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Abstract. Goal of the work is to apply periodic Ateb-functions to investigate dynamic 
processes of strongly nonlinear systems with a finite number of degrees of freedom. Significance. 
Practically all problems in mechanics and engineering related to system oscillations, when strictly 
formulated, are nonlinear, as they are mathematically described by nonlinear differential equations. 
This often poses significant challenges in studying their behaviour, as finding a solution in exact 
form can be difficult. One way to overcome this complexity is utilizing special functions, such as 
Ateb-functions. Therefore, the application of periodic Ateb-functions for investigating the dynamic 
processes of highly nonlinear systems with a finite number of degrees of freedom is a relevant task, 
as it allows for increased accuracy and efficiency of estimations. Method. The methodology is based 
on finding partial solutions of the “normal” oscillations form, which do not correspond to linearized 
systems. The normal modes of oscillation of highly nonlinear conservative systems, whose potential 
energy is a homogeneous function of degree ν+1, are described using periodic Ateb-functions. In 
cases where linearization of the original system is not possible, such an approach to studying the 
oscillatory processes of highly nonlinear systems with multiple degrees of freedom is the most 
feasible. Results. The presented methodology for investigating normal modes of oscillations can be 
generalized to highly nonlinear systems with small perturbations of autonomous and non-
autonomous types. Scientific novelty. Mathematical relations have been established to determine the 
normal modes of oscillations in highly nonlinear mechanical systems. Practical significance. The 
application of periodic Ateb-functions for investigating dynamic processes in highly nonlinear 
systems will enhance the accuracy and efficiency of estimations. 

Keywords: oscillatory systems, dynamic processes, nonlinear systems, Ateb-functions, 
normal forms of oscillations.  

Introduction 
Nowadays, the analysis of the dynamics of mechanical systems with a high degree of nonlinearity is 

a widely spread phenomenon. Typically, dynamic processes within systems with concentrated masses and 
distributed parameters are described by nonlinear differential equations. In the case of small oscillations of 
the system around the equilibrium state, the mathematical apparatus known in scientific arias today is 
sufficient for practical tasks. However, concerning systems with large oscillations, analytical methods of 
their study remain as a current issue. 
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Review of Modern Information Sources on the Subject of the Paper 

Analytical methods for investigating oscillatory processes in linear systems with both single and 
multiple degrees of freedom are extensively covered in the literature [1]. However, when it comes to 
nonlinear systems, difficulties often arise during studying these systems. A widely practiced approach is to 
linearize mechanical nonlinear oscillatory systems to investigate their behaviour [2, 3]. However, in 
general nearly all mechanic and engineering problems related to system oscillations are nonlinear, meaning 
they are mathematically described by nonlinear differential equations. Examples of such mechanical 
systems could include: 

• rotary systems with nonlinear oscillations; 
• vehicle equipment influenced to various mechanical loads; 
• continuous transport machinery. 

Analysis of nonlinear systems performing large oscillations has become widely popular in the last 
decades. These studies primarily rely on numerical methods to predict a system behaviour. Often, 
investigations into both self-oscillations and forced oscillations in nonlinear systems boil down to 
finding or determining conditions for an existence of stable periodic solutions of nonlinear differential 
equations that describe a motion of systems under the study [4]. In the initial stages of researching 
oscillatory systems, nonlinear processes were considered only in specific cases. One of the first 
mathematical methods, which was used to study nonlinear oscillatory systems, was a perturbation 
theory. However, this theory allowed to investigate the oscillatory of mechanical systems containing a 
so-called “small parameter”, and when its value is zero, such systems are studied as linear. However, 
alongside this, there are many systems where using a linear approach is inadmissible [5]. When studying 
oscillations in nonlinear systems, the “small parameter method” takes an important role, which was 
initiated in the works of Poincaré. The main idea of this method is as follows. There is a nonlinear 
system, whose motion is described by the differential equation: 

2 ( , )x x f x xω ε+ =&& &      (1) 

with ω  is a constant, ε  is a small parameter. 

Taking into account that the period of oscillations of a nonlinear system depends on the small 
parameter, by a certain substitution of the independent variable t , the equation (1) is transformed into a 
form which the period of its solution becomes constant. 

In the final analysis, the problem is reduced to solving linear differential equations with certain 
unknown parameters; however, the procedure for finding these parameters is not always simple and 
straightforward. The primary difficulty of mechanical systems with nonlinear oscillations lies in the 
possibility of finding a solution in an exact form. To address this, various approximate numerical methods 
have been developed, but there are also options for utilizing special functions: Lyapunov established new 
functions C  n and S  n [6]; Rosenberg constructed Ateb-functions [7]; Senik expressed these solutions as 
three-argument functions ca and sa [8, 9], which can be transformed into Jacobian elliptic functions when 
the nonlinearity is cubic. In the study [10], the ca function and the Jacobian elliptic function cn are used to 
investigate oscillatory systems with concentrated masses and distributed parameters. 

