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Image denoising stands out as a primary goal in image processing. However, many exist-
ing methods encounter challenges in preserving features such as corners and edges of an
image while deleting the noise. This study investigates and evaluates a fractional-order
derivative based on the total a-order variation (T'V) model and the bilateral total variation
(BTV) model. This choice is motivated by the proven effectiveness of the TV model in
noise removal and edge preservation, with the BTV model further utilized to enhance the
restoration of fine and intricate details. The experimental results affirm the efficacy of the
proposed model, supported by objective quantitative metrics and subjective assessments
of visual appearance.

Keywords: image denoising; reqularization; fractional-order derivatives; total a-order
variation; bilateral total variation.
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1. Introduction

Image denoising constitutes a fundamental stage in digital image processing and computer vision, with
the objective of eliminating or mitigating noise from a noisy image while retaining essential features
and details. This noise can originate from diverse factors like sensor limitations, transmission errors,
or environmental conditions. Frequently, it undermines the quality and utility of images across various
applications, encompassing photography, medical imaging, surveillance, and more.

The general problem of image denoising can be formulated as follows:

min%Hu—ung—i- AR(u),
u ~——
fidelity term Regularization term

u = u(zx) is the observed image, z € Q C R?, Q denotes the bounded domain of the image, ug is
the initial image, and X is a positive parameter representing a balance between the regularization and
fidelity terms.

Over the years, researchers have proposed various regularization terms. The classical term R(u) =
|Vu||3 was introduced by Tikhonov and Arsenin and has achieved success. Unfortunately, this model
falls short in preserving image edges. A more effective approach involves considering the total variation
(TV) [1-5], where R(u) = [ |Dul. This formulation was proposed by Rudin, Osher, and Fatemi [6]:

min [lu — w3 + TV (u).

The ROF model maintains the edges of the image by searching for solutions in the space of bounded
variations BV functions. However, this model suffers from various limitations, such as the occurrence
of the staircasing phenomenon and a decline in image contrasts. To recover a clear image, various
methods have been devised to address imaging challenges such as image denoising [1,7-11], image
restoration [2, 3], image inpainting [12| and image super-resolution [4].

To overcome the aforementioned drawbacks, namely staircasing and contrast issues, the literature
has introduced two alternative regularizers as substitutes for TV regularization. The first approach
integrates higher-order regularization into image variational models. For example, Bredies, Kunish, and
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Pock introduced the total generalized variation (T'GV') regularizer. This involves a linear combination
of higher-order derivatives and the total variation of u to effectively represent image denoising.

The second category introduces fractional-order derivatives [13-15]. As an illustration, Bai and
Feng were the first to introduce fractional-order derivatives into anisotropic diffusion equations for
noise removal,

% = =D (c(|D%u]) D*u) — Dy* (c(|D%u|) D*u),
where ¢(-) represents the divergence parameter and D$* represents the adjoint operator of Dg. For
more models see [16-18].

The next interesting model was proposed by J. Zhang and K. Chen [3] based on the total fractional-

order variation TV¢:
A
min 5 |l — ugl|3 + TV (u).
u

These works have demonstrated the effectiveness of fractional-order derivatives in achieving a favorable
balance, mitigating issues such as staircasing, and preserving crucial fine-scale features like edges and
textures [1]. The latest interesting idea was a combination of the TV and the Bilateral Total Variation
filter (BTV) (proposed in [5]):

inf {F(u, k) = [k u— w220y + a1 BTV(u) + az TV(k)} ,

where a1 > 0 and ao > 0 are two regularization parameters, k is the blur kernel and * is the convolution
operator.

The Bilateral Total Variation filter (BTV) is constructed by considering a larger neighborhood
when computing the gradient at each pixel. This approach is designed to preserve sharp edges with

less artefact. The BTV function is defined as follows:
P

P
B "y o
BIV(w) = 3 > oW = S8))ull s -

i=—p, j#—p,

i#£0,1 70,1
In this expression, S% and SZ denote two shift operators that shift the image v by ¢ and j pixels in
the horizontal and vertical directions, respectively, where i+ j > 0. The parameter § €]0,1[ is a scalar
weight applied to introduce a spatially decaying effect to the summation of the regularization terms
and the variable p represents the spatial window size.

2. Proposed model

Considering the inherent strengths and weaknesses of the previously mentioned regularization methods,
we propose a novel approach that incorporates two distinct regularizers in the denoising process. These
regularizers are the total fractional-order variation TV® and the bilateral filter BTV. The integration
of these two methods is motivated by the acknowledgment that the TV model effectively removes noise
and preserves edges, while the BTV model excels in the precise restoration of intricate details. Thus,
the formulation of our proposed model is as follows:

A
min { (1) = 5 1wl gy + TV () +9 BTV }.

where A and ~ are the regularization parameters and « represents the fractional order derivative with
l1<a<?2.

