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Modern assembly lines face numerous challenges when it comes to satisfying client expec-
tations. The challenges discussed include increasing customization demands, maintaining
quality standards, managing lead times, addressing sustainability concerns, and effectively
utilizing advanced technologies. This challenges impact assembly lines efficiency and ef-
fectiveness in other word balancing of the line. This research aims to identify the essential
components that significantly influence the balance of assembly lines. To achieve this
objective, a novel approach is proposed using a 3D matrix interpretation and statistical
method, Principal Component Analysis (PCA). The research leverages the MATLAB tool
to analyze the interactions between various parameters and identify highly changeable fac-
tors that impact assembly line balance. By employing this methodology, the study aims
to provide valuable insights into identifying the parameters of an assembly line balancing
and enhancing overall operational efficiency. The finding of this approach, reveal a signif-
icant influence of altering the piloting parameters on assembly line balancing. This result
underscores the importance of dynamically balancing the assembly line to achieve optimal
performance.

Keywords: 3D matrix; principal component analysis; dynamic balancing; high variability
parameters.
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1. Introduction

The manufacturing industry is undergoing rapid changes in response to shifting market demands and
technological advancements. One of the most prominent trends in modern production is the concept
of mass customization, wherein firms alter product specifications to accommodate varying customer
demands and production volumes [1]. To remain competitive in this increasingly digital and volatile
environment, businesses must successfully forecast, adapt to, and cope with external changes in the
market [2]. Mass customization is essential in meeting the diversified and personalized requirements of
modern consumers, which include shorter product life cycles, customized product configurations, and
high production flexibility. The symbiotic relationship between mass customization and Industry 4.0
manifests in a transformative impact on assembly line dynamics within the manufacturing domain.
Mass customization, characterized by the tailored production of goods to meet individualized customer
demands, converges with Industry 4.0 encompassing digital technologies such as the Internet of Things,
artificial intelligence, and automation [3]. This convergence substantiates a paradigm shift in assembly
line processes. The assembly line, infused with Industry 4.0 technologies, gains unparalleled flexibility
and adaptability. Swift reconfiguration capabilities enable seamless accommodation of diverse product
variations without compromising efficiency. The integration of big data analytic empowers data-driven
decision-making, facilitating optimization and continual improvement across assembly line stages [4].

Real-time monitoring and control mechanisms, facilitated by IoT devices, mitigate errors and ele-
vate overall operational efficiency. The impact of Industry 4.0 and mass customization on the assembly
line is characterized by a dynamic re-balancing act [5].
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Achieving and maintaining the balance amidst the evolving landscape of customization, data-driven
insights, human-machine collaboration, and supply chain intricacies emerges as a central challenge and
opportunity in the contemporary manufacturing paradigm [6].

2. State of art

2.1. Assembly line balancing

Assembly lines are one of the most important industrial manufacturing implementations. In today
competitive globe, assembly lines can handle the massive expansion in customer expectations and
product range for the production sector [7]. Assembly lines are flow-focused production processes,
that manufacturers use them for producing large numbers of items. The components of products are
assembled using material handling equipment such as conveyor belts [8]. Tasks must be allotted to a
group of sequentially linked stations while taking precedence connections into consideration. Different
performance metrics are taken into account such as cycle duration and station count in the assembly
line balance problem (ALBP) [9]. The Assembly Line Balancing Problem (ALBP) is a large family
of problems that investigates the optimum approach to distribute tasks to workstations in order to
optimize an efficiency criterion. These assembly lines are straight (conventional) and U-shaped (U-
type) [10]. The primary challenge lies in maintaining the stability of an assembly lines balance, which
is often compromised due to the dynamic nature of factors affecting the balancing process, such as
the implementation of mass customization techniques [11]. In the scientific literature, researchers have
extensively investigated the parameters that contribute to balancing variability in various systems [12–
14]. These parameters, which directly influence the balancing status, have been classified into two
distinct set of parameters: Yi and Xij in this paper. Class Yi represents the parameters that directly
cause variability, while Class Xij corresponds to the root parameters that decompose the parameters
Yi, further elucidating the underlying factors affecting balancing. To provide a visual representation
of the parameters and their relationship with balancing, Figure 1 has been included. This figure
presents a comprehensive compilation of the different parameters mentioned in the scientific literature,
categorizing them based on their direct link with balancing. By organizing these parameters into
distinct classes, researchers can gain a better understanding of the factors contributing to balancing
variability and explore potential avenues for optimization and control.

