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Abstract. Physics-Informed Neural Networks (PINN) represent a powerful approach in 

machine learning that enables the solution of forward, inverse, and parameter identification 

problems related to models governed by fractional differential equations. This is achieved by 

incorporating residuals of operator equations, boundary, and initial conditions into the objective 

function during training. The proposed approach focuses on an adaptive inverse fractal-oriented 

PINN designed for modeling heat and moisture transfer in capillary-porous materials with a fractal 

structure and identifying unknown fractional parameters. The core idea is to first construct a fractal 

neural network for solving the forward problem and then extend its application by transforming 

fractional derivative orders into trainable variables for optimization. Additionally, synthetic data are 

incorporated into the objective function to ensure the necessary conditions for solving the 

identification problem. To ensure that the approximate solution accurately reproduces the physical 

behavior of the system, the components of the loss function such as deviations from synthetic data, 

initial and boundary conditions, and residuals of differential equations are adaptively weighted at 

each training epoch. Similarly, the gradients of trainable parameters are scaled accordingly during 

the training process. To confirm the effectiveness and reliability of this approach, several examples 

obtained using the developed software are presented. These examples illustrate its application in 

various specific scenarios and demonstrate the ability of the adaptive fractal PINN to successfully 

solve heat and mass transfer problems in fractal capillary-porous structures, as well as accurately 

identify fractional parameters. 

Keywords: neural network, fractional derivatives, fractal media, parameter identification 

problem, heat and moisture transfer processes, adaptive learning, capillary-porous materials. 

Introduction 

Porous structures play a significant role in technology, industry, and the natural sciences, as their 

effective parameters determine the macroscopic behavior of systems. Particular attention is given to 

capillary-porous materials, in which fine, interconnected pores or channels lead to the dominance of 

capillary effects. These materials exhibit fractal characteristics due to their multilevel self-organization and 

complex structure, which provides a high capacity for adsorption, permeability, and moisture distribution 

factors that, in turn, influence their operational properties, such as durability and structural strength. 

The determination of characteristics such as permeability, hydraulic and moisture conductivity, as 

well as fractional parameters of thermophysical and rheological processes, is typically achieved through 

the solution of inverse problems, since direct measurement of these parameters is complex, costly, and 

labor-intensive. The use of more readily computable indicators in differential and fractional-differential 

models significantly enhances the accuracy of parameter estimations. 
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It should also be noted that precise determination of the parameters of porous materials is crucial for 

accurate modeling of their behavior, particularly in systems such as tissues, bones, vascular networks, 

concrete, wood, and other construction materials. For instance, the coefficient of saturated hydraulic 

conductivity greatly affects soil moisture regimes and can vary by several orders of magnitude. 

Due to their complex multiscale structure, heterogeneity, and the scarcity of homogeneous data, 

data-driven approaches, notably PINN, have rapidly gained popularity in these fields. Recent studies also 

demonstrate that PINN are effectively employed to determine the key characteristics of porous media. 

Objectives and Problems of Research 

In this study, we employ a modified neural network approach based on the fractal PINN architecture 

[1-3] for the identification of fractional-differential parameters governing non-isothermal moisture transfer 

in fractal capillary-porous media. This approach enhances the accuracy of unknown parameter estimation, 

ensures numerical stability, and optimizes the modeling of heat and moisture transfer processes. 

The object of the study is the processes of non-isothermal moisture transfer in fractal capillary-

porous media. 

The subject of the study is a modified neural network approach based on the fractal PINN 

architecture for the identification of fractional parameters in heat and moisture transfer processes. 

