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Abstract. This study explores the application of a fractional diffusion equation in diffusion-

weighted magnetic resonance imaging (DW-MRI or DWI) analysis, aiming to validate and extend 

previous research based on an open-access dataset. A fractional-order model using the Mittag-

Leffler function is implemented and validated by reproducing results presented in existing literature. 

The method is then applied to an open-access Connectome Diffusion Microstructure Dataset 

(CDMD) to analyze real brain imaging data. The computed parameter maps reveal improved 

contrast between white matter and gray matter, confirming the model’s potential for distinguishing 

tissue properties. The performance of the fractional diffusion model is compared with the 

conventional mono-exponential model, demonstrating improved accuracy in fitting diffusion signal 

attenuations in terms of root mean squared error (RMSE). This research establishes a reproducible 

baseline for future studies on fractional diffusion modeling in MRI and suggests expanding the study 

to larger datasets and exploring refinements in parameter estimation to further enhance diagnostic 

capabilities. 

Keywords: fractional order derivative, fractional diffusion equation, anomalous diffusion, 

Mittag-Leffler function, entropy, kurtosis, Python, MRI, DWI. 

Introduction 

Diffusion-weighted imaging (DWI) is a powerful modality in magnetic resonance imaging (MRI) 

that enables the characterization of tissue microstructure by capturing the diffusion properties of water 

molecules. It plays a crucial role in medical diagnostics, particularly in identifying pathological conditions 

such as ischemic stroke, brain tumors, and neurodegenerative diseases. Traditional DWI analysis relies on 

the mono-exponential model, which assumes Gaussian diffusion, but this simplification often fails to 

account for the complexity of biological tissues. 

Fractional order diffusion models have been increasingly recognized as powerful tools for 

characterizing complex diffusion processes in biological systems. Particularly, some promising 

applications in DWI were proposed. However, these methods usually require more complex calculations 

and impose specific requirements on data and thus as far as we know they were only verified in laboratory 

conditions on very limited data. While recently some large open-access DWI datasets were published that 

may provide valuable information on applicability of these approaches. 

The primary objective of this study is to implement and validate a fractional-order diffusion model 

for DWI analysis. It involves reproducing results from existing fractional diffusion studies, applying the 

methodology to an open-access Connectome Diffusion Microstructure Dataset (CDMD), and evaluating 

the model's effectiveness. The study aims to establish a reproducible baseline for future enhancements in 

diffusion MRI analysis. 
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Objectives and Problems of Research 

The object of the study is the analysis of diffusion-weighted magnetic resonance tomography data. 

The subject of the study is fractional models in the context of analysis of DWI data. 

The main objective of this work is to develop software and algorithms for analysis of anomalous 

diffusion in DWI based on the fractional diffusion equation and to lay the foundations for further 

improvements of existing methods. To achieve this goal, the following tasks were performed: 

• The existing fractional calculus-based models for DWI analysis were examined. 

• One of such models was implemented in Python and results obtained in the original paper were 

reproduced on artificial data. 

• A DWI dataset suitable for application of implemented method was selected. 

• The algorithm was applied to the selected dataset. The results were compared with the ones 

obtained by authors of the approach for a different dataset and with classical DWI processing method. 

Scientific novelty of this research is in the analysis of data obtained with fractional diffusion model 

for CDMD dataset, because as far as we know the considered method has not been applied to such data 

before, and our results demonstrate the possibility of such application. 

The practical significance is in the software developed during this research that provides a 

framework for further investigations. Additionally, because results are obtained for the open-access dataset 

they can be used as a baseline for further improvements in the investigated method. 

Review of Modern Information Sources on the Subject of the Paper 

Diffusion-weighted imaging is a form of magnetic resonance imaging that relies on measurement of 

random motion of water molecules within a tissue. The diffusion of water molecules can be hindered by 

tissue microstructure. Therefore, DWI allows to differentiate between tissues and distinguish regions 

affected by diseases such as ischemic stroke or brain tumor [1]. 

DWI is based on the application of diffusion-sensitizing gradients in an MRI sequence, typically 

using a spin-echo echo-planar sequence (SE-EPI). The degree of diffusion weighting is characterized by b-

value, expressed in units of s/mm2, which is calculated as: 

where γ is the gyromagnetic ratio of a Hydrogen atom, G – magnitude of the diffusion weighted gradient 

pulse, δ – width of applied gradient pulses, Δ – time between two paired gradient pulses [2]. 