Balancing

Line capacity Customer
request

Product
specification

Efficiency
Type of

operation
Type of

assembly line
Feed line
variability

Cost Way of doing

Available
capacity

Cycle time

Mass
customization

OEE
Manual

operation
U-shaped

line

Feed line
variability Cost Way of doing

Capacity
used

Takt time
Unused
capacity

Automated
operation

Two-sided
line

Rated
capacity

Average
production
cycle time

Simple line

Mixed model
line

Fig. 1. Parameters impacting the balance of assembly line.
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2.2. Principal component analysis (PCA)

In today competitive industrial landscape, manufacturers strive to optimize their processes, enhance
product quality, and improve overall operational efficiency. Principal Component Analysis (PCA) has
emerged as a powerful tool for analyzing and interpreting multivariate data, making it particularly
relevant in the industrial domain. PCA is a statistical technique used for dimensionality reduction
and feature extraction. It aims to transform a high-dimensional dataset into a lower-dimensional space
while retaining the maximum amount of information. By capturing the most significant variations
within the data, PCA helps to identify underlying patterns, correlations, and influential factors that
may not be apparent in the original dataset [15]. In the industrial context, PCA offers valuable insights
for various applications, ranging from quality control and fault detection to process optimization and
product design (see Table 1).

Table 1. Application of PCA in production lines.

Applications of PCA in Manu-
facturing Assembly Lines

Use case and problematics treated

Quality Control and Fault Detec-
tion

Use of PCA for anomaly detection and process monitoring

Real-time quality assessment and decision-making
Process Optimization and Per-
formance Improvement

PCA-based analysis of process variables and key performance in-
dicators
Identification of influential factors and optimization targets
Statistical modeling and prediction of manufacturing performance

Product Design and Develop-
ment

PCA for feature selection and dimension reduction in product
design
Identification of critical design parameters and their impact on
performance
Evaluation and optimization of product configurations

Assembly lines must be adaptable, effective, and capable of handling a wide range of commodities
and variations. To do this, it is critical to determine the important parameters that have a substantial
influence on productivity before implementing new balancing in assembly lines [16]. This may include
characteristics such as operator skill levels [17], feeder line variability [18], and other parameters that
might impact manufacturing line balancing variability. The primary objective of this research is to build
a 3D matrix representation to develop a comprehensive of the link between the balancing parameter
and the other parameters. The next step is to examine the interrelationships among parameters
to comprehend how changes in specific parameters can affect the balance of an assembly line. By
conducting statistical methods Principal Component Analysis (PCA), we seek to identify the key
parameters that exert the most significant influence on assembly line balance. This knowledge can
prove instrumental in determining which parameters require careful monitoring and control to ensure
a stable production process [19]. Furthermore, the findings from this study can offer valuable insights
into the design and optimization of assembly lines, potentially leading to enhanced efficiency and
productivity. The rest of this paper is organized as follows. Section 2 displays the proposed solution
to the unpredictability of assembly line balance. Section 3 includes a pilot study to determine the
practicality of the proposed technique. Section 4 summarizes the findings and suggests future research
subjects.

3. Methodology

3.1. 3D Matrix representation

To better understand the unpredictable nature of Y balancing parameters, we note:

— Y represent Efficiency of Balancing.
— Yi represents parameters that cause variability of the general parameter Y .
— Y = F (Yi): Y can be expressed as a function of Yi.
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The objective is to build a representation to identify the sources of variability in the balancing. To do
this, we can use the relation Y represent efficiency of balancing of a production line. The fluctuation of
the balancing parameter Y is due to several parameters Yi, where Yi denotes the source that influence
the variability of the general parameter Y . So, we have proposed a representation that demonstrates
the relationship between Y (efficiency of balancing) and Yi (the variables that cause the fluctuation of
the parameter Y ). We observe:

— Y represent the general parameter of balancing.
— Yi is the set of variables that affect Y where i ∈ [1, n].

Table 2. Application of PCA in production lines.