The main objective of this research is to develop and implement a fractal neural network-based 

approach that improves the accuracy of fractional parameter identification, ensures numerical stability, and 

optimizes the modeling of heat and moisture transfer processes. To achieve this objective, the following 

sub-tasks have been defined: 

• to investigate the theoretical foundations of fractional derivatives based on the Caputo and 

Grünwald-Letnikov approaches, which form the basis of the mathematical model of non-isothermal 

moisture transfer in fractal media, and to analyze their applicability within the fPINN framework; 

• to develop an algorithm for identifying fractional parameters that regulate heat and moisture 

transfer processes using the fractal neural network approach; 

• to implement a software solution for the fractional parameter identification algorithm; 

• to conduct numerical studies to evaluate the adequacy and effectiveness of the proposed algorithm; 

• to analyze the obtained data and formulate conclusions regarding the feasibility of applying an 

adapted fractal neural network for parameter identification in non-isothermal moisture transfer in capillary-

porous media with self-similar organization. 

The practical significance of this study lies in the direct applicability of the developed approach to 

technological problems that require precise and rapid analysis of heat and moisture transfer processes in 

materials with a fractal structure. This method enhances the accuracy of modeling heat and moisture 

transport in complex fractal geometries, optimizes the management of technological processes by enabling 

rapid recovery of unknown parameters, and reduces computational costs compared to traditional methods. 

Furthermore, the results obtained pave the way for further research on multiphysics processes in complex 

heterogeneous media and expand the scope of applied developments across various scientific and industrial 

domains. 

Review of Modern Information Sources on the Subject of the Paper 

The development of mathematical models for simulating the behavior and describing 

nonequilibrium physical phenomena in fractal porous systems with complex spatiotemporal organization 

necessitates the use of fractional differentiation methods. 

Fractional calculus extends the classical approach to differentiation and integration by allowing non-

integer orders of derivatives. Its historical origins date back to the 17th century and are associated with 

Leibniz, who first posed the question of defining a derivative of an arbitrary order [4]. Since then, 

numerous mathematicians have contributed to the formation of the theoretical foundations of this field. In 

recent years, interest in fractional calculus among engineers and researchers has significantly increased. 

This is due to its ability to accurately represent complex processes in various domains, such as 

semiconductor technologies, electromagnetism, aerogels, biology, and fluid mechanics [5-9]. 
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The use of fractional derivatives enables the modeling of memory effects and nonlocal properties of 

systems, which are often beyond the scope of classical differentiation. However, fractional models 

typically involve a substantial number of parameters (e.g., fractional orders or specific coefficients) that are 

not always easily measurable directly [10, 11]. As a result, inverse problems aimed at determining these 

fractional parameters and physical coefficients present significant challenges, including instability, solution 

ambiguity, and high computational costs. 

Against this backdrop, Physics-Informed Neural Networks (PINN) [12] have emerged as an 

effective computational tool. The key advantage of this approach lies in integrating physical laws encoded 

in differential equations with the neural network’s ability to efficiently interpolate complex dependencies. 

PINNs serve as a flexible alternative to traditional methods, including finite difference methods, finite 

element methods, variational techniques, and spectral analysis [13-15]. Although these "classical" schemes 

are well-established, they often face difficulties when dealing with highly nonlinear problems, high-

dimensional spaces, or parameter uncertainty. In response to these challenges, data-driven approaches are 

actively being explored. These methods have been successfully applied to solve forward problems in 

various domains, such as fluid mechanics and mass transfer [16-21]. Moreover, PINNs play a crucial role 

in solving inverse problems and identifying unknown parameters. 

Inverse problems are often more complex than forward problems due to their ill-posed nature there 

may be multiple solutions, or no solution may exist at all. Additionally, they are further complicated by 

data scarcity, incomplete information, and specific geometric constraints [22]. 

There are two primary approaches to constructing inverse PINNs for recovering unknown 

parameters. In the first approach, variables and unknown parameters are treated as input features for the 

neural network. In the second approach, unknown physical quantities are directly embedded into the 

network as trainable parameters and incorporated into the loss function through the residuals of the 

governing equations. These inverse PINN formulations have already been validated in several significant 

engineering applications [23-27], including the reconstruction of differential equation structures and heat 

transfer in porous media [22], [28]. 

