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This study introduces an advanced Electrocardiogram (ECG) diagnostic framework that
melds signal processing techniques with deep learning models to significantly boost accu-
racy in identifying acute myocardial infarction (MI) and MI related to left bundle branch
block (LBBB). By merging the Constant-Q Transform (CQT) with a pre-trained model,
this system showcases exceptional performance, an impressive 98.99% accuracy and a
remarkably low 0.0029% training loss after 100 trained epochs. Rigorous 10-fold cross-
validation substantiates and fortifies these findings. This novel approach streamlines the
complexities of diagnostics by consolidating 12-lead ECG data and harnessing CQT for
precise time-frequency domain analysis. Notably, this methodology not only enhances MI
detection accuracy but also presents potential for enhancing healthcare outcomes. It holds
promise in minimizing misdiagnoses, thereby propelling advancements in patient care for
critical cardiac conditions. This paradigm shift marks a significant stride in ECG-based
diagnostic systems, offering far-reaching implications for improved medical practices and
patient well-being.

Keywords: AMI; LBBB; CQT: ECG; ResNet-50.
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1. Introduction

Cardiovascular diseases are a leading cause of global mortality, resulting in an estimated annual
deaths [1]. Projections indicate a concerning increase, potentially reaching by 2030 [2]. Among these
diseases, Acute myocardial infarction (AMI) is particularly severe. Diagnosing a MI relies on specific
changes in the electrocardiogram (ECG), such as ST-segment elevation/depression (STEMI), T-wave
inversions, or pathologic Q waves. However, ECG alone may not suffice due to similar patterns in
conditions like left bundle branch block (LBBB) [3]. LBBB presents diagnostic challenges as it can
mask crucial ECG indicators. To address this, healthcare providers rely on additional tools, including
symptoms, medical history, and imaging like echocardiography. Manual ECG interpretation can be
complex and inconsistent, especially in remote or emergency settings [4]. Recent research explores
the application of artificial intelligence (AI) and deep learning techniques for improving myocardial
infarction (MI) diagnosis using 12-lead electrocardiograms (ECGs). In [5], researchers began by reduc-
ing noise in ECG data and utilized the ML-ResNet network to detect MI. However, the complexity
of this approach posed challenges. In contrast, [6] employed deep learning, specifically ResNet-50, in
medical image analysis. They conducted experiments using 12-lead ECG data from Chapman Univer-
sity and Shaoxing People’s Hospital, transforming ECG signals into scalogram and grayscale images.
They adopted a stacking ensemble method with logistic regression, support vector machine, random
forest, and XGBoost as the meta learner. An innovative aspect was the introduction of a “multi-modal
stacking ensemble” integrating predictions from scalogram and ECG grayscale images. Meanwhile, |7]
developed a tailored MI detection model emphasizing feature fusion. Their model aimed to detect MI
from 12-lead ECG images, utilizing a multi-branch network with a shallow CNN for feature extraction.
However, the use of 12 separate models raised concerns about system complexity and redundancy. Our
study addresses these challenges by concatenating data from all 12 leads, simplifying the diagnostic
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process. We also utilize the @ transform to represent data in the time-frequency domain, revealing cru-

cial spectral characteristics of ECG signals. This approach aims to enhance MI diagnosis, contributing

to improved patient outcomes and reducing the risk of misdiagnosis.
Our key contributions can be summarized as follows:

— Addressing complexity through data concatenation from all 12 leads.

— Following the removal of noise from the 12-Leads signals, the 1D ECG signals undergo a process of
horizontal concentration.

— We adopt the CQT algorithm to convert the 1D ECG signal into a 2D time-frequency representation,
which is then input into the pre-trained ResNet-50 CNN model.