To substantiate the effectiveness of our proposed model, we employed the primal-dual algorithm
and conducted extensive numerical experiments (for more details see [2,17]).
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3. Fractional derivatives

The fractional derivative serves as a generalization of the traditional derivative to non-integer orders.
Several definitions exist, with the Griinwald-Letnikov (G-L), Riemann-Liouville (R-L), and Caputo
definitions being among the most widely recognized. Among these, the G-L and R-L definitions stand
out as the most popular choices employed in digital image processing.

The G-L definition is the next:

a N
ciDga @) =t () v (4 ) s
Nh=z—a =0

where the () are the binomial coefficients.
The R-L definition is:

N 1 dn x 1
rLDg . f(2) = mdiﬂ—"/a mf(s) ds (n—1<a<n),

where the T'(+) is the gamma function, which is defined as:

The Caputo definition is:

a _ 1 * 1 n
CDa’xf(w)_F(n—a)/a (ac—s)o“rl—"f (s)ds (n—1<a<n).

In fact, the three definitions G-L, R-L and Caputo are equivalent under zero initial conditions.

Definition 1. Let K denote the space of special test functions:

K = {qﬁ € CL(Q,RY), where |p(z)| < 1, for all x € Q},

where |p(x)| = Zle ®?(z), then the total a-order variation of u is defined by:
TV (u) :/ |D%u| = sup/ (—udiv® ¢) dx,
Q PpEK JQ

where div® ¢ = 2?21 %(;ﬁi, the term %Z(ﬁi represents a fractional a-order derivative of ¢; along the x;
direction.
Therefore, the space of functions with a-bounded variation on () is defined by:

BVY(Q) = {u € L*(Q), where TV*(u) < o0},
equipped with the BV-a norm:
ullBve () = llullzt (@) + TV (u)
(for more details see [3]).

Lemma 1 (Lower semicontinuity). Let be a sequence {v*(z)} € BV*(Q) such that v*(z) —

LH(Q)
v(x). Then TV*(v) < likm inf TV (v*).
—00
Proof. For the proof see [3]. [
Lemma 2. The space BV*(Q?) is a Banach space.
Proof. For the proof see [3]. n

Definition 2 (a weak* topology). The weak topology in BVY(Q) BV* — w* is defined such as
uj BVO‘——>w* U = u; Ll—(g)) u and /QQS -V%ude — /QQS -V dx
for all ¢ in CL(Q, RY).
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From this Definition, we can infer the weak compactness of BV*({) under the weak™® topology.
This, in conjunction with the weak lower semicontinuity of F'(u) and boundedness of Banach space
BVY(Q), leads to the following result.

Theorem 1 (existence). The functional F(u): BV*(Q2) — R has a minimum.

Proof. The proof follows a similar rationale to the proof of [17, Prop. 38.12(d)]. [

Theorem 2 (uniqueness). The functional F(u) admits a unique solution in BV* () when A > 0.

Proof. The convexity of the functional F'(u) leads to uniqueness of solutions. Refer to [17, Theo-
rem 47C]. [

4. Discretization of the fractional derivative

Before introducing the finite difference discretization of the fractional derivative, we establish a spatial
partition (xg,y;) (for all k =0,1,...,N+1;1=0,1,..., M + 1) of the image domain 2. We assume
that u satisfies a zero Dirichlet boundary condition. We discretize the a-order fractional derivative
along the z; direction at the inner point (zg,y;), for all £ = 0,1,...,N; [ = 0,1,..., M using the
following approach

« 60{ 50&
DE, yyular, y) = 0g u(wk, Y1) +O(h) = 1 < Su(wg, y1) n +U(9€k,yz)> +O(h)

ha 2 ha ha
1 k+1 N—k+2
T2 <h_a D Wi H R Y w?ugﬂ-l-j—l) +0(h), (1)
j=0 J=0

which is suitable for both the RL and C derivatives (see [11] and [16]). Where u} = ugy, w§a) =
(-1)7(%),7=0,1,...,N+1, and

< off = (1R o

J
Upon examining (1), the estimation of the a-order fractional D[O;w]u(:nk, y;) along the z-direction at

the point (zy,y;) with a fixed y; involves a linear combination of N + 2 values {u}),u, ... ,ulN, ulN+1}'
Incorporating the zero boundary condition into the matrix approximation of the fractional deriva-
tive, (1) can be simultaneously expressed in matrix form along the x direction:

« o «
5u(z1, 1) 2w w wW§ . Wy uh
. . : l
0% u(w2, y1) w o 2w . : U2
= 5 wgol wso‘ ’
: 2w w l
«
du(rn, yr) w .. w§ w o 2wf U

where w = wj + wy.
The same procedure is applied to €2 along the y-direction.