However, most existing PINN implementations are designed specifically for integer-order 

derivatives, which are typically computed using automatic differentiation. At the same time, there is 

growing interest in extending PINNs to process fractional derivatives, which allow for a more accurate 

representation of complex phenomena. One of the recent advancements in this direction is fPINN 

(Fractional Physics-Informed Neural Networks), which employs finite difference methods to compute 

fractional derivatives [29]. This approach has already demonstrated success in modeling fractional-time 

diffusion with conformable derivatives [30] and turbulent flow modeling [31]. 

Overall, the application of neural networks to problems involving fractional dimensions particularly 

inverse problems and parameter identification remains in its early stages, with only a limited number of 

research studies published in this domain. 

This study focuses on time-space fractional heat and moisture transfer equations, which describe the 

behavior of dynamic transport processes in capillary-porous materials with fractal organization. The 

primary objective is to propose a modified adaptive approach for inverse fractal PINNs, which involves 

developing an adaptive scaling procedure for loss function components and gradients of trainable 

parameters. This approach enables balanced optimization and ensures convergence in solving the fractional 

parameter identification problem. 

Problem Statement 

Classical heat transfer and moisture transport problems are typically described by integer-order 

differential equations. In addition to the standard behavior of heat and moisture exchange, phenomena of 

anomalous moisture and thermal conductivity characteristic of materials with unique structures such as 

capillary-porous media are frequently observed. Researchers have determined that, to adequately describe 

the anomalous phenomena inherent in these materials, integer-order differential equations prove 

insufficient, whereas the global correlation afforded by fractional differential operators holds the potential 

to more accurately capture their memory and intrinsic properties. 
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In this study, we focus on the examination of differential operators within the frameworks of the 

Caputo and Grünwald-Letnikov theories, as these approaches enable a more comprehensive description of 

the anomalous conductivity ranges characteristic of materials with fractional properties. They allow the use 

of fractional derivatives, which can effectively model memory, temporal, and nonlocal effects in such 

materials, thereby providing a better representation of their behavior compared to traditional approaches. 

Below, we present the definitions of the Caputo and Grünwald-Letnikov differential operators [32]. 

For a function ( )f t , the Caputo derivative of order α (where n =    , i.e., the smallest integer not 

less than α) is defined as: 

( )
( )
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where Γ(⋅) denotes the gamma function, and ( ) ( )n
f t  represents the n-th derivative of the function f  with 

respect to the variable τ. 

The Grünwald–Letnikov derivative of order α is defined by the limit of finite differences: 
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where h  is the discretization step, ⌊⋅⌋ denotes the floor function, and 
k
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Thus, considering the application of fractional calculus, the heat and mass transfer processes in a 

capillary-porous material with a fractal structure can be mathematically described by a system of fractional 

differential equations (3) – (9): 
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where x  is the spatial coordinate; t  is the temporal coordinate, with ( )    , , 0, 0,t x G G T l =  ; ( , )U t x  is 

the moisture function to be determined; ( , )T t x is the temperature function to be determined; ( ),c T U  is the 

specific heat capacity; a  is the thermal diffusivity of the medium; ( ),d U T   is the moisture diffusivity 

coefficient; ( ),T U  is the thermal conductivity coefficient;   is the density; ( )0 1  = − , where 0  is 

the base density; r  is the specific heat of vaporization; ( ),p cU t   represents the equilibrium moisture 

content; ct  is the environmental temperature;   is the relative humidity of the external environment; 

( )iU x  is the initial moisture content; ( )iT x  is the initial temperature; * *,   is the moisture and heat 

exchange coefficient; C D

 , 
i

GL

xD  and 
i

GL

xD are the fractional-order differential operators defined in the 
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sense of Caputo and Grünwald-Letnikov, respectively; ( )0 1     is the fractional order of the time 

derivative; ( )1 2    and ( )0 1     are the fractional orders of the spatial derivatives. 

The problem described by equations (3) - (9) is a typical forward problem, where the model is 

applied to predict the behavior of the system given known parameters (including the fractional orders 

, ,   ). The objective is to determine the spatial and temporal distribution of temperature and moisture 

using the corresponding governing equations (3) - (4), initial conditions (5), and boundary conditions (6) - 

(9). 

