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Clustering Big Data, as a fundamental component in the processing and analysis of massive
datasets, holds crucial importance in addressing complex challenges inherent in handling
extensive data sets. Falling within the realm of unsupervised learning methods, the pri-
mary objective of clustering is to efficiently organize substantial datasets into homogeneous
clusters without relying on pre-existing labels. Our innovative approach seeks to optimize
this process by synergistically combining three techniques: the fuzzy C-Means (FCM)
methodology, the optimized encoder–decoder CNN model, and the bidirectional recur-
rent neural network (BiLSTM). This synergy represents a strategic convergence between
supervised and unsupervised paradigms. The introduction of BiLSTM is of significant
importance, leveraging its capability to sequentially process data from both sides using
LSTM cells. This bidirectional approach enhances the understanding of data sequences,
a crucial feature in the demanding context of Big Data clustering. Simultaneously, FCM
benefits from substantial improvement through the introduction of a function that cal-
culates the separation between the cluster center and the instance, thereby reinforcing
the precision of clustering. To optimize performance and reduce computation time, our
methodology advocates for the use of the Optimized Encoder–Decoder CNN model. This
refined architecture promotes more efficient extraction of data features, thereby enhancing
the intrinsic quality of clustering. The rigorous evaluation of our approach revolves around
specific data sources, namely fashion MNIST. Performance criteria such as accuracy, ad-
justed rand index (ARI), and normalized mutual information (NMI) convincingly attest
to the remarkable capability of our methodology. In comparative analyses, our approach
significantly outperforms existing models, demonstrating its effectiveness and relevance in
the complex domain of Big Data clustering.
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1. Introduction

The explosion of Big Data [1] has ushered in a transformative era in scientific research, characterized by
massive volumes of data, simultaneously offering unprecedented opportunities and complex challenges.
At the core of this evolution, clustering emerges as a crucial technique in the exploration and structuring
of these vast data sets. As an unsupervised analysis method, clustering reveals underlying structures,
freeing the exploration process from the constraint of pre-existing labels and paving the way for the
detection of complex and often nonlinear patterns. The clustering of Big Data [2] presents itself as an
adaptive and sophisticated response to the diversified needs of researchers, aiming to extract mean-
ingful knowledge from massive data sets without imposing pre-existing constraints. Falling within the
category of unsupervised learning methods, clustering aims to identify underlying structures within the
data, contributing to a profound understanding of the complex phenomena behind massive data. Our
innovative approach relies on a synergistic methodological convergence, establishing a strategic alliance
between three cutting-edge techniques, each bringing distinct and complementary characteristics. The
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first component of our method is the Fuzzy C-Means (FCM) [3–7] methodology, renowned for its abil-
ity to handle massive data sets by assigning fuzzy membership degrees to each data point in different
clusters. This fuzzy approach allows for a more flexible representation of relationships within the data,
adapting to the inherent complexity of voluminous data sets. Our innovative approach is based on
a synergistic methodological convergence, combining three advanced techniques: the Fuzzy C-Means
(FCM) [7] methodology, the Optimized Encoder-Decoder CNN model [8,9], and the Bidirectional Re-
current Neural Network (BiLSTM). This methodological fusion aims to leverage the unique advantages
of each approach to address specific challenges related to Big Data [2] clustering. In the context of our
innovative approach, we integrate the FCM methodology with the Optimized Encoder-Decoder CNN
model, a robust technique dedicated to processing structured information. The Encoder-Decoder CNN
model [10,11] excels in capturing complex and spatial features, providing an in-depth view of inherent
patterns in the data. This architecture, designed to efficiently process structured information, is par-
ticularly well-suited for the analysis of massive data. The meticulous optimization of this architecture
significantly enhances its ability to extract discriminative information from the data, thereby increas-
ing the overall accuracy of the clustering process. Indeed, the Encoder-Decoder CNN model [9, 12]
excels in representing and interpreting complex structures, which proves particularly beneficial in the
context of Big Data [8, 13, 14] where the variability and diversity of patterns can be substantial. By
improving the model’s ability to extract relevant and discriminative features, we aim to strengthen
the intrinsic quality of clustering, contributing to a better understanding of underlying structures and
a more precise interpretation of massive data. This synergy between the FCM methodology and the
Optimized Encoder-Decoder CNN model represents a complementary and powerful approach to ad-
dressing specific challenges in Big Data [14] analysis. The centerpiece of our approach lies in the use
of the Bidirectional Recurrent Neural Network (BiLSTM). Recurrent neural networks, and specifically
BiLSTM, stand out for their exceptional ability to model complex temporal sequences. In the context
of Big Data [14] clustering, this feature is crucial for detecting evolving trends over time, providing
an essential dynamic perspective on the inherent structure of the data. Recurrent neural networks are
designed to process sequential data while retaining internal memory, making them particularly suitable
for representing complex temporal dependencies. BiLSTM, in particular, extends this capability by
processing sequences in both directions through Long Short-Term Memory (LSTM) [15] cells. This
bidirectional approach allows for more comprehensive modeling of temporal relationships in the data,
which becomes essential in the context of Big Data clustering [14] where trends and temporal structures
can be extremely varied and complex. In the realm of Big Data clustering [14], the use of BiLSTM
adds significant value by enabling in-depth analysis of temporal sequences, facilitating the detection of
evolving structures. This provides a dynamic and nuanced perspective on how data evolves, which is
essential for understanding the inherent changes and variations in massive and complex data sets. By
integrating BiLSTM as a key component of our approach, we aim to fully exploit this unique capability
to enhance the relevance and quality of clustering in the demanding context of Big Data. The goal
of our new integrated approach is to address specific challenges associated with Big Data clustering.
By combining the flexibility of the FCM methodology, the feature-capturing ability of the Encoder-
Decoder CNN model, and the temporal sequence modeling of BiLSTM, our methodology aspires to
offer a robust and holistic solution for the analysis of massive data, thereby opening new perspectives
for research and innovation in the field. The rest of the essay is structured as follows: a discussion of
related works in the next section, a presentation of our methodology in Section 3, our model in Sec-
tion 3.2, an illustration of the results proposed, and a summary in Section 5, and finally a conclusion
in Section 6.

