, the concentration function takes the form

〈c(t, x)〉 = ch(t, x) +

N
∑

i=1

ωi

∫ x̄2

x̄1

∫ t

0

∫ x0

0

f(x̂i)G(t, t
′, x, x′) δ(x′ − x̂i) dx

′dt′dx̂i, (1)

where ch(t, x) is the solution of the homogeneous problem, G(t, t′, x, x′) is the Green’s function and
f(x̂i) is the density of the distribution function of the location of the i-th source.

Based on the obtained formulas for the averaged field of the concentration of impurity particles
diffusing in a layer under the action of the point mass sources system within the internal interval [x̄1, x̄2],
we search for the second moments of the field, namely the variance and the correlation function of the
field, as well as the correlation coefficient.

3. The second moments of the random concentration field

Let us find the variance σ2c (t, x) of the impurity concentration field and the correlation function (auto-
correlation) under the action of a system of random point mass sources. By definition, the variance of
the field σ2c (t, x) is [12, 13]

σ2c (t, x) = 〈c2(t, x)〉 − 〈c(t, x)〉2.

For the average of the product of concentration fields, the following relation holds [13]

〈c(t1, x1)c(t2, x2)〉 = 〈c(t1, x1)〉〈c(t2, x2)〉+ ψc(t1, x1; t2, x2), (2)
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where ψc(t1, x1; t2, x2) is correlation (auto-correlation) function of the concentration field c(t, x) at
points (t1, x1) and (t2, x2).

From this, we obtain the correlation function of the field ψc(t, x; t, x) at the point (t, x)

ψc(t, x; t, x) = 〈c2(t, x)〉 − 〈c(t, x)〉〈c(t, x)〉. (3)

Then, the average of the square of the field can be expressed as the sum of the products of the averages
and the corresponding correlation function,

〈c2(t, x)〉 = 〈c(t, x)c(t, x)〉 = 〈c(t, x)〉〈c(t, x)〉 + ψc(t, x; t, x).

Let us substitute the expressions for c(t, x) (4) and 〈c(t, x)〉 (15) in [10] into the formula (3). Firstly,
we find 〈c2(t, x)〉,

〈

c2(t, x)
〉

=
(

ch(t, x)
)2

+ 2ch(t, x)

〈

N
∑

i=1

ωi

∫ t

0

∫ x0

0

G(t, t′, x, x′) δ(x′ − x̂i) dx
′dt′

〉

+

N
∑

i=1

N
∑

k=1

ωi ωk

∫ t

0

∫ x0

0

∫ t

0

∫ x0

0

G(t, t′, x, x′)G(t, t′′, x, x′′)〈δ(x′ − x̂i) δ(x
′′ − x̂k)〉 dx

′dt′dx′′dt′′. (4)

Taking into account (4), correlation function of the field ψc(t, x; t, x) in the point (t, x), i.e. variance of
the field, is expressed as

ψc(t, x; t, x) =
(

ch(t, x)
)2

+ 2ch(t, x)

〈

N
∑

i=1

ωi

∫ t

0

∫ x0

0

G(t, t′, x, x′) δ(x′ − x̂i) dx
′dt′

〉

+

N
∑

i=1

N
∑

k=1

ωi ωk

∫ t

0

∫ x0

0

∫ t

0

∫ x0

0

G(t, t′, x, x′)G(t, t′′, x, x′′)〈δ(x′ − x̂i) δ(x
′′ − x̂k)〉 dx

′dt′dx′′dt′′

− 〈c(t, x)〉2, (5)

where the square of the averaged concentration field is found in the form

〈c(t, x)〉2 =
(

ch(t, x)
)2

+ ch(t, x)
4Ω

dx0N(x̄2 − x̄1)

∞
∑

n=1

S12(yn)
(

1− e−dy2
n
t/ρ
)

sin(ynx)

+
4Ω2

d2x2
0
N2(x̄2 − x̄1)2

(

∞
∑

n=1

S12(yn)
(

1− e−dy2
n
t/ρ
)

sin(ynx)

)2

. (6)

Let us consider the second term of relation (5). We denote the double integral in this term as
I1(t, x). Taking into account formulas (15) and (16) in [10], we obtain

I1(t, x) = 2ch(t, x)
2Ω

dx0N(x̄2 − x̄1)

∞
∑

n=1

S12(yn)
(

1− e−dy2
n
t/ρ
)

sin(ynx).