Research results 
The subject of this article is to apply periodic Ateb-functions to the study of dynamic processes in 

strongly nonlinear systems with a finite number of degrees of freedom. This method is based on finding 
partial solutions in the form of “normal” oscillations, which do not correspond to linearized systems, but 
can still be found in a closed form for certain classes of multiple degree of freedom systems. When 
linearization of the original system is not possible, the most appropriate way is using an approach to 
investigating oscillatory processes in strongly nonlinear systems with multiple degrees of freedom. 
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Let’s consider a conservative system with a finite number of degrees of freedom. It is supposed its 
potential energy be a homogeneous function of the generalized coordinates 1y , 2y ,…, ny  with the 
homogeneity exponent 1v + , namely: 

1 2

1 21 2 , ,..., 1 2( , ,..., ) ... n

n

vv v
n r r r nP y y y c y y y=∑     (2) 

and the kinetic energy has a well-defined quadratic form: 
2

1 2
1

1( , ,..., )
2

n

n i i
i

T y y y m y
=

= ∑& & & &      (3) 

with 
1

1
n

i
i

v v
=

+ =∑ , 
1 2, ,..., nr r rc , im  are constants. 

Then the differential equations of the system motion take the form: 
1 11 2

1 2

1
, ,..., 1 2 1 1... ... 0i i i n

n

v v v vv v
i i i r r r i i i ny m v c y y y y y y− +−

− ++ =∑&& .    (4) 

It is assumed that the system undergoes nonlinear oscillations that coincide in form with the first 
generalized coordinate (the “mode”), namely: 

1i iy b y= , 2,3,...,i n=       (5) 
with ib  are some constants, the conditions for determining them will be specified below. Substituting this 
into the differential equations of motion, it is obtained: 
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In the equations (6) and ones below, the subscript 1, which indicates the first “mode” of system 

oscillations, is omitted. The obtained differential equations differ only in the coefficients accompanying the 
derivative in the nonlinear term, so they can be written as: 

0 0v
iy b y+ =&&  (7) 

with 
2
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It should be noted that the coefficients 0
ib  in the differential equation (7) are expressed in terms of 

“modal constants” ib , which are currently unknown. To establish the relation between them, it will be used 
compatibility conditions derived from the method of determining the generalized forces of modal 
oscillations, namely conditions: 

2 1 2( , ,..., ) ( , ,..., )n n
i

i

P y b y b y P y y yb
y y

∂ ∂
=

∂ ∂
 (8) 

Substituting the expression (8) into the expression for the potential energy (2), the algebraic relations 
for determining the unknown quantities ib  take the form: 
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3 3 1 12 2

1 2 1 2

1
, ,..., 2 3 , ,..., 2 3 1 11( ) ( ) ...( ) 1( ) ( ) ...( ) ( ) ( ) ...( )n i i i n

n n

v v v v v v vv v
i i r r r n i r r r i i i nb v c b b b v c b b b b b b− +−

− +=∑ ∑ . (9) 

Thus, the issue of the existence of normal modes of oscillations in strongly nonlinear mechanical 
systems with n degrees of freedom is related to the problem of the existence of real solutions of the 
nonlinear algebraic equations system (9). This problem has at least 𝑛𝑛 solutions in the case of a 
homogeneous even function 1 2( , ,..., )nP y y y . This property of the algebraic equations system (9) is closely 
related to the phenomenon of “distortions” and the stability of normal modes of oscillations [12], 
highlighting another fundamental difference between normal modes of oscillations in strongly nonlinear 
mechanical systems and linear oscillations of the system. 

Therefore, the normal modes of oscillation of strongly nonlinear conservative systems, whose 
potential energy is an even homogeneous function with the exponent 𝑘𝑘 are described using periodic Ateb-
functions in the form: 

( )1 ,1, ( )y y aca v a tω θ= = + ,     (10) 

( ),1, ( )i iy y ab ca v a tω θ= = +  

with a , θ  are constants, ( )
1

1 0 2
1( ) 2 1

v

a v b aω
−

−= + , ib  are determined from the algebraic equations system 

(9). 
The mentioned methodology for constructing solutions of “normal” modes of oscillations can be 

extended to certain other classes of nonlinear conservative systems, in particular, to systems whose 
potential energy is determined by the dependence: 