Formula (1) can also be expressed as: 

where  is a diffusion gradient strength sensitization (mm-1),  is an effective diffusion 

time (ms) [3]. 

To qualitatively evaluate impedance of water molecules diffusion the apparent diffusion coefficient 

(ADC) is computed based on DWI data. ADC is expressed in units of mm2/s. This can be done by 

analyzing signals obtained with varying b-values. 

The conventional model used to describe diffusion in biological tissues is the mono-exponential 

model, where signal attenuation follows: 

where  is the signal intensity at a given b-value,  is the signal without diffusion weighting, and  

is the ADC [4]. With this model ADC can be directly computed given two DWI signals, one obtained 

without diffusion weighting , and the other at a given b-value (e.g. b = 1000 s/mm2): 

This model assumes Gaussian diffusion, which can be described according to the second-order 

partial differential equation: 

, (1) 

, (2) 

, (3) 

. 
(4) 
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where D is diffusion coefficient and P(x, t) is the diffusion propagator, which provides the probability 

density of finding a molecule at position x at time t. The solution to this equation is the familiar Gaussian 

PDF: 

Equation (5) describes Random Walk (RW) stochastic process, where mean square displacement 

(MSD) grows linearly with time: 

In RW model each diffusing particle waits a fixed time interval between steps. While complex 

environments with heterogenous or porous structures can obstruct particle movement and make it wait 

random times between steps. Therefore, this model is often inadequate for describing complex tissues with 

heterogeneous microstructure. 

Continuous time random walk (CTRW) model generalizes the RW model, by relaxing assumption of 

discrete time intervals between steps. In this model both step lengths and intervals between steps are 

random and are governed by arbitrary and independent probability distributions. The MSD no longer 

increases with a linear dependence on time, but in many cases follows power law: 

Diffusion based on such model is called anomalous. Two variants of such diffusion are distinguished 

based on value of anomalous diffusion exponent . If  the diffusion process is called “superdiffusive” 

and when  it is “subdiffusive”, while with  it is normal diffusion [5, 6]. 

In recent years, fractal analysis methods are being actively developed. They often demonstrate 

superior to classical methods results in describing complex systems [7, 8]. One of fields where this feature 

may be especially useful is medicine. Consequently, many applications of fractal methods to medical data 

were proposed. For example, in [9] the effect of Riesz fractional order derivative-based operator on the 

task of intracranial hemorrhage segmentation is investigated. 

One of the main ideas in fractal analysis of DWI data is that fractional order models can better 

consider anomalous diffusion. Such models are proposed in papers [3, 5]. 

In [3] it was proposed to model diffusion in neural tissue based on CTRW theory and fractional 

calculus. The experiments were performed on fixed rat brain and demonstrated that this model can provide 

new information regarding the anomalous diffusion. 

In [5] a similar model was applied to diffusion weighted magnetic resonance imaging in the brain of 

a chronic ischemic stroke patient. Specifically, it was shown that entropy and kurtosis computed based on 

this model can provide valuable insights into tissue microstructure. 

However, as far as we know this approach was not investigated on larger datasets. Therefore, the 

main objective of this research is to apply method proposed in [3] to open access DWI dataset, to provide a 

baseline that can be used to evaluate further improvements of this approach. 

To consider anomalous diffusion in DWI analysis, some promising approaches based on continuous 

time random walk theory were proposed [3, 5, 6]. The key idea of CTRW theory is to extend the diffusion 

equation with operators of fractional order, that allows describing both Gaussian and anomalous diffusion: 

where  is the Caputo fractional derivative in time for ,  is the Riesz fractional 

derivative in space for  and  is the generalized diffusion constant (distanceβ/timeα). 

Utilizing Fourier and Laplace transforms equation (3) can be expressed as: 

,
 

(5) 

.
 

(6) 

. (7) 

. (8) 

.
 

(9) 
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By applying inverse Laplace transform the following characteristic function is obtained: 

where  is the single-parameter Mittag-Leffler function (MLF) 

When  and  equation (11) becomes a mono-exponential function, suitable for modelling 

Gaussian diffusion: 

While for  and  it can be used to model time-fractional subdiffusion: 

In [3] it is proposed to use (14) as a model for DWI signal attenuation. Because b-value can be 

represented as (2), parameters  and  can be used for k and t respectively in equation (14) 

We cannot directly compute ADC from this model, however having data for multiple b-values we 

can fit it to (14) to estimate parameters D and α. 