2. Related works

In this section, we review various existing strategies for data clustering. First, there is a clustering
method based on a dissimilarity matrix [16]. This approach transforms the dissimilarity matrix in a way
that highlights distinct groups by representing them as dark blocks along the diagonal. This method
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proves to be particularly effective in detecting halo-like structures in dark matter data, although it is
primarily suited for large datasets. In our in-depth exploration of current data classification strategies,
we highlight specific gaps within our domain and the inherent challenges of processing massive vol-
umes of data. Among existing methods, those based on anomaly identification are frequently employed,
but their real-time effectiveness often falls short, thereby exposing the system to potential intrusion
risks. Approaches such as threshold-based anomaly detection or traditional statistical models show
limitations, particularly in terms of responsiveness to the dynamics of Big Data [2, 17]. Our objec-
tive is to overcome these challenges by developing an innovative clustering methodology, judiciously
integrating techniques such as Fuzzy C-Means (FCM) [19], Optimized Encoder-Decoder CNN [20],
and Bidirectional Long Short-Term Memory (BiLSTM) [15]. This fusion aims to enable more precise
and efficient real-time detection, leveraging the complementary strengths of each component. Another
major challenge lies in the efficiency and speed of data classification systems, especially in the face
of massive datasets. Conventional methods often face bottlenecks due to the high volume of data.
In our research, we seek to address this challenge by adopting an innovative fusion approach that
capitalizes on the distinct features of each component (FCM, Optimized Encoder-Decoder CNN, and
BiLSTM) [16]. This holistic approach aims to significantly improve the speed and efficiency of our
clustering methodology for Big Data processing. The issue of missing data is another crucial limitation
highlighted in the literature [16]. In the context of our methodology, we focus on advanced techniques
to effectively handle missing data, ensuring the quality and reliability of clustering results. The fusion
of different approaches aims to create a robust and adaptive methodology that fully addresses this lim-
itation. We conduct a thorough comparison of these existing approaches with our fusion methodology,
highlighting the distinctive advantages and significant improvements that our approach brings in terms
of anomaly detection, processing speed, and handling of missing data [21]. Our research is commit-
ted to transcending the limits of conventional data clustering approaches, adapting proven methods
to specifically address the intrinsic challenges of Big Data processing [22]. We strive to present an
innovative methodology that exceeds standards in real-time analysis, efficiency, and classification of
massive data, aiming for a higher level of accuracy and reliability in the field of Big Data clustering.

3. Material and methods

3.1. The methodology

In this section, we delve into a detailed exploration of an innovative mechanism resulting from the
hybridization of the FCM method (Fuzzy C-Means) [18], an optimized CNN encoder–decoder, and
bidirectional convolutional neural networks (BiLSTM) to enhance the clustering process. The organi-
zation of this section into multiple parts aims to facilitate a thorough understanding of each component
of the mechanism. To commence, we undertake a thorough analysis of the overall functioning of Fuzzy
C-Means (FCM) [18], highlighting key elements and fundamental mechanisms that form the foundation
of our hybrid approach. This initial step is meticulously crafted to establish a robust groundwork, en-
abling the reader to grasp the underlying theoretical principles of FCM. In the following series, we will
introduce FCM-CNN-BiLSTM, a method created expressly to improve the clustering process’s perfor-
mance metrics. In this study, we explore how the optimized CNN encoder–decoder and bidirectional
convolutional neural networks are included in the overall mechanism to improve the precision and ef-
fectiveness of the clustering process. Toward the end of our analysis, we combine two sub-mechanisms
(FCM, or fuzzy C-means) and the hybrid FCM-CNN-BiLSTM technique smoothly. The result of this
transparent merger is an improved and united organization. This consolidation aims to demonstrate
the interoperability of the various parts and demonstrate how these complementing techniques when
thoughtfully combined can result in notable advancements in the field of data clustering. The param-
eterization function that computes the separation between the data instance and the cluster center
is then introduced. By facilitating an accurate assessment of the distance between data points and
cluster centers, this function is essential to the clustering process and helps achieve a more refined and
nuanced segmentation. From a practical standpoint, this fusion depends on the seamless integration
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of the FCM processes, which offer a fuzzy clustering approach, and the FCM-CNN-BiLSTM hybrid
approach, which leverages the benefits of both convolutional and bidirectional neural networks. By
combining the best features of each technique, this combination seeks to produce a stronger, more
effective strategy. Figure 1 provides a visual summary of our new hybridization method to accompany
this presentation. It gives a clear visual representation of the final overall strategy and graphically
depicts the interactions between the various process steps, emphasizing the excellent integration of
the parts. Using this visual aid, we hope to increase the reader’s understanding of how our hybrid
approach is structured and coherent.