The objective of the inverse problem is to identify the model parameters, specifically the fractional 

orders , ,   , in cases where output data (such as synthetic or experimental temperature and moisture 

values) are available. The identification problem is inherently more complex, as it is often ill-posed in the 

sense of Hadamard [33], necessitating the use of additional regularization and optimization techniques to 

obtain a stable and accurate solution. 

Thus, the approach begins by solving the forward problem to model the distribution fields ( ),U t x  

and ( ),T t x  based on the given parameters. Subsequently, inverse methods are employed to refine the 

fractional orders , ,    to achieve the best possible agreement between the model and the experimental 

data. 

Main Material Presentation 

a. Direct problem 

The fundamental idea behind the PINN approach is to directly incorporate both known physical laws 

and experimental data into the construction and training of a neural network. In problems governed by 

partial differential equations, the general form of the equations and certain physical principles are typically 

known and can be imposed as constraints. This allows the trained neural network to produce solutions that 

are consistent with physical laws while simultaneously leveraging measured data to enhance predictive 

accuracy. 

To achieve this, PINN defines a composite loss function consisting of two key components: one part 

ensures consistency with available experimental data, while the other enforces physical constraints. In 

particular, partial differential equations are embedded into the model through the minimization of the loss 

function, which penalizes deviations between the neural network's output and the given governing 

equations. This is facilitated by automatic differentiation, which enables precise computation of integer-

order derivatives in both space and time. However, when dealing with fractional derivatives, additional 

challenges arise, necessitating specialized numerical techniques. 

In this study, we adapted and implemented the approach outlined in [29], where fractional operators 

in both time and space were approximated using numerical schemes (10) and (11) [32], [34]. 
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As a next step, these approximations were incorporated into the loss function (12), (13) of the 

fractional neural network (Fig. 1). This integration enabled the effective incorporation of fractional 

derivatives into the optimization process, ensuring the proper consideration of the physical characteristics 

of the modeled phenomena. 
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where , , , , , , ,
d r i b d r i bU U U U T T T T        are the weight coefficients and ( ) ,,k n k nU t x U= , 

( ) ,,k n k nT t x T= . 

The presence of two loss functions reflects the architecture of the network designed to solve both the 

forward problem and the parameter identification problem. This structure consists of two independent fully 

connected branches operating in parallel: a shared input layer receives the spatiotemporal variable, while 

the output layer integrates the results of both branches. Thus, the functions ( ),U t x  and ( ),T t x  are 

approximated by their respective values ( ), ;N UU t x   and ( ), ;N TT t x  , obtained through a deep neural 

network. 

The network parameters  : ,U U Uw b =  and  : ,T T Tw b = are optimized by minimizing the loss 

functions, which ensure compliance with the differential equations (3), (4), initial conditions (5), and 

boundary conditions (6) – (9). The introduction of a penalty term for deviations from these conditions not 

only enhances the accuracy of the mathematical model’s reproduction but also ensures that the obtained 

solution aligns with established physical laws. 

The training process is structured so that each loss function of the two networks is minimized 

through an alternating parameter adjustment approach. First, the parameters of the first network are 

optimized while keeping those of the second network fixed. Then, the same procedure is applied to the 

second network while maintaining the parameters of the first. This cycle is repeated until either the 

specified number of iterations is reached or the desired level of accuracy is achieved [3]. 

At this stage, we have examined the solution of the forward problem and determined the distribution 

of temperature and moisture within the fractal-structured capillary-porous material based on the 

constructed model. We now proceed to the next task, which involves identifying the unknown physical 

parameters of the system that influence heat and moisture transfer processes in the fractal medium. 
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Fig. 1. Architecture of the Fractional Neural Network 

b. Parameter identification problem 

The identification problem may be ill-posed due to the limited number of experimental 

measurements available for the physical system described by fractional differential equations. This can 

lead to solution instability and high sensitivity to errors in the input data. 