Y Y1 Y2 Y3 . . . Yn

Table 3. Application of PCA in production lines.

Y Y1 Y2 Y3 . . . Yn

X11 X21 X31 .
X12 X22 X32 .
X13 X23 X33 .

. . . .

. . . .

. . . .

. . . .

. . . .
X1j X2j X3j Xnm

The following example illustrates the re-
lationship between the parameter Yi and the
general parameter of balancing Y , we suppose
that: Y = efficiency of balancing and Y1 =
Takt time. The next step consists to define
the parameter Xij , such that Xij are the root
parameters that compose each parameter Yi,
where i ∈ [1, n] and j ∈ [1,m]. So that, the
variability of Xij causes the variability of the
general parameter Y . Now, we are able to con-
struct a simple representation using the param-
eter Xij as follow:

— Y = efficiency of balancing.
— Y1 = Takt time.
— X11 = Customer request.

Let us consider Vijk, (i ∈ [1, n], j ∈ [1,m] and k ∈ [1, t]) that represents the possible values for
the parameter Vij. To summarize, in below the parameters used in the 3D matrix representation:
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Fig. 2. 3D Matrix representation.

— Y = Efficiency of balancing.
— Yi = Parameters that cause variability for

the general parameter Y where i ∈ [1, n].
— Xij = the root parameters that decompose

the parameters Yi where and j ∈ [1,m].
— Vijk = represents the possible values for the

sub parameters Xij where i ∈ [1, n], j ∈

[1,m] and k ∈ [1, t].

3.2. Principal component analysis (PCA)

The utilization of Principal Component Analysis (PCA) enables the identification of parameters with
high variability that impact assembly line balancing [20]. PCA is a statistical technique that reduces
the dimensionality of data while retaining essential information. In the context of our study on as-
sembly line balancing, PCA can be applied to determine the parameters that contribute the most to
the observed variance of the efficiency of balancing Y . By employing PCA, we can extract principal
components from the 3D matrix representation. By examining the loadings or weights assigned to
each variable on the different principal components, we can identify the parameters that exhibit high
variability and have a significant impact on assembly line balancing [21]. This allows us to concentrate
efforts on monitoring and controlling these parameters to maintain a stable balance throughout the
production process. The application of Principal Component Analysis (PCA) facilitates the identifi-
cation of parameters with high variability that have a significant impact on assembly line balancing.
This approach provides an effective method for determining the key factors to monitor and control in
order to maintain a balanced and optimized assembly line.
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Fig. 3. Dynamic balancing procedure.

The balancing procedure delineates a structured sequence of actions for the seamless integration of
the proposed approach aimed at efficiently realigning the production line. This methodology offers a
conventional set of instructions for the operationalization of line balancing, concurrently streamlining
the process through the utilization of a 3D matrix and graphical representations employing MATLAB.
The primary objective is to establish a standardized protocol for the optimization of assembly line
balancing through the employment of this procedural framework.

4. Application

4.1. Assembly line balancing

In accordance with the established methodology, we shall now apply it to an industrial case within the
automotive sector. Initially, we have collated a comprehensive database comprising information that
is specific to the manufacturing line employed. This assembly line consists of a total of 29 manual
stations, as illustrated in Figure 4 below.

LayoutWorker

29 28 25 23 21

22242627

18 16 13 11 8 6 4 2

13579101214151719

Fig. 4. Assembly line.

Balancing an assembly line is a crucial process to maximize production and minimize costs. The
key steps to balancing an assembly line are as follows for more information [14, 15]:

— Data collection: All relevant data about the assembly line, including cycle times, processing times,
number of operators, and downtime, must be collected.

— Identifying bottlenecks: Using the collected data, bottlenecks in the line, i.e., steps in the line where
the flow is limited, must be identified.

— Determining desired production rate: By determining the desired production rate, the necessary
cycle time for each step in the line can be calculated.

— Balancing the line: Using the calculated cycle time for each step in the line, the line can be balanced
by adjusting operations and redistributing operators to eliminate bottlenecks.

— Verifying results: It is crucial to verify the results of the line balancing to ensure production goals
are met. If adjustments are necessary, they must be made to maintain line balance.