Now let us find the third term in the relation (5), denoting it as I2(t, x). Allowing for the assumption
that the system of N random point mass sources has the uniform distribution over the interval [x̄1, x̄2]
we deduce

〈

δ(x′ − x̂i) δ(x
′′ − x̂k)

〉

=
1

N2(x̄2 − x̄1)2
.

Thus, after averaging, we obtain

I2(t, x) =
Ω2

N2(x̄2 − x̄1)2

∫ t

0

∫ x0

0

∫ t

0

∫ x0

0

G(t, t′, x, x′)G(t, t′′, x, x′′) dx′dt′dx′′dt′′.

In the case when the random point mass sources are of equal power, we get

I2(t, x) =
ω2

(x̄2 − x̄1)2

∫ t

0

∫ x0

0

∫ t

0

∫ x0

0

G(t, t′, x, x′)G(t, t′′, x, x′′) dx′dt′dx′′dt′′.
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Taking into account, that t′, x′ and t′′, x′′ are independent variables, we obtain

I2(t, x) =
Ω2

N2(x̄2 − x̄1)2

(
∫ t

0

∫ x0

0

G(t, t′, x, x′) dx′dt′
)2

. (7)

After substituting the Green’s function (12) in [10] into relation (7) I2(t, x) is

I2(t, x) =
4Ω2

N2d2x2
0
(x̄2 − x̄1)2

[

∞
∑

n=1

sin(ynx)
1− (−1)n

y3n

(

1− e−dy2
n
t/ρ
)

]2

.

In the case when sources are of equal power ω, we get

I2(t, x) =
4ω2

d2x2
0
(x̄2 − x̄1)2

[

∞
∑

n=1

sin(ynx)
(1− (−1)n)

y3n

(

1− e−dy2
n
t/ρ
)

]2

.

Consequently, the variance takes the form

σ2c (t, x) =
4Ω2

d2x2
0
N2(x̄2 − x̄1)2

[

∞
∑

n=1

sin(ynx)

y3n

(

1− e−dy2
n
t/ρ
)(

1− (−1)n − cos(ynx̄1) + cos(ynx̄2)
)

]2

. (8)

Let us find the correlation function of a random field of the impurity substance concentration under
the action of the system of random point mass sources. From formula (2) we get

ψc(t1, x1; t2, x2) = 〈c(t1, x1) c(t2, x2)〉 − 〈c(t1, x1)〉〈c(t2, x2)〉.

Let us determine the product of the averaged concentration fields at points (t1, x1) and (t2, x2)

〈c(t1, x1)〉〈c(t2, x2)〉 = ch(t1, x1) c
h(t2, x2) +

2Ω

dx0N(x̄2 − x̄1)

∞
∑

n=1

S12(yn)

×
[

ch(t1, x1)
(

1− e−dy2
n
t2/ρ
)

sin(ynx2) + ch(t2, x2)
(

1− e−dy2
n
t1/ρ
)

sin(ynx1)
]

+
4Ω2

d2x2
0
N2(x̄2 − x̄1)2

∞
∑

n=1

S12(yn)
(

1− e−dy2
n
t1/ρ
)

sin(ynx1)

×

∞
∑

m=1

S12(ym)
(

1− e−dy2
m
t2/ρ
)

sin(ymx2), (9)

where ym = πm/x0.
Then the averaging of the product of the concentration field at points (t1, x1) and (t2, x2) is the

next:

〈c(t1, x1) c(t2, x2)〉 = ch(t1, x1) c
h(t2, x2) +

2Ω

dx0N(x̄2 − x̄1)

∞
∑

n=1

S12(yn)

×
[

ch(t1, x1)
(

1− e−dy2
n
t2/ρ
)

sin(ynx2) + ch(t2, x2)
(

1− e−dy2
n
t1/ρ
)

sin(ynx1)
]

+
4Ω2

d2x2
0
N2(x̄2 − x̄1)2

∞
∑

n=1

1− (−1)n

y3n

(

1− e−dy2
n
t1/ρ
)

sin(ynx1)

×
∞
∑

m=1

1− (−1)m

y3m

(

1− e−dy2
m
t2/ρ
)

sin(ymx2). (10)

Taking into account expressions (9) and (10), we obtain the correlation function of the impurity
concentration field, which diffuses in the layer under the action of the system of random point sources,
in the form

ψc(t1, x1, t2, x2) =
4Ω2

d2x2
0
N2(x̄2 − x̄1)2

∞
∑

n=1

∞
∑

m=1

sin(ynx1) sin(ymx2)

y3ny
3
m

(

1− e−dy2
n
t1/ρ
)(

1− e−dy2
m
t2/ρ
)

×
[

(1− (−1)n)(1− (−1)m)−
(

cos(ynx̄1)− cos(ynx̄2)
)(

cos(ymx̄1)− cos(ymx̄2)
)]

. (11)
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If the powers of the sources are equal, then formula (11) can be reduced to

ψc(t1, x1, t2, x2) =
4ω2

d2x2
0
(x̄2 − x̄1)2

∞
∑

n=1

∞
∑

m=1

sin(ynx1) sin(ymx2)

y3ny
3
m

(

1− e−dy2
n
t1/ρ
)(

1− e−dy2
m
t2/ρ
)

×
[

(1− (−1)n)(1− (−1)m)−
(

cos(ynx̄1)− cos(ynx̄2)
)(

cos(ymx̄1)− cos(ymx̄2)
)]

.

It should be noted that the correlation function ψc(t1, x1; t2, x2) is directly proportional to the
square of the total power of the point sources included in the system and inversely proportional to the
square of the number of sources.

4. Numerical analysis of the variance and correlation function

In Figures 1 and 2 the characteristic distributions of the variance of field of the impurity concentration
in the layer under the action of the point source system are illustrated. Calculations have been carried
out in the dimensionless variables (19) in [10] for the same basic values of the problem parameters.
Figure 1 demonstrates the distribution of variance at different moments of dimensionless time τ =
0.01, 0.02, 0.05, 0.1, 0.5, 1 (curves 1–6) for the following intervals of action of point sources [ξ̄1, ξ̄2] =
[0.4, 0.6] (Figure 1a) and [ξ̄1, ξ̄2] = [0, ξ0] (Figure 1b).

In Figure 2 the variance of the impurity concentration field in the presence of one source with a
power significantly different from the other sources in the system is shown. Figure 2a is created for
[ξ̄1, ξ̄2] = [0.4, 0.6], and Figure 2b is built for [ξ̄1, ξ̄2] = [0, ξ0]. Curve 1 corresponds to the system
{1, 1, 1, 1, 50}, curve 2 corresponds to the system {1, 1, 1, 1, 40}, curve 3 corresponds to the system
{1, 1, 1, 1, 20}, curve 4 corresponds to the system {1, 1, 1, 1, 10}, curve 5 corresponds to the system
{1, 1, 1, 1, 1}, curve 6 corresponds to the system {1, 1, 1, 1, 0.1}.

a b

Fig. 1. The variance of the concentration field at different moments of dimensionless time for [ξ̄1, ξ̄2] =
[0.4, 0.6] (a) and [ξ̄1, ξ̄2] = [0, ξ0] (b).