To overcome these challenges, it is necessary to employ specialized training strategies and 

regularization techniques that ensure the stability of the optimization process and the accuracy of the 

identified parameters. One such approach involves incorporating a penalty term into the loss function, 

which helps to mitigate the impact of noise and improve the consistency of the solution with physical laws 

(14), (15). 
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where  : , ,inv =    represents the physical parameters, specifically the fractional orders of derivatives 

, ,    and  inv is the weighting coefficient. 

Additionally, a viable solution involves utilizing adaptive gradient balancing methods during 

training [2], [35], which helps to prevent conflicts between different components of the loss function. 

To avoid limitations in problem formulation, it is necessary to conduct the search in a transformed 

parameter space using specialized functional transformations (16): 

( )0.5tanh 0.5i = + ,  

( )0.5tanh 1.5i = + , (16) 

( )0.5tanh 0.5i = + ,  

where ( ) ( ), 0;1 , 1;2 .     

Such reparameterization enables optimization without imposing artificial constraints on the 

parameters, as the initial variables , ,i i i    can take values across the entire real number domain, while 

their mapped representations automatically remain within permissible ranges. 

Furthermore, this study employs an adaptive method proposed in [35], which allows for the dynamic 

adjustment of the training process based on the specific characteristics of the problem being solved. To 
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ensure the convergence of the inverse fractional PINN, we introduce modified loss functions with 

weighting coefficients: 
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where P  represents the set of training points, ,i b d i b d

U j T jR R    denotes the discrepancies between the 

network output, initial conditions, boundary conditions, and known data; ,r r

U j T jR R  corresponds to 

the residuals of the governing equations for humidity and temperature functions; , ,e e

U j U r  ,e e
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are adaptive weights that adjust at each training iteration to balance the different components of 

the loss function. 

The weight updates at each optimization step are governed by the following relationships: 
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where auxiliary quantities ˆ ˆ ˆ ˆ, , ,e e e e

U j U r T j T r     are introduced. In particular, 
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where , , , , ,
d d b i b iT U U U T T       are constants that define the weight of the boundary conditions, initial 

conditions, and known experimental or synthetic data, respectively. The function ( )e  increases with the 

epoch number e , starting from zero and approaching one, allowing the model to initially focus primarily 

on the residuals of the governing equations and later adjust to the available data. For example, it can be 

defined as: 

( )

/ 2
tanh 10

, 1, , ,
2

e E E

E
e e E
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where E is the total number of epochs, and E  is the epoch threshold after which the weight coefficients 

are significantly adjusted. 

The computation of the gradients U
UNL


 , inv

UNL


 , T
TNL


 and inv

TNL


  is performed using the 
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automatic differentiation algorithm. Additionally, the gradients with respect to the physical parameters are 

scaled by a factor of ( )e . This scaling plays a crucial role in ensuring convergence: it prevents the 

physical parameters from being updated until the corresponding data begin to significantly influence the 

overall loss function. Once this condition is met, the parameters are updated using the Adam optimizer 

with an initial learning rate i , which is adjusted dynamically based on the epoch number e , according to: 

100

e

e i  
 
 
 = ,  

where   is a constant attenuation coefficient, with the condition that 0.9 0.99  . 

The model training process is conducted iteratively, starting from the initial epoch. At each step, 

sequential parameter updates are performed, incorporating adaptive weight coefficient adjustments and 

gradient scaling. The training process continues until convergence is achieved or the maximum number of 

epochs is exceeded. 

Thus, the algorithm ensures adaptive tuning of weight coefficients and controlled parameter updates, 

facilitating efficient learning, improving stability, and enhancing convergence. This, in turn, contributes to 

more accurate identification of fractional-order parameters. 

Results and Discussion 

This section presents a study that demonstrates the capabilities of the proposed fractal neural method 

for the numerical solution of both the forward problem and the parameter identification problem in 

modeling heat and moisture transfer processes (3) – (9) with fractional derivatives in spatial and temporal 

variables. 