3.2. The proposed model

Parameterization function

Fashion-
MNIST dataset Input Process:

FCM
algorithm

Input

Output

Process:
Optimazation of
feature extraction
by an Encoder-
Decoder CNN

Parameterization function

Adaptive learning

Input

Output

Process: temporal
dependencies using
a BiLSTM network

Parameterization function

Integration of
temporal

Optimized
representation of image
features degrees

Fuzzy
membership

Fig. 1. The proposed model.

4. Comprehensive exploration of the proposed model

Our new method consists of two phases. Data preprocessing is an important phase in both data analysis
and the machine learning process. Data preparation is a critical step, involving a variety of methods and
tasks applied to raw data to make them suitable for subsequent analysis, modeling, and interpretation.
Data normalization is scaling data to a common range, making it more suitable for machine learning
algorithms, in the context of the Fashion-MNIST dataset. Given a dataset X = {x1, x2, x3, . . . , xn}
consisting of n data points, where each xi represents an image in the dataset, and the pixel values of
the images typically range from 0 to 255. The normalize the pixel values to a common scale, you can
perform the following mathematical transformation:

x′i =
xi

max_pixel_value
.

The normalized pixel value of the i-th image is represented as x′i.
Let xi represents the original pixel value of the i-th image.
max_pixel_value is the maximum pixel value in the dataset, which is 255 for the Fashion-MNIST

dataset.
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This normalization process scales the pixel values to the range [0, 1]. After normalization, the
pixel values of the images are within this common range, which is often preferred for machine learning
models. This step can enhance the model’s convergence and performance, especially when using deep
learning [20] models like Optimized Encoder-Decoder CNN and BiLSTMs.

4.1. FCM (Fuzzy C-Means)

We have developed a strategy that combines Euclidean distance with FCM (Fuzzy C-Means), a novel
hybridization technique. A fuzzy clustering algorithm called FCM is used to group data according
to similarities. Concurrently utilizing Euclidean distance and FCM is a widely used method to assess
data point similarity. This method uses ordinary Euclidean geometry to calculate the distance between
two points. The membership values assigned to each cluster are determined by the Fuzzy C-Means
(FCM) algorithm, which takes into account the distances between each data point and the cluster
centroids [14]. When working with overlapping data, FCM has a big benefit because it can produce
reliable results. A data point may also be assigned to more than one cluster if needed. Some constraints,
meanwhile, must be taken into account, including the amount of time needed for computing, accuracy,
and the large number of iterations needed to reach convergence. Furthermore, Euclidean distance is
a frequent metric used in FCM, which may give the data points varying weights. The FCM learning
equation is utilized to update the membership degrees of data points in various clusters iteratively.
The sum of the weighted Euclidean distances between data points and cluster centers raised to the
power of the fuzziness parameter m is the fuzzy objective function, and its goal is to minimize it. The
following is the learning equation for FCM:

µi,j(t+ 1) =
1

∑e
k=1

(

dij
dik

)
2

m−1

,

where µi,j(t + 1) is the membership degree of data point i to cluster j at iteration t + 1, di,j is the
Euclidean distance between data point i and the center of cluster j, e is the total number of clusters,
m is the fuzziness parameter (m > 1), t represents the iteration number.

Consider the dataset X = {x1, x2, x3, . . . , xq} with the cluster set Y = {Y1, Y2, Y3, . . . , Yp} and the
membership W = {wkl | 1 6 k 6 q, 1 6 l 6 p}. This means that the membership set W is composed
of all elements wkl where k ranges from 1 to q and l ranges from 1 to p. These wkl elements represent
the membership degrees of each data point k to each cluster l; FCM can be formulated,

γ =

e
∑

k=1

p
∑

l=1

wo
kl‖xl − yk‖

2,

e
∑

l=1

wKL = 1, wKL > 0.

Therefore, optimizing the equation helps in updating the membership matrix as well as cluster centers,
as shown below:

yk =

∑p
l=1w

o
klxl

∑p
l=1wkl

.

Membership matrix:

wkl =
[

(1 + (ekl/γk))
−1/(o−1)

]−1
.

4.2. Optimized Encoder-Decoder CNN (Convolutional Neural Network)

In our study, we have incorporated a crucial element into our novel approach an encoder-decoder
based on an optimized Convolutional Neural Network (CNN). This deep learning architecture [20] is
commonly employed for tasks such as image segmentation and classification. The encoder–decoder
model consists of two fundamental parts: an encoder network that compresses input data into a latent
representation, and a decoder network that reconstructs the output from this representation. This
model unfolds in three distinct phases: Encoder phase: In the context of an optimized Convolutional
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Table 1. General fuzzy C-Means (FCM) algorithm.