— Monitoring and improving: Regular monitoring of line performance is essential to detect potential
problems and make improvements to maintain optimal production.
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Our chrono analysis and variability study revealed that some stations were overburdened, leading
to obstructions in the assembly process. Therefore, balancing the assembly line becomes necessary.
Figure 5 below provides a visual representation of this balance.

Workstation

T
im

e
 (

s
)

Fig. 5. Variability graph before balancing.

Through the use of one of the available balancing algorithms, as reported in the references [22–24],
we have implemented the largest candidate rule algorithm to reallocate tasks and operations among
each workstation, aiming to balance the assembly line. Following the application of the algorithm, we
have analyzed the variability graph of the workstations and concluded that the line is now balanced,
as all workstations exhibit an equivalent workload, as depicted in the figure below. By using the
formula (1) below, we calculated the balancing efficiency indicator to properly measure the quality of
balancing used:

Yb = Twc/(m · Ts). (1)

We note:

— Yb: Balancing efficiency indicator;
— Twc: Work content time;
— m: number of workstations;
— Ts: the duration of the slowest station.

After implementing the largest candidate rule algorithm [19], we found that our line is well-balanced,
with a calculated balancing efficiency indicator of 97%. Drawing from the assembly lines variability
graph, it is discernible that the line is deemed balanced, given that each stations workload appears to
be equitably distributed.
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Fig. 6. Variability graph after balancing.

4.2. 3D Matrix representation

We will apply the methodology described in the preceding section to an industrial situation in the
automotive industry. First, we have assembled a database with details particular to the manufacturing
line in use. In fact, this corporation employs an assembly line with 29 manual stations [24]. Database
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used contains a set of parameters, or Yi, that are automatically taken into account while piloting the
production line. Parameter Yi and Xij : Yi: Efficiency

— X11: Cadence: Number of conforming bundles made per time.
— X12: Range time: fixed index which expresses the duration of a cycle of assembly until the final

control;
— X13: Staff: number of staff present;
— X14: Working hours;
— Y2: The time allocated to manufacture a beam;
— X21: Shift time bottleneck;
— X22: Shift time;
— Y3: Takt time:
— X31: Production time;
— X32: Daily demand;
— Y4: Product specification:
— X41: Routing time;
— X42: LAD frequency (product rotation frequency).
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Fig. 7. 3D Matrix representation.

4.3. Principal component analysis (PCA)

The application of the statistical method (PCA) with use of Matlab tool in this case, including the
results found. The relation between the parameters Yi was evaluated as shown in Figure 8.

The relative contributions of the variables are as follows: Y1 – 66.5732%, Y2 – 32.9541%, Y3 –
0.47268%, Y4 – 0%.

The analysis reveals that Y4 has an extremely negligible contribution of 3.214% to the observed vari-
ability, indicating that it has virtually no impact on the balance of the assembly line. Y3 demonstrates
a modest contribution of 0.47268%, suggesting a minor influence on the overall balance. However,
Y2 exhibits a notable contribution of 32.9541%, indicating its significant effect on the assembly lines
balance. Y1 emerges as the most influential factor, accounting for 66.5732% of the observed variability,
thus playing a critical role in determining the overall balance. These results emphasize the importance
of closely monitoring and controlling Y1 to maintain a stable and optimized assembly line. Y2 should
also be considered as it significantly impacts the balance and warrants attention in the optimization
process. In contrast, Y3 and Y4 can be deemed less critical in terms of their contributions. In order
to determine the root parameter causing variability in Y1, which subsequently impacts the balancing
indicator, we now proceed to examine the sub-parameters of Y1. The analysis of the sub-parameters
aims to identify the primary factor responsible for the observed variability in Y1. By investigating the
relationship between the sub-parameters of Y1 and their impact on Y1’s variability, we can uncover the
root parameter that influences the balancing indicator.

The relative contributions of the variables are as follows: X11 – 99.9912%, X12 – 0.0087739%, X13

– 0%, Y14 – 0%.
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Fig. 9. PCA analysis of the parameters X1j .

The results indicate that X13 and X14 have no significant contribution to the observed variability.
X12 demonstrates a minimal contribution of 0.0087739%. However, X11 stands out as the dominant
factor, accounting for 99.9912% of the observed variability. These findings suggest that X11 plays a
crucial role in influencing the overall balance and performance of the system under study. It is essential
to closely monitor and control X11 to maintain a stable and optimized assembly line.