Numerical experiments were conducted on a hardware platform equipped with an Intel(R) Core(TM) 

i7-8750H processor, 16 GB of RAM, and running the Windows 10 operating system. To implement the 

proposed approach, a software code was developed, incorporating two independent fully connected neural 

networks implemented using the TensorFlow and Keras libraries. The optimization of network parameters 

and the identified fractional exponents was performed using an automatic differentiation mechanism. 

The Adam algorithm was employed for loss function optimization, while the initial weight 

coefficients were configured using the Xavier initialization method. The primary training hyperparameters 

included the following: the number of hidden layers in each network 8, the number of neurons per layer 40, 

the initial learning rate 0.01, and the total number of iterations approximately 4000. 

The experiments were conducted to model heat and moisture transfer in a capillary-porous material 

with a fractal structure, specifically wood with a baseline density of ρ = 460 kg/m³. The initial conditions 

for the model were set as follows: sample temperature =
0

20T C , ambient temperature = 70
c
t C , initial 

moisture content = 0.5
i
U  kg/kg, relative air humidity  = 65% , and drying agent velocity 2v =  m/s. The 

fractional parameters of the model were assigned specific values   = = =0.9, 1.9, 0.95 . 

The visualization of the modeling results for the temperature and moisture dynamics using the 

fractal adaptive neural network method is presented in Figure 2. 

 
Fig. 2. Variation of Temperature and Moisture Fields 
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Fig. 3 illustrates the evolution of the weighted (c) and unweighted (a, b) loss functions during the 

training process of the PINN. The weighted loss function incorporates adaptive weight coefficients (19) –

(21), which allow for differentiated emphasis on specific components of the loss function. During model 

training, these weight coefficients are updated at each iteration to maintain a balance between different 

types of errors, including discrepancies from differential equations, initial and boundary conditions, and 

known data. 

In contrast, the unweighted loss function is computed with fixed weight coefficients, representing 

the baseline model error. Comparing these loss function graphs provides deeper insight into how the 

weight coefficients influence the training process. 

 
Fig. 3. Comparison of Loss Functions with Fixed and Adaptive Weights During the Training of a Fractal 

Neural Network 

In cases (a) and (b) presented in Figure 3, it can be observed that different components of the loss 

function have varying magnitudes and may dominate at different stages of training, leading to uneven 

reduction of each component. 

In contrast, case (c) employs an adaptive approach that dynamically scales the weights of the loss 

function components (17) – (18). This ensures a better balance of the different components throughout the 

training process, allowing for a more effective reduction of residual errors across all terms simultaneously. 

As a result, convergence occurs more uniformly, and the model achieves improved consistency with 

boundary and initial conditions, as well as with the available experimental data. 

Let us now consider the "inverse" problem, in which the objective is to determine the unknown 

physical parameters that influence heat and moisture transfer processes in a fractal medium, specifically 

the fractional derivative indices of the model (3) – (9). The proposed neural network algorithm enables 

solving the parameter identification problem while utilizing essentially the same code base as for the 

forward formulation. However, this involves adding fractional parameters to the list of variables subject to 

optimization, along with incorporating additional penalty terms into the loss function (14), (15). The final 
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modeling results are presented in Figure 4. 

 
Fig. 4. Identification of fractional parameters with the inclusion of a penalty term in the loss function 

The application of functional transformations (16) improves stability and convergence metrics 

(Figure 5). However, the best results are achieved by combining these strategies with the use of adaptive 

weights (19) – (21), as demonstrated by the modeling results presented in Figure 6. 

 
 

Fig. 5. Impact of functional transformations on the 

identification of fractional parameters 
Fig. 6. Improvement of fractional parameter identification 

using adaptive weighting coefficients in the loss function 

A comparison of the presented graphs illustrates how the stepwise addition of different types of 

regularization affects the accuracy and stability of fractional parameter identification within the inverse 

heat and moisture transfer problem in fractal media. The curves in Fig. 4 depict convergence; however, it is 

evident that the issue of local minima and the complex topology of loss functions is not always resolved. 

