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Image restoration is a critical process aimed at recovering degraded images, often impacted
by factors including motion blur, sensor blurring, defocused photography, optical aberra-
tions, atmospheric distortions, and noise-induced blur. The inherent challenge lies in the
typical scenario where both the original image and the blur kernel (Point Spread Function,
PSF) are unknown. This restorative process finds applications in various fields, including
sensing, medical imaging, astronomy, remote sensing, and criminal investigations. This
paper introduces an innovative approach to blind image deconvolution based on Nash game
theory. Our focus is placed on restoring linearly corrupted images without processing ex-
plicit knowledge of the original image or the blur kernel (PSF). The proposed method
formulates blind deconvolution as a two-player static game, with one player dedicated to
image deblurring and the other focused on estimating the PSF. The optimal solution is
characterized as Nash equilibrium, resulting in effective image restoration. Moreover, we
present an enhanced game formulation that incorporates fractional-order derivatives. This
unique extension has the potential to improve image restoration accuracy and resilience,
leading to breakthroughs in blind image deconvolution and practical applications.
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1. Introduction

Image processing assumes a crucial role across diverse fields, and at its core lies the essential task
of image restoration [1–3]. This encompasses a spectrum of techniques dedicated to enhancing the
quality of degraded or blurred digital images by recovering their latent or pristine forms, even when
confronted with unknown factors such as the point spread function (PSF) and the original image.
These degradations can originate from a variety of sources, including sensor and motion blur, defocused
camera settings, or atmospheric distortions.

In specific applications, the blurring process lacks a well-defined description and necessitates re-
construction alongside the image. In these scenarios, terms like deblurring, deconvolution, or image
restoration can be used interchangeably to convey the objective of restoring clarity and fidelity to the
visual content.

We model the blurred image b(x, y) as

b(x, y) = [κ⊛ v](x, y) + η(x, y), (1)

where b represents the observed (blurry and noisy) image, κ is the point spread function (PSF), ⊛
denotes the operation of deconvolution, v represents the sharp unknown image. Moreover, η denotes
an unspecified form of noise introduced into the blurred image.

Given the ill-posed nature of the problem at hand, it is pertinent to note that numerous regularized
image restoration methods, taking advantages of previous research, have been extensively developed
to mitigate these challenges. These methods can be outlined as follows:

min
v
ψ(v) +

α

2
‖κ⊛ v − b‖22, (2)
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where:

• the fidelity term ‖κ ⊛ v − b‖22 measures, in an appropriate sense, the distance between the data b
and its reconstruction v;

• the regularization term ψ(v) plays a significant role in the reconstruction process by incorporating
a priori knowledge about the image being reconstructed. It involves imposing regularity on it. This
is typically done by incorporating some norms of the image gradient in imaging application. In the
case of denoising, the regularization term smooths out the noise in the measured image b;

• the weighting parameter α > 0 balances the effect of regularization against the fitting of the data.
Formula (2) is a general formula for image restoration.

Prominent regularization models encompass Tikhonov regularization, l1-norm, and TV regulariza-
tion. Utilizing the total variation regularization method as described in [4], the authors have introduced
a blind deconvolution technique for estimating both the Point Spread Function (PSF) and the latent
image. This estimation is accomplished through the utilization of a shock filter and the creation of
a gradient reliability map. Furthermore, it is worth noting that numerous other works in this field
have also harnessed blind deconvolution with total variation regularization like [5–7], demonstrating
its effectiveness and versatility.

Osher, Rudin and Fatemi [8], suggested to use total variation regularization, instead of the L2 one,
which leads to the following problem:

min
v
J(v) :=

1

2
‖κ⊛ v − b‖2L2(κ) + α

∫

Ω
|∇v| dx. (3)

A different method to addressing the blind image deconvolution problem has been presented by
Chan and Wong in their paper [9], which involves utilizing the Total Variation (TV) norm instead of
H1 one:

min
v,κ

J(v, κ) :=
1

2
‖κ ∗ v − b‖2L2(Ω) + α1

∫

Ω
|∇v| dx+ α2

∫

Ω
|∇κ| dx. (4)

In this context, the positive parameters α1 and α2 quantify the balance between achieving a satis-
factory fit and ensuring the smoothness of both the solution v and κ, where the total variation TV is
defined as

TV(u) := sup

{
∫

Ω
udivϕdx | ϕ ∈ C1

0 and |ϕ|L∞(Ω) 6 1

}

. (5)

Recent research highlights the significant impact of game theory on image processing tasks. Sem-
mane et al. demonstrated that integrating Nash game theory with machine learning techniques greatly
enhances image retrieval performance, achieving more accurate and efficient results [10]. Similarly,
Salah and Moussaid applied Nash game theory within machine learning frameworks for similar im-
age retrieval, showing how game-theoretic approaches can effectively optimize retrieval processes [11].
Additionally, the concept of Nash equilibrium has been successfully employed across various image re-
trieval applications, further proving its effectiveness in improving retrieval outcomes and demonstrating
its versatility in the field [12].