5. Primal dual approach

The Primal Dual Projected Gradient (PDPG) algorithm is grounded in the Primal Dual approach,
which converts the variational model into a saddle point problem through the application of the
Legendre—Fenchel transform. Subsequently, numerous techniques have been introduced in the litera-
ture to resolve this saddle point problem. In our specific context, we employed the projected gradient
method (for additional information, refer to [7]).
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While U denotes the primal variable. We then obtain the following notations:
=D IVoU (kD)
k.l

and

F(U) ::Z%(U(k,z) Uo(k, 1)) + v Z Z MU (k1) — S2SIU (K, 1)
kil n=—pm=—p

with V' = R™ ™ and W = R("*"™)*2 'V and W are two reflexive spaces. Next, we define the functionals:
K:V—W
Ur— VU
and
G: W —R

T — Zg(a:(k; 1))
k.l

where
g:R? —R
By using the definition of Legendre-Fenchel transform ¢* of the function ¢, we define g*: R? — R by:
0 if s € ]0,1],
g(s) = {—i—oo otherwgse. |
Hence, the convex conjugate G* of G is:

G"W —R
¢— > g bk,
k.l

Demonstrating the convexity of G is straightforward. Consequently, the equivalent Primal-Dual prob-
lem is expressed as:

: @ A 2 ¢ 6 [n|4+|m| n gm
m&nglg}g{{%(V U,¢) + 5(U = Up) +7n;pm;p5 U - szsU| ¢, (2)
where
X = W*—{¢€Rnme2‘¢kl‘2 }
Considering that 1 < o < 2, we have (V)" = div®, the equatlon (2) can be reformulated as:
n%}n]%{({Zwa b+ = (U Us) +77;pm;p5 U -8y U\}

Next, we implement the projected gradient method. For every pair (k,1):

p p
dive ¢ + AU —Up) +y X 3 d"Hm (1 — SpSy) sign (U — SpSy'U
H(U,¢) = n=—pm=—p ( v ) ( Yy )
—veU

At an iteration i, we estimate (U?, ¢*) using the projection algorithm at (k,1) by the following formula:

1) ¢i+1 — PX (@Z _ Tlvan)
p p
2) Ul =’ —r2<d1v P AU = Up)y > > olnHImi(1 — 8nsmysign (U — SpSIU) >

n=—pm=-—p
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where 1 and 7y are two positive constants, and the projection Px is defined by:
ol k)
Px(¢)(l,k) = .
DR = (L 161D
Concludingly, we present a summary of the PDPG algorithm applied to our fractional image denoising
model.

Algorithm 1 TV® — BTV Denoising Model Enhanced by PDPG Algorithm.

1: Inputs: \, ¢ (regularization parameters);
« (fractional-order derivative);
1, T2 (ﬁxed—point parameters);
Up (initial image);
#° (the initial dual variable);
2: Initialize: U° = Up;

¢° = 0;
¢i+1 Y ¢z _ Tlvan;
' g
¢z+1 Y _ ;
3: repeat: max (‘WH" 1)

UH_l — (1 — 2)\7’2)Ui — r2<divo‘ ¢i+l — 2)\U0
-PVZ?:_pzﬁp}p&M+mﬂur-sgsy)ggnur—sgsyvy)

4: until convergence;

6. Numerical results

In this section we present some numerical results from using the Primal-Dual algorithm as an opti-
mization method for the purpose of comparison. We compare our approach with the “Total Variation”
(TV) and “Fractional Total Variation” (TV®) models. To compare the performance of our method
with the others, we used the “peak-signal-to-noise ratio” (PSNR) and the “mean structure similarity”
(SSIM). In our initial set of experiments, we employ six images that have been corrupted by Gaussian
noise.

In Figure 1 we present results for
denoising a series of test images using

A=05 a=16 rl =095 r2 =12,

Table 1. Comparisons between our approach with TV and TV
models using the psnr(p) and ssim(s) values.

Original image TV TV® Our approach
p=060=10""and y = 107°. The Lo »=3042 p—3086 p:p3%.90
images have been degraded by an addi- s —0.888 s—0.895 s — 0.900
tive Gaussian noise of standard devia- Peppers p=230.74 p=31.48 p = 31.50
tion o = 10. s =0.878 s5=0.893 s =0.894

In Table 1 we compare the restora- Geometric p=231.06 p=231.29 p=31.33
tion quality (via PSNR and SSIM) 5=0.743 s=0.747 5 =0.748

Satellite p=230.94 p=31.27 p=31.32

of six images. We can see that our
s =0.622 s=0.627 s =0.628

approach shows a slight improvement

compared to the other models. Brain 5 z 3072; i z 317;)(1) 5 z 317;;
In Figures 2-6 we proposed a high Butterfly  p—3050 p—30.89  p = 30.93
level of noise o = 20 with different im- s—=0902 s=0.909 s—0911

ages.
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Original image

Noisy image TV Ve Our approach
?‘ ’ e : e X e e <

Fig. 1. Comparisons between our approach with TV and TV® models.
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d (TV®) e (Our approach)

Fig. 2. Our approach vs. other models using Peppers image with o = 20.