Additionally, spectral entropy and excess kurtosis computed based on D and α demonstrated 

valuable information for brain tissues analysis. 

The spectral entropy measures the uncertainty of a characteristic function and can be computed by 

inserting equation (14) into (16). 

where . 

Main Material Presentation 

Connectome Diffusion Microstructure Dataset (CDMD). Application of fractional order model 

proposed in [3] requires specific data. It must contain DWI signal measurements for a wide range of b-

values and pulse sequence parameters δ and Δ need to be specified. While in public datasets often only one 

b-value is provided, which is enough for simpler models such as the mono-exponential one. 

As the result of available datasets analysis, a Connectome Diffusion Microstructure Dataset 

(CDMD) was considered the most suitable one for our research. It contains DWI data for 26 healthy 

participants acquired on the MGH-USC 3 T Connectome scanner with a maximum gradient strength of 300 

mT/m and a custom-built 64-channel head coil [10]. For each participant, acquired data includes two 

diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m 

for each diffusion time, and 32 or 64 uniformly distributed directions. 

Diffusion MRI data was acquired using a two-dimensional SE-EPI sequence. For each participant, 

66–70 contiguous sagittal slices were acquired with the center slice placed along the midline corpus 

callosum to achieve symmetric whole brain coverage. The imaging was performed with the following 

parameters: repetition time (TR) = 3800 ms, echo time (TE) = 77 ms, field of view (FOV) = 216 × 216 mm, 

matrix size = 108 × 108, slice thickness = 2 mm, voxel size = 2 × 2 × 2 mm3, diffusion time (Δ) = 19 or 

49 ms, pulse duration (δ) = 8 ms, eight diffusion-encoding gradient strengths evenly spaced between 30 and 

290 mT/m (i.e., 31, 68, 105, 142, 179, 216, 253, 290 mT/m) for each diffusion time corresponding to 16 

different b-values (i.e., 50, 350, 800, 1500, 2400, 3450, 4750, and 6000 s/mm2 for Δ = 19 ms; 200, 950, 

2300, 4250, 6750, 9850, 13,500, 17,800 s/mm2 for Δ = 49 ms) [10]. 

. 
(10) 

, (11) 

.
 

(12) 

. (13) 

. (14) 

. (15) 

,
 

(16) 
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Each sample of the dataset is stored in a separate directory and contains several files: 

• the DWI data tensor of shape (70, 108, 108, 850) stored in NIfTI format; 

• the brain mask of shape (70, 108, 108) stored in the same NIfTI format; 

• text file with .bval extension providing b-values for each experiment; 

• text file with .delta extension providing diffusion time (Δ) for each experiment. 

Algorithm description  

In this section we describe the algorithm for analysis of DWI data from CDMD based on [3] 

approach. In this research only data for participant #5 was analyzed. We considered only cases with 

diffusion time Δ = 19. Although, in CDMD scanning was performed by sagittal slices, because authors of 

[3] work with axial slices, we also extracted (70, 108) middle axial slice from (70, 108, 108) DWI tensor 

(Fig. 1). 

 

Fig. 1. Examples of middle axial (left) and sagittal (right) slices of a sample from CDMD 

In [5] only one diffusion-weighted gradient direction was used, in [3] the three diffusion weighted 

directions were averaged, therefore in this study we decided to use the average of all 32 directions 

available for each b-value in the dataset. 

After that only the region corresponding to brain was selected utilizing brain mask provided in 

CDMD (Fig. 2). By performing this preprocessing, we obtained an array of b-values b and an array of 

corresponding signal values S(b) averaged by diffusion directions for each voxel of the brain. 

 

Fig. 2. Examples of the same middle axial (left) and sagittal (right) slices of a sample from CDMD after setting all 

voxels outside the brain mask to 0 

To find D and α, this data was fit to equation (15) using Levenberg-Marquardt minimization 

algorithm for solving nonlinear least-squares problem with bounds on the variables. Initial guesses on 

independent variables are D = 0.5 and α = 0.5. Variables are bounded with [0, 1] for D and [0.1, 1] for α. 

After estimating D and α separately for each voxel, we used them for calculation of the entropy H 

according to formula (16) and the excess kurtosis K according to formula (17). 