( ) 1

, 0

v

ij i j
i j

P c y y
+

=

= −∑ . (11) 

The differential equations of the conservative system motion can be written in the form: 

( ) ( )1

0
1 0

v

i i ij i j
j

y m v c y y−

=

+ + − =∑&& , 0 0y = .    (12) 

Assuming, as in equation (4), the relation between the normal modes of oscillations in the form (5), 
it is obtained a nonlinear differential equation to find the unknown function y : 

( ) ( )1

0
1 0

vv
i i ij i j

j
y m v y c b b−

=

+ + − =∑&& , 2,3,...,i n= , (13) 

in which the unknown coefficients ib  are determined from the algebraic equations system: 

( ) ( )
0 0

1
v v

i ji j ij i j
j j

b c b c b b
= =

− = −∑ ∑ . (14) 

The solution of the differential equation (13) is expressed using periodic Ateb-functions in the form 
(10), but for the case under consideration, the constants ib  are determined by the algebraic equations 
system (14). 

The described methodology for studying normal modes of oscillations can be generalized to strongly 
nonlinear systems with small perturbations of both autonomous and non-autonomous types, which are 
“close” to those considered. Therefore, it can be applied to systems whose motion is described by such 
differential equations: 

1 11 2

1 2

11
, ,..., 1 2 1 1 1... ... ( ,..., , , )i i i n

n

v v v vv v
i i i r r r i i i n ny m v c y y y y y y f y y tε µ ε− +−−

− ++ =∑&&   (15) 

or 

( ) ( )1
1

0
1 ( ,..., , , )

v

i i ij i j i n
j

y m v c y y f y y tε µ ε−

=

+ + − =∑&& ,   (16) 

where the right part of these differential equations (the functions 1( ,..., , , )i nf y y tε µ ε ) are analytic and  
2𝜋𝜋-periodic in tµ . 
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There was considered oscillations that are close to the normal oscillations of the corresponding 
unperturbed conservative systems in systems (15) and (16). It is known [13] that forced oscillations of 
nonlinear systems with one degree of freedom, in the presence of small periodic perturbations, are close to 
the natural oscillations of the unperturbed system in both resonant and non-resonant cases. It turns out that 
systems with a finite number of degrees of freedom have similar behavior to conservative systems with one 
degree of freedom in the modes of normal oscillations. Indeed, according to a general scheme for 
constructing asymptotic approximations for systems with small perturbations [11], there is: 

( )0 ( ) ,i i iy y t u tε ε= +      (17) 
with 0 ( )iy t  is the solution of the unperturbed system, ( ),iu tε ε  is the perturbation of the solution caused 
by the presence of small forces (depending on the right part of the differential equations).  

In the case of normal oscillations of the considered systems, there is ( )0 1,1, ( )i iy ab ca v a tω θ= + +  
( 1b = , and 2b , 3b ,…, nb  are constants determined from the corresponding scheme of algebraic 

equations), ( ),iu t ε  are bounded analytic functions of their arguments, so 0 ( )i iy y t→  for 0ε → .Thus, 
substituting the relation (5) for iy  into (15) and (16), it is obtained nonlinear differential equations: 

0 ( , , )vv
i i iy b y F y tε µ ε+ =&&     (18) 

with ( )1 2( , , ) , , ,..., , ,i i nF y t f y b y b y b y tµ ε µ ε= . 
It is noticed that the equations for determining the coefficients ib  can also be interpreted as the 

conditions for the equality of the frequencies of the normal modes of oscillation of the mechanical system. 
Indeed, the frequency of oscillation of the generalized coordinate for iy  ( 2,3,...,i n= ) takes the below 
value, according to formula (14): 

( ) 3 1 12

1 2

12 1
, ,..., 2 3 1 1

1 ... ...
2

i i i n

n

v v v v vvv
i i r r r i i i n

i

va v a c b b b b b b
b

ω − +−+
− +

+
= ∑ .  (19) 

By equating the oscillation frequencies of the generalized coordinates iy  to the frequency of the 
principal (first) generalized coordinate 1y  it is obtained the algebraic equations system for determining the 
coefficients ib , which coincides with the one given above. 

As an example, let’s consider the linear oscillations of a system consisting of two masses connected 
by a system of springs (see Fig. 1). 