Inspired by the last minimization problem (4), another blind deconvolution technique is introduced,
solved in Nash game framework. We split the initial optimization variable into two strategies, namely,
deblurring and PSF. Subsequently, we formulate a two-player static game of complete information,
presenting the following optimization problem:

(P1):











Jv(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) + α

∫

Ω
|Dv(x)| dx,

Jκ(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) + (1− α)

∫

Ω
|Dκ(x)| dx,

(6)

where α = 2.10−6. This problem is solved in the framework of Game theory and the solution is defined
as Nash equilibrium.

Expanding upon the problem (6), Meskine et al. [13] addressed a generalized form of blind decon-
volution problem through the lens of game theory. Specifically, they identified the optimal image and
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PSF estimation as a Nash equilibrium. Their approach entailed the minimization of two functionals:

(P2):











Jv(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) +

∫

Ω
α(x)|Dv(x)| dx,

Jκ(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) +

∫

Ω
(1− α(x))|Dκ(x)| dx.

(7)

In the provided expression, α(x) is a function that adapts spatially and with respect to scale. This
adaptation is defined as following:

α(x) =
1

1 + λ|∇Gσ ⊛ b|2
,

where Gσ(x) = 1
2πσ2 exp

(

− |x|2

2σ2

)

represent the Gaussian filter with parameter σ and λ serves as a
threshold parameter.

Moreover, advancements in image restoration and contrast enhancement have been achieved
through sophisticated mathematical models. For instance, the nonlinear reaction-diffusion model,
when paired with a divide-and-conquer strategy, has demonstrated significant improvements in im-
age quality by effectively addressing noise and enhancing details [14]. Additionally, the Gray–Scott
model, enhanced with a novel Lattice Boltzmann method, has shown substantial effectiveness in both
image restoration and contrast enhancement, providing more refined and accurate results in these
applications [15].

Recently, there has been a noteworthy surge of interest in the fractional-order derivative within
the engineering field. Serving as a generalization of the traditional integer-order derivative, it has
been a focal point of inquiry by eminent mathematicians such as Euler, Hardy, Littlewood, and Li-
ouville [16]. Various formulations of fractional-order derivatives have been proposed, including the
Grünwald–Letnikov (G-L) fractional-order derivative, the Cauchy-integral fractional-order derivative
(or Riemann–Liouville (R-L) fractional-order derivative), the Caputo fractional-order derivative, and
the Fourier domain (frequency domain) definition [17], all of which are frequently employed.

However, the widespread recognition of the significance of fractional-order derivatives took a no-
table turn with the work of Mandelbrot, who introduced fractals and applied the R-L fractional-order
derivative to Brownian motion. Since then, this derivative has garnered substantial attention and found
applications in diverse fields. Currently, it has been widely utilized in areas such as noise detection and
estimation [18, 19], electromagnetic theory [20], wavelets, splines [21, 22], and various other domains.
This growing interest underscores the versatility and potential impact of fractional-order derivatives
across a spectrum of engineering applications.

Utilizing the framework of fractional-order derivatives and game theory, we propose in this paper,
a new hybrid model formulated as two-players static game. The first player aim is to recover a clean
and latent image v by integrating the fractional-order derivative in regularizing it, while the second
player has as a mission recovering the PSF function using the second strategy. Two players engage in
simultaneous actions until reaching an equilibrium, at each point each player has successfully minimized
their respective function, converging upon a shared pair of strategies.

Furthermore, we will employ the widely accepted Grünwald–Letnikov (G-L) fractional-order deriva-
tive for implementation. This derivative is acknowledged as an extension of the conventional finite
difference of integer orders. Additionally, in order to obtain optimal latent image and PSF function,
we solve a multidisciplinary optimization problem from Nash game theory perspective, where we define
the solution as Nash equilibrium.