a b

Fig. 2. The variance of the concentration field in the presence of a dominant source with varying power in the
system for [ξ̄1, ξ̄2] = [0.4, 0.6] (a) and [ξ̄1, ξ̄2] = [0, ξ0] (b).
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Note that the function σ2c (τ, ξ) is symmetric within the body region (Figures 1 and 2). From the
beginning of the diffusion process in the layer in which the system of point sources acts, the variance
starts to increase in the neighborhoods of points ξ = 0.2 and ξ = 0.8 for [ξ̄1, ξ̄2] = [0.4, 0.6] and ξ = 1.5
for ξ = 8.5 when [ξ̄1, ξ̄2] = [0, ξ0]. At the same time, there is a local minimum of the function σ2c
at the point ξmin = 0.5 (Figure 1). Over time, the variance increases, its local maxima shift into the
body middle, they are leveled off. Eventually, in the vicinity of the steady-state regime (curves 5 and
6 in Figure 1) the point ξ = 0.5 evolves into the maximum point of variance for [ξ̄1, ξ̄2] = [0.4, 0.6]
(Figure 1a) and into the interval [0.25, 0.75] of constant maximum values σ2c for [ξ̄1, ξ̄2] = [0.4, 0.6]
(Figure 1b).

We also note that for all τ , the longer is the interval of action of the point source system, the
smaller the variance becomes (Figures 1a and 1b). For instance, the difference in the values σ2c for
[ξ̄1, ξ̄2] = [0.4, 0.6] and for [ξ̄1, ξ̄2] = [0, 1] is two orders of magnitude.

Figures 3–10 show the characteristic surfaces formed by the correlation function ψc(τ1, ξ1, τ2, ξ2)
(Figures a) and the corresponding 2D-plots (Figures b) for the basic values of the problem parameters.
For values τ1 and τ2 of small time interval [0.05, 0.06] 3D- and 2D-plots of the correlation function are
demonstrated for the following intervals of action of the point source system: [ξ̄1, ξ̄2] = [0.4, 0.6] in
Figure 3, [ξ̄1, ξ̄2] = [0.1, 0.3] in Figure 4, [ξ̄1, ξ̄2] = [0.7, 0.9] in Figure 5, [ξ̄1, ξ̄2] = [0.2, 0.8] in Figure 6.

a b

Fig. 3. Correlation function for the interval of action of the point source system [0.4, 0.6] at τ1 = 0.05 and
τ2 = 0.06.

a b

Fig. 4. Correlation function for the interval of action of the point source system [0.1, 0.3] at τ1 = 0.05 and
τ2 = 0.06.
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a b

Fig. 5. Correlation function for the interval of action of the point source system [0.7, 0.9] at τ1 = 0.05 and
τ2 = 0.06.

a b

Fig. 6. Correlation function for the interval of action of the point source system [0.2, 0.8] at τ1 = 0.05 and
τ2 = 0.06.

Figures 7–10 illustrate 3D- and 2D-plots of the correlation function ψc(τ1, ξ1, τ2, ξ2) for τ1 = 0.5
and τ2 = 0.06 with [ξ̄1, ξ̄2] = [0.2, 0.8] (Figures 7–8), with [ξ̄1, ξ̄2] = [0.2, 0.3] (Figure 9), with [ξ̄1, ξ̄2] =
[0.8, 0.9] (Figure 10).

a b

Fig. 7. Correlation function for the interval of action of the point source system [0.2, 0.8] at τ1 = 0.5 and
τ2 = 0.06.
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a b

Fig. 8. Correlation function for the interval of action of the point source system [0.2, 0.8] at τ1 = 0.5 and
τ2 = 0.45.

a b

Fig. 9. Correlation function for the interval of action of the point source system [0.2, 0.3] at τ1 = 0.5 and
τ2 = 0.45.

a b

Fig. 10. Correlation function for the interval of action of the point source system [0.8, 0.9] at τ1 = 0.5 and
τ2 = 0.45.