2. Related work

Numerous studies have harnessed bodily biometric signals, such as ECG, in conjunction with Al tech-
niques to detect cardiac problems. Some of these studies [5-7] employ the ML-ResNet network (multi-
lead residual neural network), multibranch fusion network, and multiple feature-branch convolutional
neural network to detect myocardial infarction (MI) using a 12-lead ECG. In [5], the authors applied
the ECG data to undergo an initial noise reduction. The ML-ResNet network has been harnessed
for the purpose of detecting and pinpointing myocardial infarction (MI). This network architecture
encompasses a total of 13 layers, integrating a distinctive lead feature branch within its structure.
Specifically, this single feature branch is composed of three residual blocks, each containing three con-
volutional layers. However, it is important to note that this approach encounters a challenge in terms
of complexity, as it involves a substantial number of parameters that need to be carefully managed
and optimized.

Similarly, [7] adopts a 1D-ECG signal within a deep learning framework for MI diagnosis. The
MFB-CNN approach involves 12 independent feature branches, each operating on a single lead from
the 12-lead ECG. This study introduces an innovative method for the detection and localization of
automated myocardial infarction (MI) using 12-lead electrocardiogram (ECG) data. The Multiple-
Feature-Branch Convolutional Neural Network (MFB-CNN) capitalizes on the integrity and diversity
of ECG signals, as each feature branch captures distinct lead-related data. The integration of these
features through a global softmax layer obviates the necessity for manual feature crafting. However,
a notable challenge arises due to the high complexity when dealing with the separate analysis of 12
leads.

In contrast, the study [6] introduces a model tailored for myocardial infarction detection using
12-lead electrocardiogram (ECG) images. Their proposed methodology encompasses a multi-branch
network, feature fusion, and a classification network. Following thorough experimentation, they opted
for a shallow CNN as the multi-branch network to extract features from individual leads. The fusion
of feature maps was accomplished through depth fusion, and these integrated features were subse-
quently channeled into a classification network founded on the DenseNet architecture. The resultant
model exhibited exceptional sensitivity and specificity in the realm of myocardial infarction screening.
Nonetheless, a notable drawback of this approach lies in its complexity, and there is a lack of data
preprocessing incorporated within the method.

Further advances include [8], which introduces an innovative approach to medical diagnosis using
ResNet-50 for the automatic classification of 12-lead ECG data encompassing multiple cardiovascu-
lar diseases. They presented an efficient DL model designed for the automatic diagnosis of 12-lead
electrocardiogram (ECQG) signals categorized into 27 classes. These classes include 26 different types
of CVD and a normal sinus rhythm. The proposed model is built on the Residual Neural Network
(ResNet-50) architecture and is evaluated through experimentation using combined public databases
from the USA, China, and Germany as a proof of concept.

In [9], an updated ResNet-18 model is introduced, showcasing the potential of deep learning to rev-
olutionize ECG signal analysis. This novel approach addresses the limitations of conventional methods
and aims to categorize ECG signals more effectively. To achieve precise identification and classifi-
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cation of five AAMI heartbeat classes using the MIT-BIH arrhythmia database, the article presents
an enhanced ResNet-18 model. This model leverages the unique characteristics of lead ECG data,
treating it as one-dimensional time series. By adopting this approach, the model can extract mul-
tiple features from the same input, efficiently capturing the internal structural nuances within the
ECG data. Consequently, this enhancement significantly bolsters the model’s classification accuracy.
Dealing with expansive datasets presents challenges in neural network training. As the input data
volume increases, so does the necessity for additional neurons to enhance classification accuracy. Un-
fortunately, expanding the model’s size, especially in fully connected neural networks, results in an
abundance of parameters, which can impede training speed. To address this challenge, the article
introduces a Convolutional Neural Network (CNN) characterized by local connectivity and parameter
sharing. This CNN design effectively reduces model parameters while accelerating training, making
it well-suited for large datasets. The study employed the MIT-BIH dataset, which primarily consists
of 2-lead ECG recordings. However, this limited dataset may not fully harness the potential benefits
of utilizing all 12 leads available in a comprehensive ECG. In addition, it is worth noting that the
ResNet architecture, particularly its residual blocks, can face challenges related to gradient vanishing
during training. This issue can impede the network’s ability to effectively learn and represent complex
patterns in the data.