2. Description of the proposed model: formulation of the Nash game

Motivated and inspired by Meskine et al. model, we present in this section a new model of image
blind deconvolution and solve it in the Nash game theory and fractional-order derivative variational
framework.
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2.1. The proposed model

As is common knowledge, the regularization term plays a significant role in the reconstruction process
of the image by incorporating a priori knowledge about the image being reconstructed. In the case of
denoising, the regularization term smooths out the noise in the measured image.

The fractional-order derivative at a specific point is influenced by the overall characteristics of the
entire function, making the fractional-order operator inherently possess non-local properties. This
advantageous feature proves beneficial in enhancing texture preservation performance.

The proposed model is defined by replacing the integer derivative of order 1 in the objective function
of the first player Jv whose aim is to recover the latent image from the degraded one in model (6),
with the fractional-order derivative in the regularization term. The suggested model is formulated as
following:

(P3):











Jv(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) +

∫

Ω
α(x)|Dβv(x)| dx,

Jκ(v, κ) =
1

2
‖κ⊛ v − b‖2L2(Ω) +

∫

Ω
(1− α(x))|Dκ(x)| dx.

(8)

In this context, α(x) is defined as a spatially and scale-adaptive function, as follows:

α(x) =
1

1 + λ|∇Gσ ⊛ b|2
,

where Gσ(x) = 1
2πσ2 exp

(

− |x|2

2σ2

)

represents the Gaussian filter with parameter σ, λ represents a
threshold parameter, and Dβ is the fractional-order derivative of order β ∈ {1.2, 1.4, 1.6, 1.8}.

Thus, a competitive game formulation emerges as the appropriate resolution of the problem at hand.
This work focuses on the challenge of splitting the optimization variable between two players [23]. In the
context of this multidisciplinary problem, our focus revolves around two rational players, each driven
by distinct objectives. The primary objective for the first player is to minimize the function Jv(v, κ),
and accordingly, the player adopts the strategy the image intensity, denoted as v. Simultaneously,
the second player strives to minimize Jκ(v, κ) as the secondary objective, selecting PSF as strategy
denoted as κ. It is noteworthy that the cost functions Jv(v, κ) and Jκ(v, κ) are contingent upon two
coupling domains. Consequently, the strategic choices made by one player exert an influence on the
decisions of the other.

The interaction unfolds as a concurrent game, wherein both players strive to minimize their respec-
tive objective functions. This dynamic setting persists until a solution is reached, at which point each
player achieves their goal with a shared pair of strategies.

2.2. Discretized representations of the fractional-order operators

In this subsection, we outline a discrete representation of the fractional-order derivative following the
Grünwald–Letnikov approach. This discretized form extends the methodology used for integral-order
derivatives through finite differences, offering enhanced convenience for numerical computations. We
have:

Dβv =
[

Dβ
xv,D

β
y v

]

, β > 0,

where Dβ
xv and D

β
y v denote the derivatives of the image v in the horizontal and vertical directions,

respectively, which can be discretized and approximated as

Dβ
xv =

M−1
∑

k=0

(−1)kCβ
k v(x− k, y), (9)

Dβ
y v =

M−1
∑

k=0

(−1)kCβ
k v(x, y − k). (10)

Here M > 3 is the number of neighboring pixels that are used to approximate the fractional-order
derivative at each pixel. The coefficients {Cβ

k }
K−1
k=0 are defined as

C
β
k =

Γ(β + 1)

Γ(k + 1)Γ(β + 1− k)
,
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the Gamma function denoted by Γ(·), is expressed as

Γ(β) =







∫ ∞

0
xβ−1dx if β > 0,

β−1Γ(β + 1) if β < 0.

Remark 1. Typically, the parameter M in the Grünwald–Letnikov fractional-order derivatives (9)
and (10) is selected to be greater than 3. Consequently, the fractional-order derivative involves a
broader set of pixels compared to the integer-order derivative, which only considers its two or four
neighboring pixels. As a result, the fractional-order derivative is inclined to be more advantageous for
preserving structures in image restoration.

Theorem 1. There exists a Nash equilibrium, i.e., a pair of strategies (v∗, κ∗) such that

v∗ solves min
v
Jv(v, κ

∗), (11)

κ∗ solves min
κ
Jκ(v

∗, κ). (12)

The existence of an optimal solution for our problem is assured with Theorem 1. The iterative
schemes for Jv(v, κ) and Jκ(v, κ) in (8), can be obtained by using their respective first order optimality
conditions in the following.

To develop numerical schemes for (11) and (12), we used their first order optimality conditions:

∂Jv

∂v
=
∂Jκ

∂κ
= 0.