The graphs in Fig. 5 reflect the transformation of the parameter space, achieved through specialized 

functional transformations (16). This strategy helps "stretch" or "compress" the parameter space, making 

the loss function smoother and less prone to becoming trapped in local minima. As a result, the 

optimization problem becomes easier to solve, leading to more reliable parameter identification. 

Figure 6 demonstrates another level of refinement introducing adaptive weighting coefficients into 

the loss functions. With this approach, during the initial training phase, the network primarily focuses on 

aligning with the governing equations before shifting toward approximating experimental data. 

Consequently, the model more effectively learns the underlying physics of the process, which enhances the 

accuracy of fractional parameter estimation and reduces the risk of imbalance toward one component of the 

loss function. Overall, this strategy enables a more robust and precise identification of fractional 

parameters in the heat and moisture transfer model for fractal media. 

Conclusions 

This study presents the application of an adaptive approach to an inverse fractional physics-informed 
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neural network (PINN) for solving heat and moisture transfer problems and identifying unknown 

parameters in capillary-porous materials with a fractal structure. The proposed architecture of the fractional 

neural network and the training algorithm ensure the efficient resolution of both the forward problem and 

the parameter identification task, allowing the simultaneous determination of up to three parameters. 

The further development of the method involves extending the approach to two-dimensional 

problems and incorporating a larger number of parameters. The key innovation of the proposed approach is 

the adaptive scaling of individual components of the loss function and gradients of trainable parameters, 

which plays a crucial role in ensuring the convergence of the identification problem. This strategy enables 

maintaining a balance between different components of the loss function and effectively managing weight 

updates, thereby ensuring the reliable convergence of the algorithm. 

The numerical experiments conducted using the developed software confirm that the proposed 

adaptive architecture of the inverse fractional neural network is scalable, stable, and demonstrates high 

efficiency in solving partial heat and moisture transfer problems in materials with a fractal structure, as 

well as in the identification of fractional parameters. 
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Анотація. Фізично обґрунтовані нейронні мережі (PINN) є потужним підходом у машинному 

навчанні, що дозволяє розв’язувати прямі, обернені задачі та задачі ідентифікації, пов’язані з 

моделями, що описуються дробовими диференціальними рівняннями, за рахунок включення залишків 

операторних рівнянь, граничних та початкових умов в цільову функцію під час навчання.  У 

пропонованому підході зосереджено увагу на адаптивному оберненому фрактально-орієнтованому 

PINN, призначеному для моделювання тепло- та вологопереносу у капілярно-пористих матеріалах із 

фрактальною структурою та ідентифікації невідомих дробових параметрів. Основна ідея полягає в 

тому, щоб спершу побудувати фрактальну нейронну мережу для прямої задачі, а потім розширити її 

застосування, перетворивши показники дробових похідних на змінні, що підлягають оптимізації. 

Додатково до цільової функції включаються синтетичні дані, які забезпечують необхідні умови для 

розв’язання задачі ідентифікації. Щоб наближений розв’язок правильно відтворював фізичну 

поведінку системи, компоненти функції втрат (зокрема, відхилення від синтетичних даних, початкових 

та граничних умов, а також залишки диференціальних рівнянь) зважуються адаптивно на кожній епосі 

навчання. Аналогічним чином виконується й масштабування градієнтів параметрів, що залучені до 

процесу тренування. Для підтвердження ефективності та надійності цього підходу наведено декілька 

прикладів, отриманих за допомогою розробленого програмного забезпечення, що ілюструють його 

застосування в різнопланових часткових сценаріях і демонструють здатність адаптивного 

фрактального PINN успішно розв’язувати задачі тепло- та масопереносу у фрактальних капілярно-

пористих структурах, а також ідентифікації дробових показників 

Ключові слова: нейронна мережа, дробові похідні, фрактальні середовища, задача ідентифікації 

параметрів, процеси тепло- та вологообміну, адаптивне навчання, капілярно-пористі матеріали. 
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