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Partial shading occurs when some of the solar panels are exposed to reduced irradiation.
Partial shading can lead to creating peaks and troughs in power production. The goal
of this study is to compare the effect of partial shading on the capacity of maximum
power point tracking (MPPT) methods, to find the global maximum power point. To this
end, the study focuses on performance simulation and discussion of Perturb and Observe
(P&O), Particle Swarm Optimization (PSO), and Artificial Neural Network (ANN) con-
trols. Analysing the three MPPT controller’s results, in terms of accuracy, the ANN and
PSO controls showed high performance. On the other hand, the P&O control showed lower
accuracy, particularly under partial shading. For the speed of reaction, the P&O and ANN
controls proved to be the fastest, while the PSO control showed a slightly longer response
time. However, it is important to note that ANN approach presents added complexity in
terms of conception.
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1. Introduction

Irradiation and temperature have a direct impact on the efficiency of photovoltaic panels [1]. A rise in
temperature or a decrease in irradiation lowers the maximum power output of photovoltaic panels, thus
the use of MPPT [2]. Its concept is to position the operating point at maximum power [3], by acting
on the photovoltaic panel’s voltage or current. There are 3 main categories of MPPT techniques [2]:

— Conventional methods: simplicity is their hallmark [4]. However, they are limited to simple appli-
cations [5]. The most widely recognized controls are Incremental Conductance (InCond), P&O and
Hill-Climbing (HC).

— Soft computing approaches: these are technically advanced methods, comprising 3 categories [6].
Methods based on artificial intelligence (AI) such as fuzzy logic (FL) and (ANN), Metaheuristic
Algorithms (MA) [7] such as PSO, Grey Wolf Optimizer (GWO), Bat Algorithm (BA), Artificial
Bee Colony Algorithm (ABC), and chaotic optimization algorithms (COA) such as Stepped-Up
Chaos Optimization (SCO) [8].

— Hybrid approaches: combining different MPPT technology to benefit from different techniques [8].
Like PSO with P&O, ANN with P&O, GWO with P&O and ANN with InCond.

Our research is characterized by an intensive comparative study of technologies from two families:
conventional and soft computing approaches. One future area of research will be hybrid methods.

The purpose of our paper is to examine three techniques capabilities and benchmarks them in
relation to precision, sensitivity and reaction time under partial shading.

The article is organized as follows: Section 2 describes the methodologies and materials, while
Section 3 discusses the results, the conclusion is in Section 4.
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2. Methodology and materials

2.1. Photovoltaic system description

2.1.1. Photovoltaic generator

The PV model is as follows [13]:

Fig. 1. Model of PV solar cell.
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Fig. 2. The photovoltaic arrays employed in the study.

The photovoltaic cell model equation is
as follows [14]:

I = IL − Ish − Id.

If we replace Id and Ish with their corre-
sponding terms, we get [14]:

I = IL −

v + I · Rs

Rsh

− I0

(

e
q(v+I·Rs)

nkT − 1
)

,

where IL is the photocurrent, Id is the cur-
rent through the diode, Ish is the current
P-N junction of diode, q is the charge on
electron (1.6022 · 10−19 C), k is Boltzman
constant (1.3806 · 10−23 J ·K−1, n is factor
of ideality, T is the absolute temperature
in Kelvin, I0 is the saturation current of
diode, Rsh is represents P-N junction of
diode, Rs is the overall resistance of the
semi-conductor material and interconnec-
tions.

Figure 2 shows the PV panels em-
ployed.

In this study we use 4 photovoltaic pan-
els connected in series, with a total maxi-
mum output power of 1708 watts. Fig-
ure 3 shows the characteristics of the pho-
tovoltaic array plotted a fixed temperature
of 25◦C.

The graphs show a clear direct relation between irradiance and maximum power output. The
maximum power increases proportionally with irradiance [15].

If the photovoltaic panel is not uniformly irradiated because of obstacles, this is known as partial
shading [16]. This phenomenon leads to significant variations in the electrical characteristics of the
system [17], as can be seen in Figure 4.
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Fig. 3. PV array current-voltage and power-voltage characteristics for two irradiations levels.

Fig. 4. PV array current-voltage and power-voltage under partial shading.