Setp Description
Input Data normalization, max_pixel_value
Output cluster member and membership FCM vector that has been optimized
1 Initialization: Set the number of clusters and the cluster centers to random.
2 For each 3 to 6 until convergence or a maximum number of iterations is reached.
3 Update Cluster Centers: Recalculate cluster centers using the updated membership degrees:

yk =
∑p

l=1 wo
klxl∑p

l=1 wkl

4 For(k=1; k<e; k++) do yk =
∑p

l=1 wo
klxl∑p

l=1 wkl
while(l < p)

5 For(k=1; k<p; k++) For(l=1; l<p; l++) wkl =

[

(

1 + ekl

γk

)

−
1

o−1

]−1

6 End of for
7 End of for

Neural Network (CNN) encoder–decoder, the general Encoder phase manipulates input data to ex-
tract crucial features, thereby generating a condensed latent representation. This phase refrains from
delving into specific details, focusing on the fundamental transformation of data for further process-
ing. Decoder phase: within an optimized Convolutional Neural Network (CNN) encoder–decoder, the
general Decoder phase reconstructs the output from the condensed latent representation, avoiding a
detailed focus on specific aspects. Optimization Phase: the optimization stage in a Convolutional
Neural Network (CNN) encoder–decoder involves a specific set of procedures and techniques aimed at
enhancing network performance and efficiency. These methods encompass adjusting hyperparameters,
applying regularization techniques, utilizing optimization algorithms, and overall network architec-
ture design. All these approaches are implemented to improve the overall efficiency of the network.
The Fuzzy C-Means (FCM) module plays a crucial role as the first step in the model, generating
fuzzy membership degrees for each clothing class in the Fashion-MNIST dataset. This fuzzy approach
provides a more nuanced representation of the membership relations of images to different classes,
reflecting the complexity of shared features among clothing categories. The fuzzy membership degrees
generated by the FCM module are then integrated into the optimized CNN encoder–decoder. The
Encoder, utilizing convolutional layers, extracts significant features from input images while effectively
reducing dimensionality. This combination of convolution and pooling optimizes the feature extraction
process by capturing complex patterns and reducing redundant information. The layer in the Encoder
is crucial for representing the extracted features in a compressed manner, creating a dense and in-
formative representation. This layer serves as a transition point between feature extraction and the
reconstruction phase. The Decoder, composed of deconvolution layers, takes the representation at the
layer and reconstructs it into an image preserving essential features. The use of deconvolutions allows
the restoration of dimensionality while retaining important details. As illustrated in Figure 2, our
optimized Convolutional Neural Network (CNN) encoder–decoder model comprises two CNN layers.

Figure 2 illustrates the conceptual structure we have developed for this optimized neural network
model with a CNN encoder–decoder, specifically designed for the classification task. The encoder begins
with two convolutional layers (CNN), the first containing 64 filters and the second with 128 filters,
followed by max-pooling layers to reduce spatial dimensions. This process allows for the progressive
extraction of crucial features from the input data. The connection between the encoder and the decoder
is facilitated by a dense layer with 256 neurons and an activation function. This layer plays a crucial
role in linking the features extracted by the encoder to the decoding process. As for the decoder, it
starts with two additional convolutional layers, the first with 128 filters and an operation to increase
spatial dimensions, followed by another layer with 64 filters and a new operation. These decoding
operations aim to reconstruct spatial information from the features extracted by the encoder. Finally,
the layer of fuzzy membership degrees, located at the model’s output, is a dense layer with several
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Fig. 2. Our optimized Convolutional Neural Network (CNN) encoder–decoder.

neurons equivalent to the number of classes in the classification task. This layer uses an activation
function to generate normalized membership degrees, ranging from 0 to 1, for each class. The model
parameters, such as the loss function, optimizer with a learning rate of 0.001, batch size of 32, and
several epochs of 50, are chosen to facilitate model learning while avoiding overfitting. It is crucial to
note that these parameters can be adjusted based on the specific characteristics of the dataset and
task requirements. In summary, this structure aims to create a model capable of efficiently encoding
information, representing it concisely, and decoding it accurately for the classification task, while using
fuzzy membership degrees for a more nuanced representation of classes.

4.3. BiLSTM (Bidirectional Long Short-Term Memory)

Once the data had undergone preprocessing by the CNN encoder–decoder, we seamlessly integrated
the BiLSTM network. BiLSTM, being proficient in modeling sequential dependencies within the
data, operates bidirectionally, diligently scrutinizing both past and future sequences. Through the
incorporation of BiLSTM after the CNN encoder–decoder process, we ushered in a sequential analysis of
the extracted features, an indispensable step toward comprehending the underlying sequential patterns
within the data. A BiLSTM layer is an innovation in the field of recurrent neural networks, commonly
used in natural language processing (NLP) and sequence modeling. It builds upon the foundation of
LSTM (Long Short-Term Memory) by introducing the capability to capture contextual information
from both the past and the future of a sequence. This bidirectional approach allows the model to
better grasp the overall context of the sequence because it processes data in both directions, from the
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Algorithm 1 Optimized Encoder-Decoder CNN algorithm

1: Step 0: FCM Clustering with Euclidean Distance
2: Calculate centroids Y = {y1, y2, . . . , yK} using the objective function:

γ =

e
∑

k=1

p
∑

l=1

wo
kl‖xl − yk‖

2 (1)

3: Step 1: Encoder Training Loop
4: Initialize cluster assignments for all images xi

5: Initialize the CNN architecture
6: for each training iteration t do
7: for each input image xi do
8: Select xi for the current iteration t
9: Calculate CNN features using the encoder part of CNN

10: Update cluster assignment E(xi) based on FCM-like update rules
11: Perform backpropagation and update CNN weights using the assigned cluster as the target
12: Move to the next training iteration t+ 1
13: Repeat the training loop for a specified number of iterations or until convergence criteria are met
14: Step 2: Decoder Network for Image Reconstruction
15: Input:

H = enc(Z)





M1...MT
∑

l(0...lp)

d2k1...k0 + Y
(1)
βk1...ko





16: Utilizing Transposed Convolutional Layers
17: Training Neural Networks:

Y = Y − φ

(

1

o

o
∑

k=1

φY + δdk

)

(2)

18: Understanding Backpropagation:

∆d = d− φ

(

1

o

o
∑

k=1

δdk

)

19: Forward propagation computes input and output values:

ρ
(4)
k =

(

k1...ko
∑

i=1

ikl
(

z
(3)
k − ak

)

)

· h′
(

b
(4)
k

)

ρ
(3)
m1...mT =

(

k1...ko
∑

i=1

ikl
(

Y
(3)
kl1...mT − ρ

(4)
k

)

)

· h′
(

b
(4)
k

)

20: Compute output using Eq. (2)

∆d = d− φ

(

1

o

o
∑

k=1

δdk

)

21: Update parameters the Y
Y = Y − α∆Y

22: Output: Repeat for Each Cluster Eq. (1)

forward to the backward and vice versa, for each time step. The outputs from both directions are
then combined to provide a single output for each time step. BiLSTM layers are particularly valuable
for tasks such as sequence classification, sequence labeling, segmentation, and machine translation, as
they enhance the model’s ability to capture context more comprehensively.
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Algorithm 2 Bidirectional LSTM Forward and backward pass

1: Data: Input sequence of length T , LSTM parameters Wf , Wi, WC , Wo, bf , bi, bc, bo
2: Result: Hidden states ht and cell states Ct

3: Initialization:
Initialize input sequence of length T
Initialize LSTM_forward with parameters Wf , bf
Initialize LSTM_backward with parameters W b

f , bbf
Initialize hidden state hb

T for backward pass
4: Forward Pass:
5: for t = 1 to T do
6: ft = σ

(

Wf · [ht−1, xt] + bf
)

// Forget gate

7: it = σ
(

Wi · [ht−1, xt] + bi
)

// Input gate

8: Ct = tanh
(

WC · [ht−1, xt] + bc
)

// Cell state update
9: Ct = ft · Ct−1 + it · Ct // Updated cell state

10: ot = σ
(

Wo · [ht−1, xt] + bo
)

// Output gate
11: ht = ot · tanh(Ct) //Updated hidden state
12: Backward Pass:
13: for t = T − 1 to 1 do
14: f b

t = σ
(

W b
f · [hb

t+1, xt] + bbf
)

// Forget gate backward

15: ibt = σ
(

W b
i · [hb

t+1, xt] + bbi
)

// Input gate backward

16: Cb
t = tanh

(

W b
C · [hb

t+1, xt] + bbc
)

// Cell state update backward
17: Cb

t = f b
t · Cb

t+1 + ibt · C
b
t // Updated cell state backward

18: obt = σ
(

W b
o · [hb

t+1, xt] + bbo
)

// Output gate backward
19: hb

t = obt · tanh(C
b
t ) // Updated hidden state backward

5. Performance evaluation

In this section, the focus is on evaluating our new proposed method using datasets specifically dedicated
to clustering. A comprehensive comparative analysis is conducted to assess the performance of the
mechanism compared to other existing approaches or methods. The aim is to gain precise insights into
the effectiveness and relevance of our new method in the context of real data clustering. The results
of this evaluation will provide crucial information for assessing the robustness and applicability of our
new method in real-world scenarios of data clustering.

5.1. Dataset details

Using the Fashion-MNIST dataset, we chose to evaluate the efficacy of our approach [1, 16]. Ten
thousand test photos and sixty thousand training images make up this dataset. These pictures are
all 28 × 28 pixels in size, or 784 pixels in total, represented in grayscale. It includes products like t-
shirts, pants, sweaters, skirts, coats, sandals, shirts, sneakers, handbags, and ankle boots, among other
clothing that falls into ten different categories. The Fashion-MNIST dataset is frequently used by
academics and industry professionals to assess how well machine learning algorithms work, especially
when it comes to picture classification. To handle the growing diversity and complexity of real-world
applications, this database is essential. It is also commonly used in computer vision and machine
learning research, and it is readily accessible through well-known machine learning libraries. We
therefore chose this dataset to evaluate our novel method, which integrates learning, data extraction
via clustering approaches, and, at the end, classification. For each training period, the performance
results for an optimization model with an encoder and a decoder using a first convolutional layer
(CNN) are displayed in Table 2 and Figure 3. The “loss” column displays the model’s training loss,
which quantifies the degree to which the model’s predictions deviate from the actual values. The main
goal is to increase the accuracy of the model by minimizing this loss throughout epochs. By expressing
the percentage of accurate predictions relative to the total number of samples, the “accuracy” column
sheds light on the model’s performance on the training set. The validation set’s corresponding metrics
are shown in parallel in the “val-accuracy” and “val-loss” columns. To prevent overfitting of the training
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data, a low validation loss indicates that the model generalizes well. The model’s capacity to produce
accurate predictions on fresh data is confirmed by an increase in validation accuracy. Monitoring
the training process across various batches of samples is made possible by batch tracking. The way
these metrics have changed throughout epochs is one way to evaluate how well the model has learned.
On both the training set and the validation set, the ideal outcome is to see a drop in loss and an
improvement in accuracy. These patterns show that a model is learning efficiently and adapting well
to fresh input.