(Reference image) b (Noisy image o = 20)

(TV®)

Fig. 3. Our approach vs. other models using Square image with o = 20.

(Our approach)
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d (TV®) e (Our approach)

Fig.4. Our approach vs. other models using House image with o = 20.

d (TVY) e (Our approach)

Fig.5. Our approach vs. Other models using Lena image with o = 20.
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d (TV®) |

e (Our approach)

Fig.6. Our approach vs. Other models using Paint image with o = 20.

Table 2. The PSNR and SSIM values with a noise variance o = 20.

Original image TV TvV® Our approach

Peppers p=29.11 p=30.15 p =30.24

s=0.868 s=0.903 s =0.905

House p=29.20 p=29.78 p = 29.87

s=0.867 s=0.893 s =0.894

Lena p=27.95 p=27.99 p = 28.03

s=0.872 s=10.892 s =0.893

Square p=3195 p=232.62 p=32.71

s=0.594 s=0.599 s = 0.602

Paint p=29.05 p=29.58 p =29.67

s=0.875 s=0.908 s =0.908
334 334
3321 333l

331
3321
o 328f ]

é ol é 33.1f

32471

32.21

39 L L L L L L L L L
1 11 12 13 14 15 16 17 18 19 2
«

a (PSNR(«a) with A =0.1)

331

3291

32.8

L L L L L L L L L
1 11 12 13 14 15 16 17 18 19 2
«

b (PSNR(a) with A = 0.005)

Fig. 7. Sensitivity test of our approach to parameter \ with fixed 0 = 10 for the Peppers image.
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7. Conclusion

In this paper, we successfully integrate two significant and effective regularization terms for image
noise removal. Our approach leverages the power of the fractional derivative total variation and the
bilateral filter, both of which prove to be adept at preserving details while deleting noise. The efficacy
of the fractional derivative tool in image denoising not only underscores its practicality but also paves
the way for further exploration by researchers into additional models based on fractional calculus.
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3aranbHa Bapiauia opoboBoOro nopsigky Ta ABOCTOPOHHIN hinbTp
ONS1 3MEHLUEHHS WyMy 300pa>keHHs

Anpym P.Y Myccain H.!, T'yacayan O.!, Ben-Jlordipi A.2

LLMCA, FSTM Mozammedii, Ynicepcumem Xacana II Kacabaarwu, Mapoxko
2LMCMAN, FSTM Moxammedii, Yrisepcumem Xacane II Kacabaarwu, Mapokko

VeyHeHHs 1IyMiB Ha 300parkeHH] € OCHOBHOIO MeTOK 00poOKH 300paxkenb. OHak H6araro
ICHYIOUIX METOIB CTUKAIOTHCH 3 IPOobIeMaMu 30epeKeHHs TAKUX OCOOJIUBOCTE, SIK Ky TH
Ta Kpal 300parkeHHsl, OMHOYACHO BUJIAJISIIOYHN IITyM. ¥ CTATTi JOCJIIKYEThCS Ta OIIHIOETh-
cd noxizHa JIpoboBOro MOPSJKY Ha OCHOBI Mojesi Bapiamnil 3aranbaoro a-nopsiaky (TV)
i Momesi nBocTopoHHBOI 3aranbrol Bapianii (BTV). Ileit Bubip 06yMOBJIeHHI TOBEIEHOIO
edexTuBHicTIO Mojeni TV y Bumasnenui mrymis i 36epexkenti kpai, a momenb BTV no-
JIATKOBO BHKOPHUCTOBYETHCS JJIsI TIOKPAIEHHS BiTHOBJIEHHS APiOHUX 1 CKIagHuX neraseil.
ExcrepumvenTtaibai pe3yabraTd MiITBEPIKYIOTh €(EKTUBHICTh 3AIIPOIIOHOBAHOI MOJIEJI,
[0 MiATBEPKYEThC 00’€KTUBHUMY KIJIBKICHUME TMOKA3HUKAME Ta CyD €KTUBHUMU OIliH-
KaMU Bi3yaJIbHOTO BUTJISIITY.

Kno4oBi €noBa: smenwents wymy 300padicenis; pe2yiapidayis; noridni 0po6o6ozo
nopAdKYy; 3a2aAbHA 8GPIGULA A-NOPAJKY; J80CTNOPOHHA MOMAALHA BAPIAUIA.
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