The application of deep learning in medical image analysis, particularly ResNet-50, is shown in [5],
where The study conducted experiments utilizing 12-lead electrocardiogram (ECG) databases sourced
from Chapman University and Shaoxing People’s Hospital. To fine-tune the pretrained ResNet-50
model for each lead, the ECG signals were transformed into scalogram images and ECG grayscale
images. The ResNet-50 model served as the base learner for a stacking ensemble method. The meta
learner, used for combining predictions from the base learner, employed logistic regression, support
vector machine, random forest, and XGBoost. This study introduced a novel approach termed “multi-
modal stacking ensemble,” which integrates predictions from two modalities: scalogram images and
ECG grayscale images. In scenarios involving MI associated with left bundle branch block (LBBB), and
disruptions in the heart’s electrical conduction, the Constant Q Transform (CQT) emerges as crucial.
LBBB-related changes often appear in the lower frequency spectrum (ST-segment) of cardiac signals,
making CQT more adept at uncovering these alterations compared to linear methods. While ResNet
excels in various computer vision tasks, it is not immune to challenges. A primary one is vanishing gra-
dients, which hinder learning in deep architectures. ResNeXt, an extension of ResNet, overcomes this
through “cardinality.” Using grouped convolutions, ResNeXt facilitates efficient information flow across
paths. By partitioning input channels into groups, it enhances network capacity without overburdening
parameters, ultimately increasing accuracy and robustness, especially in scenarios with limited training
data.

3. Methodology

We introduce a new system for ECG diagnosis by integrating a pre-trained model with the Constant-Q
Transform (CQT), leading to improved accuracy and efficiency in analyzing ECG signals. The model
stages, including signal preprocessing, 12 leads Horizontal data concatenation, CQT transformation,
and the ResNet-50 model, are illustrated in Figure 1. This innovative approach combines signal process-
ing techniques and deep learning models to enhance ECG analysis and improve healthcare outcomes.
Additionally, the incorporation of k-fold cross-validation strengthens the credibility and reliability of
our experimental results, providing a comprehensive evaluation of the integrated ECG diagnosis system
(see Figure 1).

3.1. Data set and preprocessing

For this research, we obtained electrocardiograms (ECGs) from the publicly available PTB database,
which comprises ECG signals from 191 participants in both AMI and AMI associated with LBBB
categories. The records last 10 seconds, are labeled by cardiologists. Most records may have multiple
annotations, and the signal is sampled at 500 Hz [3].
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Fig.1. The proposed method.

However, ECG signals often suffer from various types of noise that can adversely affect the ac-
curacy of the diagnostic results. These noise types include power line interference, baseline wander,
and electrode contact noise, which must be adequately addressed before applying machine learning
algorithms to diagnose MI. Thus, ECG signal denoising and preprocessing become a discriminative
need [10]. In our study, several filters are applied to an electrocardiogram (ECG) signal to improve
its quality. Firstly, a bandpass filter is applied to remove static noise and high-frequency noise. This
filter uses a Butterworth filter of order 5 with a lowcut frequency of 0.5 Hz and a highcut frequency of
100 Hz. Next, a median filter with kernel size of 3 is applied to remove burst noise. The signal is then
processed to remove baseline drift by subtracting the moving average of the signal using a window size
of 0.2 seconds. Finally, any obvious outliers in the signal that may be caused by electrode problems are
removed by manually replacing values greater than 2.0 or less than —2.0 with the mean of the filtered
signal. The resulting signal is then ready for further analysis or interpretation.

3.2. 12-Lead data concatenation and 2D transformation

12 leads horizontally concatenating allows us to represent multiple leads in a single waveform, which
can be useful for visualization or further processing. It enables you to consider the interactions between
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the leads and analyze the combined information. By applying the CQT to the ECG data, essential
features can be extracted with high precision, enabling more accurate diagnosis of cardiac conditions.
The CQT, a signal processing technique, offers variable frequency resolution, making it particularly
suitable for non-stationary signals like ECG. Figure 2 illustrates the horizontal concatenation of the
12 leads, followed by the representation of the concatenated signal in the time-frequency domain.