 
Fig. 1. The diagram of a mechanical system with two degrees of freedom 

Let’s consider that the nonlinear spring characteristics are approximated by dependencies 
( )3

i i i i iF с α= ∆ + ∆  ( i∆  is the deformation of the i-th spring, 1,2,3i = ; iс , iα  are constants, moreover  

αί<<сί), the differential equations of the system motion take the form: 

( ) ( )33
1 1 1 2 1 2 1 1 2 1 2y с y c y y k y k y yε+ + − = −  + −  && ,     

( ) ( )33
2 3 2 2 2 1 3 2 2 2 1y с y c y y k y k y yε+ + − = −  + −  &&    (20) 

with i ic kε= . 
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Let’s consider the unperturbed system of equations corresponding to (20), namely: 

( )33
1 1 1 2 1 2 0y с y c y y+ + − =&& ,      

( )33
2 3 2 2 2 1 0y с y c y y+ + − =&& .    (21) 

By assuming the relation between the normal modes of oscillations 1y  and 2y  in the form  
of 2 1y by= , to determine the unknown constant b  it is obtained the algebraic equation: 

4 33 1

2 2

2 2 1 0c cb b b
c c

   
+ − − − − =   
   

.    (22) 

For 1 3c c с= =  the real roots of the obtained algebraic equation are equal to: 

1 1b = , 2 1b = − , 3
2 2 2

1 1
4

c c cb
c c c

 
= − − − 

 
, 4

2 2 2

1 1
4

c c cb
c c c

 
= − + − 

 
.  (23) 

Thus, in the considered conservative system for 0ja =  ( 0, 1,2,3,4jk j= = ) and 24c c> , the 

following forms of normal oscillations are possible: 

a) ( )1 3,1,y aca с at θ= ⋅ + , 

( )2 3,1,y aca с at θ= ⋅ + ; 

b) ( )1 23,1, 2y aca с c at θ= + ⋅ + , 

( )2 23,1, 2y aca с c at θ= − + ⋅ + ; 

c) 
3

2
2

1 2 2
2 2

43,1,
2 4

с сссy aca с с at
с с

θ
  − = +  +  ⋅ +     

, 

3
2 2

2 2
2 22 2

2 2 2 2

4 41 3,1,
2 4 2 4

с сс с ссс сy aca с с at
с с с с

θ
    − − =  − −  +  +  ⋅ +         

; (24) 

d) 
3

2
2

1 2 2
2 2

43,1,
2 4

с сссy aca с с at
с с

θ
  − = +  −  ⋅ +     

, 

3
2 2

2 2
2 22 2

2 2 2 2

4 41 3,1,
2 4 2 4

с сс с ссс сy aca с с at
с с с с

θ
    − − =  − +  +  −  ⋅ +         

. 

From the obtained results, it follows that: 
– for the case a the normal modes of oscillations 1y  and 2y  occur in the same phase, while for the 

case b they occur in the opposite phases; 
– normal oscillations in the forms c and d occur if the spring stiffnesses are related by the 

dependency 24c c> . 
Having determined the normal modes of oscillations of the unperturbed system (21), it proceeded to 

consider the first-order perturbed equations. According to the general perturbation theory for nonlinear 
oscillatory systems, the solution of the equations (21) can also be considered as the relation (24), but in this 
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case, the parameters a  and θ  will be functions of time. To find one, it is obtained the differential 
equations system: 

( ) ( ) ( )
2

0

1 3,1, 1,3, 0
2 ( )

aa k b ca l sa l d
a

πε ψ ψ ψ
πω

= + =∫& , 

     ( ) ( ) ( )
2

2

0

0.45711 3,1, 1
2 ( ) ( )

k b ca l d k b
a a

πε εθ ψ ψ
πω ω

= + = +∫&    (25) 

with 1 2k k k= = , (0.25) 1.6692
(0.75)

Гl
Гπ

= = . 

As expected, the amplitudes of the normal modes of oscillations of the considered system in the 
first-order approximation of the asymptotic expansion remain constant because the system is conservative. 
As for the frequencies of the perturbed oscillations sΩ , 1,2,3,4s =  they depend on the amplitude and are 
determined by the formula: 

( ) ( )0.4571 1
( )s a k b
a

εω
ω

Ω = + +      (26) 

with ( ) ( )3
2 1

2 sa с с b aπω  = + +  , then sb  are determined according to (23). 

Below, in Fig. 2, the dependence of the period of oscillation normal modes on the amplitude is 
depicted. 

 
Fig. 2. Graphs illustrating the dependence of the periods of oscillation normal modes on the amplitude:  

1 – a; 2 – b; 3 – c; 4 – d 

Conclusions 
From the obtained graphs, it can be observed that: 
– the period of all oscillation normal modes of the investigated conservative system decreases with 

increasing amplitude; 
– the period of oscillations is highest for the case of in-phase motion of the bodies for the same 

amplitude values. 
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