Table 2. Performance results for an optimization model consisting of an encoder
and a decoder with the first convolutional layer (CNN).

Epoch/10 Batch Run Time/step Loss Accuracy Val Loss Val Accuracy
1 3000/3000 22 s 7 ms/step 0.5599 0.7984 0.3973 0.8602
2 3000/3000 21 s 7 ms/step 0.3609 0.8731 0.3397 0.8824
3 3000/3000 20 s 7 ms/step 0.3137 0.8896 0.3345 0.8809
4 3000/3000 21 s 7 ms/step 0.2844 0.9006 0.2993 0.8969
5 3000/3000 22 s 7 ms/step 0.2631 0.9069 0.2864 0.9003
6 3000/3000 22 s 7 ms/step 0.2426 0.9160 0.2880 0.9017
7 3000/3000 22 s 7 ms/step 0.2284 0.9180 0.2841 0.9027
8 3000/3000 21 s 7 ms/step 0.2134 0.9237 0.2983 0.8972
9 3000/3000 21 s 7 ms/step 0.2015 0.9277 0.2773 0.9063
10 3000/3000 20 s 7 ms/step 0.1918 0.9312 0.2887 0.9057
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Fig. 3. Performance results for an optimization model consisting
of an encoder and a decoder with a first convolutional layer (CNN).

Table 3 and Figure 4 provide a de-
tailed exploration of the performance
of an optimization model, consisting
of an encoder and a decoder with
the integration of the second convo-
lutional layer (CNN) at each train-
ing epoch. The “loss” column exposes
the measure of the model’s training
loss, quantifying the gap between the
model’s predictions and the actual
values. The central objective is to re-
duce this loss over epochs, aiming to
refine the model’s precision. Special
attention is devoted to understand-
ing the performance of our model in
this context. The “accuracy” column
offers a detailed perspective on the
model’s precision on the training set,
quantifying the proportion of correct predictions relative to the total number of samples. In parallel,
the “val loss” and “val accuracy” columns present equivalent metrics specifically for the validation set.
A reduced validation loss emphasizes the model’s ability to generalize effectively, avoiding overfitting
the training data. The confirmation of this generalization through an increase in validation accuracy
indicates the model’s capability to make accurate predictions on new data. Batch tracking allows for
close monitoring of the learning progression across various batches of samples. Observing the evolution
of these metrics over epochs permits a thorough evaluation of the model’s learning effectiveness. Our
attention is particularly drawn to the nuances of performance, ideally seeking a decrease in loss and an
increase in accuracy not only on the training set but also on the validation set. These detailed trends
serve as crucial indicators revealing the robustness and effectiveness of the model in generalizing to
new data.
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Table 3. Performance results for an optimization model consisting of an encoder
and a decoder with a second convolutional layer (CNN).

Epoch/10 Batch Run Time/step Loss Accuracy Val Loss Val Accuracy
1 3000/3000 20 s 6 ms/step 0.4578 0.8375 0.3427 0.8788
2 3000/3000 19 s 6 ms/step 0.3114 0.8902 0.3159 0.8857
3 3000/3000 18 s 6 ms/step 0.2694 0.9040 0.2906 0.8956
4 3000/3000 18 s 6 ms/step 0.2411 0.9139 0.2768 0.9013
5 3000/3000 19 s 6 ms/step 0.2188 0.9208 0.2752 0.9018
6 3000/3000 18 s 6 ms/step 0.1991 0.9283 0.2810 0.9011
7 3000/3000 18 s 6 ms/step 0.1805 0.9341 0.2700 0.9068
8 3000/3000 19 s 6 ms/step 0.1667 0.9401 0.2881 0.9066
9 3000/3000 18 s 6 ms/step 0.1520 0.9444 0.3011 0.9051
10 3000/3000 18 s 6 ms/step 0.1410 0.9489 0.3039 0.9047
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Fig. 4. Performance results for an optimization model consisting of
an encoder and a decoder with a second convolutional layer (CNN).

Table 4 and Figure 5 provide de-
tailed insights into the performance
metrics specifically associated with
the first layer of a BiLSTM model
over ten training epochs. Each row
corresponds to a specific epoch, pre-
senting key details related to the
training and validation of the first
layer. The training loss of the
first layer decreases from epoch 1 to
epoch 10, suggesting a continuous im-
provement in the first layer’s ability
to capture patterns within the train-
ing data. Additionally, the training
accuracy of the first layer increases,
indicating the first layer’s proficiency
in making more precise predictions on
the training set.

Table 4. Performance Results for a BiLSTM Model (First Layer).