As input, the model takes an ECG signal X € RV*12 after the horizontal concatenation the new
data format is a matrix of N samples and 12 columns, each column represents a lead. The perceptually
motivated CQT [11,12] approach to the spectro-temporal analysis of a discrete signal z(n) is defined
N |2 o

Xeglkm = > ati)-ai (1-n+ 7). 0

(= |5

This equation represents the computation of Xcg(k,n), which signifies the CQT coefficients for a
given frequency scale k and time index n. The summation involves the signal x(l) multiplied by the
scale-related factor ai and k within a specific range determined by N and k, n represents the sample
index within the signal; k ranges from 1 to K and stands for the frequency bin index; ax(n) denotes the
basic functions, which are functions of both n (sample index) and k (frequency bin index); the symbol
‘«x’ denotes the complex conjugate operation; Nj refers to the frame length specific to the frequency
bin k.

In the CQT context, the basic functions ax(n) are specifically defined as complex-valued functions
that depend on both the sample index n and the frequency bin index k. These functions play a crucial
role in decomposing a signal into its frequency components across different time intervals, facilitating
analysis in the time-frequency domain (see Figure 2).
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Fig. 2. ST-segment in low-frequency representation.

However, it has been observed that the quality of the leads may differ, leading to variations in the
extracted features and subsequent analyzes. To address this issue, we used the novel approach that
involves horizontally concatenating the data from multiple leads before applying the CQT transform.
This technique aims to leverage the complementary information across leads and enhance the overall
quality of the signals. By concatenating the leads, the resulting signal benefits from an improved
signal-to-noise ratio and a reduction in artifacts and noise that may have been present in individual
leads. Consequently, when the CQT transform is applied to the concatenated signal, the extracted
features exhibit improved consistency and reliability compared to those obtained from individual leads.
This approach has demonstrated promising results in various signal analysis tasks, such as classifica-
tion or anomaly detection, where the concatenation of leads before the CQT transform has led to
enhanced performance and more accurate results. Figures 3, 4 illustrate the differences between ap-
plying the Constant-Q Transform (CQT) to each lead individually and applying it to the horizontally
concatenated 12-lead ECG signals.

In the first approach, the CQT transformation is independently applied to each lead of the 12-
lead ECG signals. This results in obtaining separate time-frequency representations for each lead,
capturing specific temporal and frequency patterns in individual leads. On the other hand, in the second
approach, the 12-lead ECG signals are horizontally concatenated before applying the CQT transform.
This novel technique aims to leverage the complementary information present across multiple leads
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simultaneously. By concatenating the leads, the resulting signal benefits from improved signal-to-noise
ratio and a reduction in artifacts and noise that may have been present in individual leads. Therefore,
the proposed approach of concatenating leads before applying the CQT transform offers a valuable
method to address the variability in lead quality and improve the overall efficacy of signal processing
and analysis.

3.3. ResNet-50

ResNet-50 is a variant of the ResNet architecture, which is a deep convolutional neural network com-
monly used for computer vision tasks. It is known for its depth and remarkable performance in image
recognition tasks. The ResNet building block consists of a main pathway with convolutional layers,
batch normalization, and activation functions. It also includes a shortcut connection that allows the
network to learn residuals or differences between the current layer’s output and the desired output.
This architecture addresses the vanishing gradient problem and enables the training of very deep net-
works. It has proven highly effective in various computer vision tasks, including image classification
and object detection [5]. In the context of a 2D convolutional neural network (CNN), similar oper-
ations to those in the 1D scenario are performed, but considering two-dimensional data. Here is an
adaptation of the provided description for a 2D CNN.

A 2D convolutional layer (Conv2D) is applied to the input data, followed by a batch normalization
layer (BatchNorm) and rectified linear unit activation (ReLU). Subsequently, a Max Pooling layer is
used to downsample the features extracted by the Conv2D layer.

In this setup, 16 residual blocks are employed to extract deep features. There exist two types of
residual blocks:

The residual Block Type 1: Composed of three Conv2D layers, three BatchNorm layers, and two
ReLU activation layers. One Conv2D layer and one BatchNorm layer are utilized to match dimensions,
facilitating skip connections.