Therefore, we formulate an alternating minimization algorithm wherein the function values
Jv(v

m, κm) and Jκ(v
m, κm) consistently decrease with each iteration (as denoted by m). To ensure the

derivation of a physically meaningful solution, Chan and Wong [9] imposed the following conditions
on v and κ:

∫

Ω
κ(x, y) dx dy = 1,

v(x, y), κ(x, y) > 0,

κ is centrosymmetric, i.e.

κ(x, y) = κ(−x,−y).

It is noteworthy to emphasize that while the original game under consideration is a non-cooperative
static game, computational demands necessitate the exploration of iterative solving methods. In this
context, the algorithmic version, Mutual Information Maximization for Input Clustering (MIMICS),
transforms the nature of the game into a partially cooperative one. This transformation occurs as two
players engage in the exchange of information regarding their respective partial optima throughout the
iterative process.

Nash equilibrium algorithm. Determining the optimal values for both v and κ simultaneously
is generally a challenging task. A frequently employed technique in such scenarios is alternating mini-
mization, where one variable is updated iteratively while the other is held constant. The computation
of the Nash equilibrium is achieved through the following decomposition algorithm.

Algorithm 1 Nash equilibrium Algorithm

Require: An initial strategy b(0) = (v(0), κ(0)). Set m = 0.
Step 1:
Phase 1: Determine a resolution to the problem min

v

Jv(v, κ
(m)) −→ v(m+1).

Phase 2: Determine a resolution to the problem min
κ

Jκ(v
(m), κ) −→ κ(m+1).

Step 2:
Iterate parallel phases 1 and 2, set b(m+1) = (v(m+1), κ(m+1)) until we achieve to convergence.
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3. Simulation experiments and results analysis

In this section we will test the validity of our approach numerically. To do so we will compare the
numerical results obtained by our algorithm using different values of the fractional-order β (β ∈
{1.2, 1.4, 1.6, 1.8}), with the models (6), (7) and the following predefined methods in MATLAB:
• deconvblind: Blind Deconvolution Algorithm (B-D Algorithm);
• deconvreg: Regularized Filter;
• deconvlucy: Lucy–Richardson Algorithm (L-R Algorithm).

To assess the effectiveness of the restoration outcomes, we employ qualitative measures, specifically
the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) [24], both
widely utilized in image processing. A superior-quality image is characterized by higher PSNR and
SSIM values.

In our experiment, we generated the blurred image through convolution with a 5 × 5 Gaussian
kernel of σ = 1. Additionally, we introduced Gaussian noise with a standard deviation of V = 0.0001
to the blurred image.

Moreover, we evaluate the performance of our approach using three color images depicted in Fig-
ures 1–3, chosen for simulation purposes. The quality of image restoration results is presented in
Tables 1 and 2, respectively.

Table 1. PSNR values for the different models using the test images (bold values indicate the best result).

Image β Our algorithm Meskine et al. (P1) (α = 2.10−6) deconvblind deconvreg deconvlucy
values PSNR PSNR PSNR PSNR PSNR PSNR

House

1.2 28.7398

27.6328 27.0856 21.7581 16.6177 21.9817
1.4 28.7446

1.6 28.7382
1.8 28.7364

Airplane

1.2 30.2901

28.8182 28.2710 23.7092 17.4771 24.1592
1.4 30.2812
1.6 30.2867
1.8 30.2937

Barbara

1.2 28.5052

27.3654 26.8182 25.3688 18.0746 26.18551.4 28.5040
1.6 28.5058

1.8 28.5041

Peppers

1.2 29.6390

28.1503 27.6031 25.1416 17.7496 25.79261.4 29.6388
1.6 29.6369
1.8 29.6381

Table 2. SSIM values for the different models using the test images (bold values indicate the best result).

Image
β Our algorithm Meskine et al. (P1) (α = 2.10−6) deconvblind deconvreg deconvlucy

values SSIM SSIM SSIM SSIM SSIM SSIM

House

1.2 0.9495

0.9429 0.9242 0.9126 0.5964 0.92111.4 0.9497

1.6 0.9495
1.8 0.9495

Airplane

1.2 0.9011

0.8531 0.8344 0.8858 0.3142 0.84321.4 0.9011
1.6 0.9011
1.8 0.9012

Barbara

1.2 0.8822

0.8712 0.8525 0.8640 0.5397 0.8835
1.4 0.8822
1.6 0.8823

1.8 0.8821

Peppers

1.2 0.9767

0.9689 0.9630 0.9639 0.7737 0.9676
1.4 0.9767
1.6 0.9766
1.8 0.9767

The experiments demonstrate that incorporating the fractional-order derivative in the regularization
term effectively mitigates the staircase effect, yielding more detailed structures. This improvement is
evident in Figures 1–4 when an appropriate order is chosen.