Note that the characteristic surfaces formed by the correlation function ψc(τ1, ξ1, τ2, ξ2) are close to
being symmetric ones (Figures 3–10). For small τ1 and τ2 (Figures 3–6) the function ψc(τ1, ξ1, τ2, ξ2)
achieves its highest values in the middle of the layer. The closer the interval of action of the point
source system [ξ̄1, ξ̄2] is to the surface of the body ξ = 0 the slower is the decline of the correlation
function (Figures 3–5). At the same time, the maximum values of ψc(τ1, ξ1, τ2, ξ2) remain the same. If
the interval expands, the values of the correlation function in the middle of the layer increase and the
its decline at the edges becomes sharper, moreover two maxima appear (Figure 6).

We also note that the longer is the time interval of correlation, the more probable is appearance
of two local maxima of the correlation function (Figures 7 and 8). Shifting of the interval [ξ̄1, ξ̄2] to
the boundary of the body ξ = 0 or to the boundary ξ = ξ0 leads to a more symmetrical shape of the
surface ψc(τ1, ξ1, τ2, ξ2).
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5. Correlation coefficient

The correlation coefficient of the concentration field Kc(t1, x1; t2, x2), which determines the numeri-
cal measure of “dependence” of the field values at the points (t1, x1) and (t2, x2), is defined by the
expression [12, 13]:

Kc(t1, x1; t2, x2) =
ψc(t1, x1; t2, x2)

√

σ2c (t1, x1)σ
2
c (t2, x2)

. (12)

We substitute the relations for the variance (8) and for the correlation function (11) into (12). We
have

Kc(t1, x1; t2, x2) =
K1

c (t1, x1; t2, x2)

K2
c (t1, x1; t2, x2)

, (13)

where

K1

c (t1, x1; t2, x2) =

∞
∑

n=1

∞
∑

m=1

sin(ynx1) sin(ymx2)

y3ny
3
m

(

1− e−dy2
n
t1/ρ
)(

1− e−dy2
m
t2/ρ
)

×
[

(1− (−1)n)(1− (−1)m)−
(

cos(ynx̄1)− cos(ynx̄2)
)(

cos(ymx̄1)− cos(ymx̄2)
)]

, (14)

K2

c (t1, x1; t2, x2) =
∞
∑

n=1

∞
∑

m=1

sin(ynx1) sin(ymx2)

y3ny
3
m

(

1− e−dy2
n
t1/ρ
)(

1− e−dy2
m
t2/ρ
)

×
[(

1− (−1)n − cos(ynx̄1) + cos(ynx̄2)
)(

1− (−1)m − cos(ymx̄1) + cos(ymx̄2)
)]

. (15)

It follows from the obtained formulas (13)–(15) that the correlation coefficient does not depend on
the power of point sources and their number.

The values of the correlation coefficient of the concentration field at different points (t1, x1) and
(t2, x2) are presented in the Table 1.

Table 1. Values of the correlation coefficient for [ξ̄1, ξ̄2] = [0.4, 0.6] and [ξ̄1, ξ̄2] = [0, 1].

ξ1 ξ2 τ1 τ2 Kc(τ1, ξ1; τ2, ξ2) ξ1 ξ2 τ1 τ2 Kc(τ1, ξ1; τ2, ξ2)

[ξ̄1, ξ̄2] = [0.4, 0.6] [ξ̄1, ξ̄2] = [0, 1]

0.5054 0.5044 0.5 0.45 0.9524 0.5133 0.5044 0.5 0.45 0.9520
0.1416 0.0620 0.5 0.45 0.5866 0.0353 0.0442 0.5 0.45 0.2181
0.1416 0.4956 0.5 0.45 0.8311 0.0265 0.5044 0.5 0.45 0.6194
0.0177 0.5044 0.5 0.45 0.8790 0.53097 0.0531 0.5 0.45 0.3407
0.5133 0.5221 0.05 0.06 0.9557 0.5309 0.4778 0.05 0.06 0.9363
0.1681 0.1062 0.05 0.06 0.3311 0.0354 0.0442 0.05 0.06 0.0557
0.1504 0.5044 0.05 0.06 0.7156 0.062 0.5044 0.05 0.06 0.4669
0.0880 0.4956 0.05 0.06 0.8112 0.5044 0.0619 0.05 0.06 0.1232