The residual Block Type 2: Comprising three Conv2D layers, three BatchNorm layers, and two
ReLU activation layers.

The Conv2D layers serve the purpose of feature extraction, while the BatchNorm layers contribute
to accelerating convergence and stabilizing the model. The ReLU layers introduce non-linearity for
enhanced representational power.

The features extracted through the residual blocks undergo pooling, typically using Average Pooling,
where the pooled results are collected and directed to the output layer. The output layer utilizes the
sigmoid activation function to produce predictions based on the learned features (see Figure 3).

ResNet-50 Model Architecture

Input Output

ID Block
ID Block
ID Block

Avg Pool
Flattening
FC

Zero Padding

Max Pool
Conv Block
Conv Block
Conv Block
Conv Block

ID Block

- I e

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Fig. 3. ResNet-50 architecture.

3.4. K cross validation

K-fold cross-validation is a widely used technique in machine learning for evaluating classification
algorithms. It involves dividing the data into k subsets, using k& — 1 subsets for training and one subset
for testing, resulting in k£ accuracy scores for assessment. This technique is essential for estimating the
performance of models, preventing overfitting, and optimizing data utilization. It also aids in model
selection, hyperparameter tuning, and algorithm comparison. K-fold cross-validation provides insights
into the stability and suitability of models for real-world applications [13].

Mathematical Modeling and Computing, Vol. 11, No. 3, pp. 654-662 (2024)



660 Elfatouaki H., Adnane L., Charafeddine A. Z., Mohamed A.

3.5. Performance evaluation

We employed the specificity, sensitivity, and accuracy metrics — all widely used in the field of pattern
recognition, to assess the performance of each class. In order to calculate these metrics, the values of
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) were used, which
were stated in the appropriate way in the equations (2), (3), and (4). These are their definitions:

ificity = N (2)
specificity = s
TP
tivity — AP 3
sensitivity = o= (3)

Total correctly classified signals

Accuracy = x 100. (4)

Total number of signals

4. Result and discussion

Our paper significantly advances ECG diagnosis, specifically in the detection and characterization of
acute myocardial infarction (MI) and acute MI associated with left bundle branch block (LBBB). By
integrating a pre-trained model with the Constant-Q Transform (CQT), we achieve improved accuracy
and efficiency in analyzing ECG signals related to AMI and LBBB. Our model utilizes the cross-entropy
loss function and demonstrates outstanding performance, achieving an impressive training accuracy of
98.99% with a training loss score of only 0.0029% after 100 epochs of training (see Figures 4, 5).

Accuracy
=— avg_validation_accuracy = avg_ train_accuracy
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Fig. 4. Our Model Mean Accuracy Scores for 10-Fold Cross-Validation.
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Fig. 5. Our Model Mean Loss Scores for 10-Fold Cross-Validation.
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As depicted in Figure 4, these exceptional performances validate the effectiveness and reliability
of our model in accurately classifying ECG signals. The high accuracy and low training loss score
highlights the robustness and precision of our approach in addressing the given task (see Table 1).

Table 1. Comparative results.

Method Dataset Accuracy | Sensitivity | Specificity
ML-ResNet [5] PTB 05.49% | 94.85% | 97.37%
Multi-Modal Stacking Ensemble and Resnet-50 [6] | PTB-XL 93.97% 94.0% -
Multi-branch fusion network [7] ECG images | 94.73% 96.41% 95.94%

[ Proposed methode | PTB-XL [ 98.99% [98.75% [97.69% |

Accurate detection of MI and LBBB in MI cases is of significant clinical importance as it enables
timely diagnosis and appropriate treatment, leading to improved patient outcomes and better cardiac
care. Our results demonstrate the potential of the proposed ResNext50 model as an effective tool to
improve cardiac diagnosis and patient management, thus contributing to the advancement of cardiology
research and clinical practice. Further validation and exploration on larger datasets and real-world
scenarios are warranted to assess the generalization and practicality of our proposed approach in clinical
settings.