The graphs were plotted at 25◦C, and each panel in series was irradiated differently. In particular,
the first was irradiated by 400 W/m2, the second by 600 W/m2, the third by 800 W/m2 and the fourth
by 1000 W/m2. The curve of power shows four different peaks (one global and three local) [18].

2.1.2. DC-DC converter (boost)

PV panels offer low output voltage, so the boost converter is essential to minimize the number of panels
that have to be installed in series [19].

Therefore, the DC-DC converter is necessary with a control system to ensure that the photovoltaic
array achieves its optimal working point. Figure 5 illustrates the boost converter [14].
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Fig. 5. The boost converter.

Inductance and capacitor values are obtained using the following equations [14]:

Ci =
D · Io
fs ·∆Vi

, Co =
D · Io

fs ·∆Vo

, L =
D · Vi

fs ·∆I
,

where D is duty cycle, fs is switching rate, ∆Vi is ripple of input voltage, ∆Vo is ripple of output
voltage, ∆I is ripple of current.
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The values of the designed components are as follows: Ci = 304µF, Co = 12µF, and L = 2.4mH.
The relation between output voltage and input voltage is [14]:

Vo =
Vi

1−D
.

We use a resistor (R = 49.32Ω) on the boost output.

2.2. MPPT methods

2.2.1. Perturb and observe (P&O)

The P&O is the widely used control of tracking the maximum power point in photovoltaic applica-
tions [5]. Its advantages reside in its simplicity of implementation. The underlying principle involves
systematic perturbation of PV voltage or current, then observing the resulting direction of power
change [20], in order to determine the maximum power point, by following the slope of the power-
voltage curve.

Figure 6 shows the algorithm of the P&O controller [21].
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Fig. 6. The principle of P&O, where Pi is actual value of power, Vi is actual value of voltage, Di is actual value
duty cycle, ∆D is step size of duty cycle.

The system simulation using MATLAB Simulink is displayed in Figure 7.

2.2.2. Particle swarm optimization (PSO)

PSO approach is a random optimization technique, inspired by the organization of fish swarms or
flights of birds. The PSO approach begins with a number of random solutions named particles [22].
The particles move within a search zone to reach the best solution [23].

In MPPT case, duty cycle represents the particle position, and the power of the photovoltaic panels
represents the objective function.
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Fig. 7. P&O method simulation.
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Fig. 8. Example of PSO MPPT Searching for MPP.

In our study, 3 particles are considered. The next steps explain how the PSO works [22]:

— Initialization of particles: the duty cycle is set randomly for each particle [17].
— Measurement of power: for each duty cycle the power values are measured [24].
— Updating the best position: save the duty cycle value corresponding to the maximum power [17].
— Updating particle positions: updating particle positions with the best position found in the pre-

ceding step [24].
— Repetition of process: power measurement, best positions and particle position updating are iter-

ated many times [24]. At each repetition, the particles flow towards the duty cycle which maximizes
power.

The parameters of the PSO method are essential to its success [17]:

— Particles number: determines the possible solutions in the searching area.
— Velocity components: is composed of various elements, such as the actual velocity, the best personal

position of the particle (Ppbest) and the best position of the group (Gbest).
— Coefficients of acceleration: C1 and C2 respectively determine the weight of the (Ppbest) and (Gbest)

elements in the particle velocity update.

The properties of the PSO approach are expressed by two equations below [22]:

Ppi(n+ 1) = Ppi(n) + Vpi(n+ 1),

Vpi(n+ 1) = WVpi(n) + C1R1(Ppbesti(n)− Ppi(n)) +C2R2(Gbest(n)− Ppi(n)),

Ppi(n) is the i particle position, Vpi(n) is the i particle velocity, n is the actual iteration, W is weight
of inertia, R1 and R2 are random values in the range of [0, 1], C1 is cognitive coefficient, C2 is social
coefficient, Ppbesti is each particle best position, Gbest is the best position of all the particles, the PSO
principle is illustrated by the flowchart [22], in Figure 9.

The choice of limiting the number of particles to three in the PSO algorithm is aligned with the
specific objective of targeting the global peak. The decision to limit the number of particles to three
results from the nature of the problem, where the emphasis is on identifying the global maximum power
point rather than exhaustive exploration of local peaks. This choice is also motivated by a pragmatic
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consideration of computational resources, where the use of a small number of particles optimizes the
balance between search quality and computational constraints.