Epoch/10 Batch Timer Loss Accuracy Val Loss Val Accuracy
1 3000/3000 16 s 5 ms/step 0.4274 0.8518 0.3150 0.8905
2 3000/3000 14 s 5 ms/step 0.2891 0.8970 0.2998 0.8932
3 3000/3000 14 s 5 ms/step 0.2470 0.9100 0.2742 0.9010
4 3000/3000 14 s 5 ms/step 0.2183 0.9205 0.2733 0.8989
5 3000/3000 14 s 5 ms/step 0.1934 0.9283 0.2646 0.9074
6 3000/3000 15 s 5 ms/step 0.1745 0.9354 0.2575 0.9105
7 3000/3000 14 s 5 ms/step 0.1572 0.9416 0.2735 0.9048
8 3000/3000 14 s 5 ms/step 0.1414 0.9478 0.2638 0.9130
9 3000/3000 18 s 6 ms/step 0.1297 0.9521 0.2948 0.9080
10 3000/3000 24 s 8 ms/step 0.1164 0.9576 0.2935 0.9093

Table 5 and Figure 6 provide detailed insights into the performance metrics specifically associated
with the second layer of a BiLSTM model over ten training epochs. Each row corresponds to a specific
epoch, presenting key details related to the training and validation of the first layer. The training loss
of the first layer decreases from epoch 1 to epoch 10, suggesting a continuous improvement in the first
layer’s ability to capture patterns within the training data. Additionally, the training accuracy of the
first layer increases, indicating the first layer’s proficiency in making more precise predictions on the
training set.
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Fig. 5. Performance results for a BiLSTM (Bidirectional Long Short-Term Memory) model for the first layer.

Table 5. Performance results for a BiLSTM model in the second layer.

Epoch/10 Batch Timer Loss Accuracy Val Loss Val Accuracy
1 3000/3000 26 s 9 ms/step 0.4559 0.8415 0.3332 0.8807
2 3000/3000 27 s 9 ms/step 0.3111 0.8896 0.3081 0.8897
3 3000/3000 26 s 9 ms/step 0.2726 0.9025 0.2911 0.8962
4 3000/3000 25 s 8 ms/step 0.2472 0.9117 0.2786 0.9013
5 3000/3000 18 s 6 ms/step 0.2238 0.9200 0.2642 0.9047
6 3000/3000 19 s 6 ms/step 0.2061 0.9252 0.3042 0.8921
7 3000/3000 23 s 8 ms/step 0.1925 0.9303 0.2662 0.9112
8 3000/3000 20 s 7 ms/step 0.1753 0.9365 0.2960 0.8993
9 3000/3000 18 s 6 ms/step 0.1648 0.9397 0.2758 0.9071
10 3000/3000 17 s 6 ms/step 0.1552 0.9439 0.2681 0.9116

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Epoch/10

 Loss
 Accuracy
 Val Loss
 Val Accuracy

Fig. 6. Performance results for a BiLSTM (Bidirectional Long
Short-Term Memory) model for the second layer.

Normalized mutual information,
or NMI, is a statistic that assesses
how similar two sets of data are to one
another and is typically used in con-
junction with cluster analysis. Two
sets’ mutual information (I(X;Y ))
and entropies (H(X) for true labels
and H(Y ) for cluster assignments)
are used,

NMI(X,Y ) =
2 · I(X;Y )

H(X) +H(Y )
.

It is based on these factors. Within
the range of 0 to 1, where 1 denotes
complete agreement between two sets
of labels, NMI normalizes the result.
A statistical measure used to deter-
mine how similar two data clusterings
are to one another is called the Adjusted Rand Index (ARI). Concordance between data points within
the same clusters is taken into account while chance or randomization is also taken into account. The
score that ARI produces falls between −1 and 1, where: when two clusterings have a score of 1, there
is perfect agreement; when there is a score of 0, it means that two clusters are identical to what would
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be expected by chance. A significant difference between two clusterings is indicated by a score that is
near −1. The following formula is used to calculate ARI mathematically:

ARI =
Rand Index − True Negative

Max(Rand Index) − E(Rand Index)
− 1.

In this section, we subjected our method to a comprehensive evaluation by calculating precision (Ac-
curacy) and recall (Recall) on the Fashion MNIST dataset, well-known for its complexity. Table 6
highlights the effectiveness of our approach.

Table 6. Demonstrating the efficacy of our approach.

N N Performance metrics
positions clusters Accuracy Recall TRUE Positive TRUE Negative
64 19 92.90 92.31 300 420 30 25
64 20 94.54 94.78 400 500 30 22
64 21 94.71 95.13 450 500 30 23
64 22 94.60 94.66 444 520 30 25
32 19 93.85 94.65 425 400 30 24
32 20 93.67 94.05 380 420 30 24
32 21 94.66 94.93 450 420 25 24
32 22 93.77 93.01 333 420 25 25
16 19 94.96 94.66 444 500 25 25
16 20 94.87 94.44 425 500 25 25
16 21 94.52 94.73 450 500 30 25
16 22 94.71 95.13 450 500 30 23

Table 7. Comparative analysis of existing models
on fashion MNIST dataset including our method.

Approaches to Clustering Accuracy (%) ARI NMI
K-means 51.07 36.39 51.64
Fuzzy C-Means 52.91 36.44 51.59
SEC 54.24 38.44 55.8
MBKM 50.00 34.5 50.03
IDEC 57.64 44.09 60.13
DEC 57.81 45.71 62.83
GrDFCM 62.78 50.14 65.78
DFCM 62.29 48.65 64.54
Our Method 94.71 68.66 78.3

In this section, we subjected our
method to rigorous testing, conduct-
ing a comparative analysis on the
Fashion MNIST dataset, renowned
for its complexity. Table 7 summa-
rizes the comparison between vari-
ous existing mechanisms and our pro-
posed model in terms of accuracy,
ARI, and NMI. It is important to note
that the Basic Fuzzy C-means model
achieved an accuracy of 52.91%, while
the K-means model reached 51.07%.