Note that the correlation coefficient achieves its highest values when points ξ1 and ξ2 are located
in the middle of the layer both for [ξ̄1, ξ̄2] = [0.4, 0.6] and for [ξ̄1, ξ̄2] = [0, 1] (Table 1), i.e. here the
relationship between the concentration field at points ξ = ξ1 and ξ = ξ2 is the strongest one. The
greater is the distance between the points ξ = ξ1 and ξ = ξ2, or the closer these points occur to the
boundaries of the layer, the smaller values the correlation coefficient takes on.

6. Conclusion

Thus, for description of the stochastic processes of impurity diffusion caused by the presence of ran-
domly located point mass sources the initial-boundary value problem is formulated under given statis-
tics of random sources and solved in the case of uniformly distributed mass sources of different power
acting within a certain internal interval. The random point mass sources are assembled into a system
of sources, and the contribution of each source to the system is assumed to be equally probable. The
solution to the problem is constructed in the form of the sum of the solution of the homogeneous
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problem and the convolution of the Green’s function with the system of the point sources. Such rep-
resentation of the solutions allows not only to carry out a quantitative and qualitative analysis of the
averaged concentration of migrating impurities, but also to find its variance, correlation function of
the concentration field as well as the correlation coefficient. The formulas for the second moments of
the field of the concentration of the migrating substance are obtained, they are expressed in terms of
the second moment of random mass sources. Based on the obtained formulas, software modules have
been developed for simulating the behavior of the averaged concentration, variance and correlation
function for different lengths of intervals of action of the system of point sources and their locations in
the body region, for different number of sources in the system, at the presence or absence of a source
with prevailing power.

The symmetry of the field variance is shown as well as the closeness of the surfaces formed by
the concentration field’s correlation function to being symmetric. It is established that the variance
increases with time until it reaches the steady-state regime. Particularly, growth begins in the vicinity
of two different spatial points, then these maxima are leveled off and one maximum is formed in the
middle of the layer. We also show that the correlation function achieves the largest values in the middle
of the layer and the interval location of the point source action system near the boundaries of the body
affects only the rate of the correlation function decline.

Future research could study the diffusion processes under the action of randomly located point
sources of mass, when the location of each source in the body region is an independent random
variable.
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Математичне моделювання процесу дифузiї домiшки за заданої
статистики системи точкових джерел маси. II

Пукач П. Я., Чернуха Ю. А.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Проведено моделювання процесу дифузiї домiшки в шарi за дiї системи випадкових
точкових джерел. Джерела маси рiзної потужностi розподiленi рiвномiрно на певному
внутрiшньому iнтервалi, який який може спiвпадати з усiєю областю шару. Задана
статистика випадкових джерел. Розв’язок крайової задачi знайдено як суму розв’язку
однорiдної задачi i згортки функцiї Грiна iз системою випадкових точкових джерел.
Усереднення розв’язку проведено на внутрiшньому пiдiнтервалi i в усiх областi тiла.
Отримано формули для дисперсiї, функцiї кореляцiї поля концентрацiї i коефiцiєнта
кореляцiї, якi виражаються другi моменти випадкових точкових джерел. Розробле-
но програмнi модулi для симуляцiї поведiнки усередненої концентрацiї, дисперсiї i
функцiї кореляцiї.

Keywords: математичне моделювання; дифузiя; випадкове точкове джерело; ймо-

вiрнiсний розподiл; функцiя кореляцiї; дисперсiя; коефiцiєнт кореляцiї.
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