The choice of specific values, W = 0.4, C1 = 1.2, and C2 = 2, is the result of an iterative process
involving several tests. These values were set after a series of experiments aimed at finding the optimum
combination offering the best results.
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Fig. 9. The principle of PSO MPPT.

The acceleration coefficients, C1 and C2, play a key role in the balance between local and global
exploration of solutions. A higher C1 favors in-depth exploration around local peaks, while a higher
C2 encourages in-depth exploitation of the global peak. In addition, the coefficient of inertia W
contributes to the stability of PSO convergence. The chosen value reflects a relatively low inertia,
favoring controlled exploration of the search space. Low inertia limits particle oscillations, stabilizing
convergence towards the point of maximum power.

The PSO-based MPPT control was simulated using MATLAB Simulink. As displayed in Figure 10.

2.2.3. Artificial neural networks (ANN)

ANN control principle. The ANN approach is inspired by the functioning of biological neurons [25].
In contrast to traditional methods, ANN is capable of learning from the information and turning it
into cognition [26]. ANN is composed of elementary interconnected elements known as neurons [25].
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Fig. 10. PSO simulation.

There are three main stages in creating a neural network [13]:

— Collection of data: a practical database is assembled with the input and output examples con-
cerned [26].

— Selection of architecture: determine how many hidden layers there are, how many neurons in each
layer and the suitable activation techniques [26].

— Training and test/validation: weights and biases of the network are adjusted during training to
reduce an error measure, like the MSE (Mean Square Error) [26]. Following training, the model is
tested to determine its performance in terms of generalization and accuracy.

The ANN-based MPPT principle is described in Figure 11. Based on irradiance and temperature,
the ANN generates the voltage equivalent to the maximum power point, which is later targeted by a
fuzzy logic controller that regulates overall system output to achieve the maximum power point.

ANN MPPT
FUZZY LOGIC
CONTROLLER

LOAD
BOOST

CONVERTER

Duty Cycle

Temperature
and

Irradiation

Vrefmax

Fig. 11. The ANN MPPT design.

ANN control design. To collect the training data, we used a simulation of the photovoltaic
panels in MATLAB SIMULINK under a constant value of 25 degrees Celsius, and extracted the value
of maximum power point voltage (Vmp) by using a loop program, while also saving the irradiance levels
associated. In total, 40000 values were registered in the table. Table 1 shows the selection of these
values.

The algorithm is trained using the collected data [27].
We used the Levenberg–Marquardt algorithm for the training step. 50% of the data was assigned

to training, 25% to validation data and 25% to test data.
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Table 1. Obtained data selection.

Irradiation of Irradiation of Irradiation of Irradiation of Voltage of
Pv1 (W/m2) Pv2 (W/m2) Pv3 (W/m2) Pv4 (W/m2) MPP (V)

401 729 278 127 92.92
770 550 532 915 121.96
649 656 874 825 121.96
619 264 316 898 58.08
125 541 251 981 60.98
742 550 524 153 90.02
714 138 164 570 58.08
187 837 836 750 87.12
235 694 567 976 92.92
684 821 508 489 121.96

Fig. 12. ANN structure. Fig. 13. ANN training results.

The regression coefficient was around 0.98. Analyzing the model’s performance, a MSE of around
17.69 was observed during the learning phase. In the validation and test phases, the mean square
error climbed to around 31. However, even with this increase, the level stays tolerable, suggesting a
satisfactory generalization capability of the model.

In the previous steps, we discussed in detail the design of our MPPT system based on ANN. This
neural network was trained to generate the reference voltage corresponding to the MPP as a function
of solar irradiance and temperature values. To ensure that the system works with this voltage, we use
a fuzzy logic controller.

Fuzzy logic controller. The small-signal model of a boost converter is a non-linear function [28].
That is why we chose to use a fuzzy logic controller, as this type of controller does not need an exact
mathematical model to operate efficiently. Instead, they are designed on the basis of general knowledge
of the installation.

Fuzzy logic is a branch of artificial intelligence that has revolutionized the way computer systems
deal with imprecise or uncertain information. Unlike traditional binary logic, where propositions are
either true or false, fuzzy logic allows us to deal with concepts that may be partially true or partially
false [29].