However, other approaches such as IDEC, DEC, and DFCM outperformed these accuracy values, al-
though our model maintained respectable performance. Regarding ARI as a comparison measure, it is
noteworthy that Fuzzy C-means achieved an ARI of 36.44%, while K-means reached 36.39%. Our exist-
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Fig. 7. Comparative evaluation of different preexisting models on the fashion MNIST dataset.

Mathematical Modeling and Computing, Vol. 11, No. 3, pp. 798–813 (2024)



Big data clustering through fusion of FCM, optimized encoder–decoder CNN, and BiLSTM 811

ing model demonstrated significant improvement, particularly with DFCM achieving 48.65% compared
to the base model’s 50.28%. Similarly, compared to other existing models, our enhanced FCM achieved
a respectable ARI of 54.19%. Finally, considering NMI as a comparison metric, Fuzzy C-means reached
51.59%, K-means 51.64%, our existing model 66.09%, while our hybrid method attained 67.35%. Fig-
ure 1 below provides a comparison of different existing models on the Fashion MNIST dataset. In
Figure 1 below, a comparison is conducted between several models commonly used with the Fashion
MNIST dataset, including our new method.

6. Conclusion

During this study, we delved into the fascinating field of big data clustering and introduced an in-
novative approach that leverages the fusion of three potent techniques: FCM (Fuzzy C-Means), an
optimized Encoder-Decoder Convolutional Neural Network (CNN), and a Bidirectional Long Short-
Term Memory (BiLSTM) network. Our primary objective was to address the challenges inherent in
clustering extensive and complex datasets by harnessing the strengths of these three powerful meth-
ods. We observed that integrating FCM allowed for an efficient initial clustering of data, significantly
reducing the complexity of the problem. The optimized Encoder-Decoder CNN, trained to extract
essential data features, contributed to improving the quality of cluster representations. The inclusion
of BiLSTM, with its capacity to model contextual information from past and future sequences, en-
hanced the overall clustering performance by accounting for temporal dependencies within the data.
Our experiments with real-world big data datasets validated the effectiveness of our approach. It out-
performed traditional clustering methods in terms of accuracy, scalability, and the ability to handle
the high dimensionality and noise often present in extensive data. The fusion of FCM, the optimized
Encoder-Decoder CNN, and BiLSTM not only yielded superior clustering results but also provided a
more explicit and comprehensible representation of data clusters. This research has substantial im-
plications across various domains, including finance, healthcare, marketing, and other sectors where
the ability to extract meaningful insights from vast and complex datasets is of paramount importance.
The fusion of FCM, the optimized Encoder-Decoder CNN, and BiLSTM offers a promising solution
for data scientists and professionals operating in the era of big data analytics.
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Кластеризацiя великих даних через поєднання FCM,
оптимiзованого кодера–декодера CNN та BiLSTM
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Кластеризацiя великих даних, як фундаментальний компонент обробки та аналiзу
масивних наборiв даних, має вирiшальне значення для вирiшення складних проблем,
пов’язаних iз обробкою великих наборiв даних. Основна мета кластеризацiї, яка вхо-
дить у сферу методiв неконтрольованого навчання, полягає в тому, щоб ефективно
органiзувати значнi набори даних в однорiднi кластери без використання вже iсну-
ючих мiток. Наш iнновацiйний пiдхiд спрямований на оптимiзацiю цього процесу
шляхом поєднання трьох методiв: методологiї нечiтких C-середнiх (FCM), моделi оп-
тимiзованого кодера–декодера CNN i двонаправленої рекурентної нейронної мережi
(BiLSTM). Це поєднання є стратегiчним зближенням мiж контрольованою та некон-
трольованою парадигмами. Впровадження BiLSTM має важливе значення, оскiльки
використовує його здатнiсть послiдовно обробляти данi з обох сторiн за допомогою
комiрок LSTM. Цей двонаправлений пiдхiд покращує розумiння послiдовностей да-
них, що є важливою особливiстю у контекстi кластеризацiї великих даних. Водночас
FCM отримує переваги вiд суттєвого вдосконалення завдяки впровадженню функцiї,
яка обчислює вiдстань мiж центром кластера та екземпляром, тим самим пiдвищую-
чи точнiсть кластеризацiї. Щоб оптимiзувати продуктивнiсть i скоротити час обчис-
лень, запропонована методологiя пiдтримує використання оптимiзованої моделi CNN
кодера-декодера. Ця вдосконалена архiтектура сприяє бiльш ефективному вилучен-
ню функцiй даних, тим самим пiдвищуючи внутрiшню якiсть кластеризацiї. Строга
оцiнка запропонованого пiдходу базується на конкретних джерелах даних, а саме на
MNIST моди. Критерiї ефективностi, такi як точнiсть, скоригований iндекс Ренда
(ARI) та нормалiзована взаємна iнформацiя (NMI), переконливо свiдчать про над-
звичайнi можливостi запропонованої методологiї. У порiвняльному аналiзi запропо-
нований пiдхiд значно перевершує iснуючi моделi, демонструючи свою ефективнiсть
i актуальнiсть у складнiй оюластi кластеризацiї великих даних.

Ключовi слова: нечiткi С-середнi (FCM); кластеризацiя; оптимiзований кодер–
декодер; кластеризацiя; двонаправлена рекурентна нейронна мережа (BiLSTM).
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