5. Conclusion

In conclusion, our research introduces a novel ECG diagnosis system that combines signal processing
techniques and deep learning models. This integration enhances the accuracy and efficiency of analyzing
ECG signals, specifically in the detection and characterization of acute myocardial infarction (MI) and
AMI associated with left bundle branch block (LBBB). The use of the Constant-Q Transform (CQT)
and a pre-trained model results in an impressive performance, achieving a remarkable accuracy of
98.99% and minimal training loss of 0.0029% after 100 epochs. The utilization of this novel approach
benefits patient care and healthcare technology, enhancing the diagnosis and management of these
critical cardiac conditions. Moreover, the inclusion of 10-fold cross-validation strengthens the credibility
of our findings, ensuring reliable performance evaluation and providing valuable insights for further
advancements in ECG-based diagnostic systems.
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EKl-giarHocTnyHa cucrtema 3i WUTYYHUM IHTENEeKTOM AJi1sl TOCTPOro

iHpapkTy miokapaa 3 BJIHII: nepersopeHHsa Constant-Q Ta
iHTerpauis 3 ResNet-50

Enbdaryaxi X.!, Yapademin A. 3.2, Annane JI.', Moxames AL

! Haygonanrvha wxora npuxaaonus mayk, Ywisepcumem Kadi Atiad, Mappaxew, Mapokko
2 Moniducyunainaprut gaxyavmem Cidi Bennypa, Ynisepcumem Hlyatioa Jykkani, Mapoxxo

Y 1boMy JTOCJIiIXKEHH] TTPEJICTABIEHO PO3IIUPEHY JIarHOCTUYHY CTPYKTYPY €JIeKTPOKap-
miorpamu (EKT), sika noeaye MeTon 06pOOKHI CUTHAJIB 13 MOJIEJISIME TJIHOOKOTO HABYAH-
He, MO0 3HAYHO MiABUIIUTU TOYHICTDL izenTudikamnii rocrporo indapkry miokapma (IM)
ta IM, mos’s3anoro 3 60Ka010 JiBoi Hixkku mydka ['ica (BJIHIIT). 3aBasgku HoeaHaHHIO
nepersopenns Constant-Q (CQT) i3 nomepeaHb0 HABYEHOIO MOJIEJLIIO Iisl CUCTEMa JIEMOH-
CTPY€ BUHATKOBY IPOAYKTUBHICTH, Bpazkaiody TouHicTb y 98.99% i HajzBHuaiiHO HU3LKI
prpaTu nij gac Hapdanaa 0.0029% micia 100 enox nasuyannsa. Cysopa 10-kpaTHa nepexpec-
Ha TepeBipKa IMiITBep/ KY€ Ta MiAcuIioe 1mi BucHoBKu. [leit noBuit miaxisn crporye ckiai-
HICTH JIArHOCTHKU ILAsSXoM KoHcoJtigaril ganux EKI' y 12 BinBe/ieHHsSIX 1 BUKOPUCTAHHS
CQT nys Tounoro anasizy B 9acTOTHO-4acoBiit obaacti. [IpumiTHo, 110 1151 MeTo 10101 HE
TiMLKY MiIBUINLYE TOYHICTD BusaBaenus IM, aJte it mpeicTaBJise MOTEHITAJ SIS TOKPAIICHHS
pe3ynbTaTiB MeuIHOI JoTIoMoru. BoHa j1a€ Halifo Ha MiHIMI3AI[o MOMUIKOBUX JiarHO3iB,
TUM CAMUM CIPHUSIIOYUN IIPOrPECy B JIOTJIS 3a MAIliEHTAMHU 3 KPUTUIHUMU CEPIIEBUMU 3a-
xBopioBaHHAME. 151 3MiHa TapaaurMu 3HAMEHY€E 3HATHII KPOK V JIArHOCTUIHAX CHCTEMAX
Ha ocHoBi EKT', 1110 Mae j1ajieKOCs>KHI HACTIIKY JIJIst TTIOKPAIeHHsT MEJIUYIHOI TPAKTUKHU Ta,
6J1arOTIOJ Ty IUS TIAIIEHTIB.

Kntouosi cnosa: AMI; LBBB; CQT; ECG; ResNet-50.
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