The Simulink schematic of the fuzzy logic controller is shown in Figure 14.
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Fig. 14. Synopsis of fuzzy logic controller simulation.

The fuzzy logic controller takes two main inputs, the reference voltage, and the measured value. It
calculates the error between them based on (1). And also considers the variation of this error given
by (2). Using this information, the fuzzy logic controller algorithm makes a decision about the duty
cycle adjustment,

E = Vmpp − Vin, (1)

∆E = E − Ep, (2)

where E is error, Vmpp is voltage corresponding to maximum power point, Vin is boost input voltage,
∆E is error variation, Ep is previous error.
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The values of Ke, Kde and KdD are determined after several tests and iterations. After multiple
iterations to find the optimum values, it was determined that the parameters offering the best response
were set as follows: Ke = 1/300, Kde = 1/300 and KdD = 0.1.

The design of a fuzzy logic controller involves several stages. First, the choice of membership
functions. These functions define how inputs are linguistically categorized within the fuzzy logic
controller. Once the appropriate membership functions have been selected, the next step is to create
a rule base. This rule base comprises a set of linguistic rules, which form the core element of a fuzzy
controller.

Table 2. Obtained data selection, PB is positive
big, PS is positive small, Z is zero, NS is negative

small, NB is Negative big.

Error variation
NB NS Z PS PB

Error

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

To design the rule base for the fuzzy logic con-
troller output, various linguistic variables are identi-
fied and listed in Table 2 [30]. Next, the fuzzy con-
troller is constructed and the membership functions
and fuzzy rules are defined. We chose to use just five
membership functions to simplify the controller’s de-
sign and reduce its complexity. This decision was
taken considering that the controller already offers
satisfactory performance.

The membership functions for the input variables
are illustrated in Figure 15, while Figure 16 shows the membership functions for output. For the rule
bases a classic interpretation of Mandani was used. For the defuzzification method, we opted for the
most widespread approach, namely Centroid Defuzzification, because of its simplicity and ability to
deliver satisfactory results.
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Fig. 15. The membership function plots of error and error variation. Fig. 16. The membership
function plots of duty ratio.

After designing the ANN algorithm and the fuzzy logic controller, these two components were
integrated into our system and simulated using MATLAB Simulink, as presented in Figure 17.

Fig. 17. ANN technique simulation.

3. Results and analysis

3.1. Simulation with uniform irradiation conditions

This part of the paper is dedicated to assessing the efficiency of MPPT methods mentioned above with
uniform irradiation conditions. Three methods will be examined at the same irradiation levels, namely
900 and 750 W/m2.

According to the power curves in Figure 3, the panel must be raised power of 1540 and 1291W
respectively.
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Fig. 18. PV power for the three techniques.
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Fig. 19. PV power for the three techniques.

Table 3. Overview of system performance results.

P&O PSO ANN

Pwoer response time (ms) 12 55 9
Power oscillations (W) 6 2.5 0.1
Power discrepancy (W) 1 1 5

Analysis of the results highlights the
success of all three methods in tracking the
maximum power point. This performance
is a positive indicator of the effectiveness of
the approaches considered under uniform
irradiation.

In regard to rapidity of response, the results reveal that the ANN method stands out for its rapid
reaction time. It is strongly preceded by the P&O, which also displays a notable responsiveness. In
contrast, the PSO method is characterized by a relatively slower response time.

A point of attention emerges concerning the P&O, which, despite its speed, exhibits considerable
oscillations around the MPP.
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3.2. Simulation with partial shading conditions

After evaluating three methods with uniform irradiation, the methods will be evaluated with partial
shading conditions, so the irradiation used for the panels is 1000, 800, 600 and 400 W/m2 respectively.

Based on the PV panel characteristics displayed in Figure 4, the overall peak has a maximum power
of 843.3 W.

Table 4. Overview of system performance results.

P&O PSO ANN

Power response time (ms) 19 160 12
Power oscillations (W) 0.5 2 0.25
Power discrepancy (W) 58.3 0 1

Referring to Table 4, it is notable that the
PSO and ANN successfully performing the sys-
tem with high accuracy at the MPP. Conversely,
the P&O method produces a local peak power
of 785 W, resulting in reduced accuracy under
conditions of partial shading.