4.4. Results interpretation

The results shown in the application section gives us a clear visibility of parameters impacting as-
sembly line balancing, and therefore causing variability in balancing, hence dynamic balancing. The
primary objective of employing Principal Component Analysis (PCA) is to reduce the dimensionality
of a database while elucidating the relationships between parameters Yi and Xij through linear combi-
nations of the original variables for each principal component. This analysis also provides insights into
the relative contributions of the variables, as indicated by the proportion of variance explained by each
parameter. From the PCA results, we can infer the correlations among the parameters and identify
those Y1 and X11 parameters with substantial variability that significantly influence the balance of the
assembly line. To assess the implications of the outcomes derived from the PCA method, we conducted
a parameter variation analysis on those exhibiting notable variability, as depicted in the subsequent
figure.
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Fig. 10. Variability graph after varying X11.

The variability chart depicted in Figure reveals the conspicuous existence of five prominent bottle-
necks located at specific workstations within the analyzed assembly line. These bottlenecks have been
precisely identified as Workstations 2, 6, 11, 19, and 22. The exploration of parameter variability was
conducted in accordance with the PCA X11 methodology.

5. Conclusion and future work

In this paper, we studied the variability of parameters that impact the balancing of an assembly line.
In order to ensure dynamic balancing, assembly lines need to be adaptable and responsive to changing
control settings, particularly with the increasing demand for customized products. To achieve this, it
is essential to identify the critical elements with high variability that directly influence the balance of
the assembly line using statistical method PCA with interpretation in MATLAB tool. These elements
play a significant role in maintaining balanced variability. However, if not appropriately controlled,
they can lead to instability in the balance.
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Статистичний метод iз застосуванням аналiзу основних
компонентiв для визначення параметрiв високої варiабельностi,

що впливають на балансування складальної лiнiї

Хiлалi Ю.1,2, Зеграрi М.1, Алфатi Н.3, Чафiк С.2, Табаа М.2

1Лабораторiя складних кiберфiзичних систем (LCCPS), ENSAM Касабланка,
Унiверситет Хасана 2, Марокко

2Багатодисциплiнарна лабораторiя дослiджень та iнновацiй (LPRI), EMSI Касабланка, Марокко
3Лабораторiя iнтелектуальних систем i додаткiв (LSIA), EMSI Танжер, Марокко

Сучаснi складальнi лiнiї стикаються з численними проблемами, коли справа стосуєть-
ся задоволення очiкувань клiєнтiв. Проблеми, якi обговорювалися, включають пi-
двищення вимог до персоналiзацiї, пiдтримку стандартiв якостi, управлiння часом
виконання робiт, вирiшення проблем сталого розвитку та ефективне використання
передових технологiй. Це ставить пiд сумнiв ефективнiсть складальних лiнiй i ре-
зультативнiсть, iншими словами, балансування лiнiї. Це дослiдження спрямоване на
виявлення основних компонентiв, якi суттєво впливають на збалансованiсть скла-
дальних лiнiй. Для досягнення цiєї мети пропонується новий пiдхiд iз використанням
3D-матричної iнтерпретацiї та статистичного методу, аналiзу головних компонентiв
(PCA). Дослiдження використовує iнструмент MATLAB для аналiзу взаємодiї мiж
рiзними параметрами та виявлення факторiв, якi сильно змiнюються, що вплива-
ють на баланс складальної лiнiї. Використовуючи цю методологiю, дослiдження має
на метi надати цiнну iнформацiю щодо визначення параметрiв конвеєрного балансу-
вання та пiдвищення загальної ефективностi роботи. У результатi цей пiдхiд виявив
значний вплив змiни параметрiв пiлотування на балансування складальної лiнiї. Цей
результат пiдкреслює важливiсть динамiчного балансування складальної лiнiї для
досягнення оптимальної продуктивностi.

Ключовi слова: 3D матриця; аналiз головних компонентiв; динамiчне балансу-
вання; висока варiабельнiсть параметрiв.

Mathematical Modeling and Computing, Vol. 11, No. 3, pp. 663–673 (2024)