In our specific case, the model utilizing fractional-order derivatives yields superior results compared
to the Meskine et al. model and predefined methods in MATLAB.
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Fig. 1. Comparison of the proposed deconvolution model applied on a blurred House image, with different
existing methods: Meskine et al. model, Model (P1) (α = 2.10−6), Blind Deconvolution algorithm, Regularized

Filter algorithm and Lucy–Richardson algorithm.

Fig. 2. Comparison of the proposed deconvolution model applied on a blurred Airplane image, with different
existing methods: Meskine et al. model, Model (P1) (α = 2.10−6), Blind Deconvolution algorithm, Regularized

Filter algorithm and Lucy–Richardson algorithm.

The validity of our observations is substantiated by examining the PSNR and SSIM values in
Tables 1 and 2, respectively. The proposed model has always highest values compared with the other
approaches at each value of the derivatives order.

Meanwhile, in the first test the image House, we notice that the optimal order occurs at β = 1.4,
where test images have the highest PSNR and SSIM values. The second test performed on Airplane
image, we have the highest values at the order β = 1.6, while at the third test we have obtained the
highest values of PSNR and SSIM at the order β = 1.8 and last but not least, we achieved the highest
values at the order β = 1.2.
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Fig. 3. Comparison of the proposed deconvolution model applied on a blurred Barbara image, with different
existing methods: Meskine et al. model, Model (P1) (α = 2.10−6), Blind Deconvolution algorithm, Regularized

Filter algorithm and Lucy–Richardson algorithm.

Fig. 4. Comparison of the proposed deconvolution model applied on a blurred Peppers image, with different
existing methods: Meskine et al. model, Model (P1) (α = 2.10−6), Blind Deconvolution algorithm, Regularized

Filter algorithm and Lucy–Richardson algorithm.

4. Conclusion

In this paper, we have successfully introduced a variational model incorporating a fractional-order
derivative as a regularizer within the framework of game theory. The experimental outcomes, juxta-
posed with those of several relevant models, illustrate the superior performance of our proposed model.
Specifically, it demonstrates enhanced efficacy in mitigating the staircase effect during noise removal,
as evidenced by both visual and quantitative analyses. Evaluation metrics such as PSNR and SSIM
further validate the efficacy of the proposed model.
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До пiдходу iгрової стратегiї Неша до слiпої деконволюцiї
зображення: варiацiйна структура похiдної дробового порядку

Салах Ф.-Е.1, Муссаїд Н.1, Абасi А.1, Джадiр А.2

1LMCSA, FSTM, Унiверситет Хасана II Касабланки, Мохаммедiя, Марокко
2FSTG, Унiверситет Кадi Айяда, Марракеш, Марокко

Вiдновлення зображень — це критично важливий процес, спрямований на вiдновлен-
ня пошкоджених зображень, на якi часто впливають такi фактори, як розмиття вiд
руху, розмиття датчика, розфокусована фотографiя, оптичнi аберацiї, атмосфернi
спотворення та розмиття, спричинене шумом. Внутрiшня проблема полягає в типо-
вому сценарiї, коли невiдомi нi оригiнальне зображення, нi ядро розмиття (функцiя
розповсюдження точки, PSF). Цей вiдновлювальний процес знаходить застосування
в рiзних сферах, включаючи зондування, медичну вiзуалiзацiю, астрономiю, дистан-
цiйне зондування та кримiнальнi розслiдування. Ця стаття представляє iнновацiйний
пiдхiд до слiпої деконволюцiї зображення на основi теорiї iгор Неша. Наша увага зо-
середжена на вiдновленнi лiнiйно пошкоджених зображень без обробки явних знань
про вихiдне зображення чи ядро розмиття (PSF). Запропонований метод формулює
слiпу деконволюцiю як статичну гру для двох гравцiв, де один гравець займається ви-
даленням розмиття зображення, а iнший зосереджений на оцiнцi PSF. Оптимальний
розв’язок характеризується як рiвновага Неша, що призводить до ефективного вiд-
новлення зображення. Крiм того, представлено розширене формулювання гри, яка
включає похiднi дробового порядку. Це нове розширення має потенцiал для пiдви-
щення точностi та надiйностi вiдновлення зображень, сприяючи прогресу в областi
слiпої деконволюцiї зображень та її практичного застосування.
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