The ANN method scores significantly higher than the PSO method in terms of response time. As
a result, the ANN method seems to be the most appropriate of three methods tested, both in uniform
irradiance and partial shading.

4. Conclusion

In this in-depth study, three MPPT methods, namely P&O, PSO and ANN, were carefully examined
under a variety of climate scenarios. The results reveal that all methods showed a commendable ability
to accurately track the point of maximum power under uniform irradiance conditions.

But when confronted with partial shading scenarios, the P&O method was limited by its sensitivity
to local peaks. Conversely, both the PSO and ANN performed robustly, maintaining high accuracy.
The ANN method in particularly stood out for its rapid response to disturbances.

On closer examination of the results, it is clear that the ANN MPPT method is the most effective.
Its ability to effectively manage irradiation variations and provide rapid responses makes it a promising
solution for real photovoltaic systems subject to dynamic conditions.

It should be noted, however, that the ANN method presents an increased complexity in its design.
Moreover, as the number of panels to be managed increases, the conception becomes more difficult,
both in terms of architecture and training. This also has an impact on implementation, which requires
powerful devices for optimum performance.

The continual enhancement of MPPT methods stands as a paramount objective in the pursuit of
optimizing the efficiency of PV systems.

Our future efforts will concentrate on two principal areas. Firstly, we will focus on exploring
further the ANN MPPT method, extending its application to more complex setups encompassing
various loads from off-grid systems to integration in grid-connected arrays. The main objective is
to assess the resilience and performance of MPPT control in a variety of contexts, and thus provide
valuable insights into its adaptability. Secondly, our research trajectory involves the investigation of
new MPPT paths and methodologies to extract maximum benefits from photovoltaic systems. This
involves incorporating advanced learning techniques and exploring hybrid approaches, such as the
implementation of a neuro-fuzzy controller. These initiatives offer promising possibilities for refining
existing performance parameters. The overall aim is to offer substantial advances in maximum power
point tracking, which will enable significant progress to be made in improving the overall efficiency of
photovoltaic systems. Our commitment to ongoing research and innovation underlines the imperative of
constantly pushing the boundaries to unleash the full potential of solar energy harvesting technologies.
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Дослiдження та аналiз впливу часткового затiнення на
виробництво електроенергiї фотоелектричного ланцюжка,

керованого трьома рiзними методами MPPT: P&O, PSO та ANN

Атiлла М. А.1, Стiту Х.1, Будауд А.1, Акiль М.1, Ханафi A.2

1Команда iнженерної та прикладної фiзики (EAPT), Вища школа технологiй,
Унiверситет Султана Мулая Слiман, Бенi Меллал, Марокко

2Лабораторiя промислових технологiй та послуг, Вища технологiчна школа,
Унiверситет Сiдi Мохамеда Бен Абделлаха, Фес, Марокко

Часткове затiнення вiдбувається, коли деякi сонячнi панелi пiддаються зменшенню
опромiнення. Часткове затiнення може призвести до створення вершин та впадин
у виробництвi електроенергiї. Мета цього дослiдження — порiвняти вплив частко-
вого затiнення на здатнiсть методiв вiдстеження максимальних точки потужностi
(MPPT), щоб знайти глобальну максимальну точку потужностi. З цiєю метою до-
слiдження зосереджено на моделюваннi продуктивностi та обговореннi збурень та
спостереження (P&O), оптимiзацiї рою частинок (PSO) та керування штучною ней-
ронною мережею (ANN). Аналiзуючи результати трьох контролерiв MPPT з точки
зору точностi, керування ANN та PSO показали високу продуктивнiсть. З iншого бо-
ку, керування P&O виявило нижчу точнiсть, особливо при частковому затiненнi. Для
швидкостi реакцiї керування P&O та ANN виявилися найшвидшими, тодi як керу-
вання PSO виявило дещо довший час реакцiї. Однак важливо зазначити, що пiдхiд
ANN представляє додаткову концептуальну складнiсть.

Ключовi слова: вiдновлювальна енергiя; технiки MPPT; фотоелектрична енергiя;
P&O; PSO; ANN.
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