Software implementation. All experiments were performed in Python programming language. 
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Firstly, CDMDDataset class was implemented. It stores some dataset constant parameters and has one 

method load_sample that given a sample name, diffusion time Δ and slice index loads DWI data using 

nibabel library. 
class CDMDDataset: 

    def __init__(self, data_root: Path): 

        self.data_root = data_root 

        self.Gs = [31, 68, 105, 142, 179, 216, 253, 290] 

        self.small_delta = 8 

     

    def load_sample( 

            self, sample: str, big_delta: float, slice_id: int) -> Sample 

It returns a structure containing one DWI slice, brain mask and corresponding metadata. 
@dataclass 

class Sample: 

    image: np.ndarray 

    bvalues: np.ndarray 

    mask: np.ndarray 

    delta: float 

Fitting pipeline is based on the source code of dwilib repository. A custom model based on equation 

(15) was added. For MLF calculation numfracpy library was used that implements approach proposed in 

[11]. 
from numfracpy import Mittag_Leffler_one 

 

def adc_mlf_alpha(ADCs, alpha, b, delta): 

    results = [] 

    for b_i in b: 

        q = np.sqrt(b_i / delta) 

        k, t = q, delta 

        f = -ADCs * np.abs(k)**2 * t**alpha 

        result = Mittag_Leffler_one(f, alpha) 

        results.append(result) 

    return np.asarray(results) 

Because this model involves more complex computations than the standard ones and each voxel is 

fit independently, the library source code was modified to support parallel fitting of each voxel using 

tqdm’s process_map that is based on multiprocessing standard library module. Also to avoid unnecessary 

calculations only voxels covered by the brain mask are considered, and the results are reshaped to the 

original image size using the following function: 
def restore_masked_result(result: np.ndarray, mask: np.ndarray) -> np.ndarray: 

    restored_results = [] 

    for i in range(result.shape[-1]): 

        img = np.zeros_like(mask, dtype=np.float64) 

        img[mask != 0] = result[:, i].flatten() 

        restored_results.append(img) 

    return np.dstack(restored_results) 

For entropy and excess kurtosis calculation the next two functions were implemented: 
def compute_entropy(sample: Sample, D: np.ndarray, alpha: np.ndarray) -> np.ndarray: 

    entropy = np.zeros_like(D) 

    for i, j in np.argwhere(sample.mask != 0): 

        p = adc_mlf_alpha(D[i, j], alpha[i, j], sample.bvalues, sample.delta) 

        p_hat = p * np.conjugate(p) 

        entropy[i, j] = stats.entropy(p_hat, base=len(p_hat), axis=0) 

    return entropy 

 

def compute_kurtosis(sample: Sample, alpha: np.ndarray) -> np.ndarray: 

    K = 6 * (gamma(alpha + 1)**2 / gamma(2 * alpha + 1)) - 3 

    K[sample.mask == 0] = 0 

    return K 

Finally, matplotlib and plotly libraries are used for visualizations and data analysis. 
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Results and Discussions 

Verification on artificial data. To verify correctness of implemented algorithm, experiment from 

[3] was performed. The entropy was computed for cases of  and . The diffusion 

coefficient was fixed as D=1, diffusion time set to t=1, and N=500 wavenumbers ki from 0 to 5 were 

considered. On Fig. 3 the resulting entropy surface plot is shown. 

 

Fig. 3. MLF spectral entropy surface plot 

This plot corresponds to the one presented in [3] and confirms that our implementation matches the 

original method. 

Analysis of parameter maps. The obtained DMLF has some outliers with very high values and 

therefore extremely poor contrast, as can be seen on the Fig. 4. Because of that we clipped all values larger 

than 0.1. 

 

Fig. 4. DMLF parameter plot (left) and its histogram (right). The histogram’s y axis is in logarithmic scale 

On Fig. 5 four parameter maps are shown. DMLF is already clipped to exclude outliers and improve 

contrast. However, still DMLF has an unexpectedly wide range of values. In the paper [3] DMLF had a 

dynamic range of (0, 0.003) while in our case there are many voxels with DMLF > 0.003. The reason for this 

may be different non-linear fitting parameters, because they are not specified in the original paper. 

On the other hand, excess kurtosis K provides a good contrast between white matter (WM) and gray 

matter (GM), which aligns with the results in the paper [3]. Also, the same nearly inverse relationship 

between K and α can be observed. 

Entropy (H) parameters map contrast is rather low, with most values concentrated around 0.7. In [3] 

the situation is similar for healthy regions of the brain, while the main advantage entropy provides is a 
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good segmentation of ischemic tissue. Because in our case all patients in the dataset are healthy, entropy 

may not be that useful, but still, it can help to distinguish some brain tissues. 

 

Fig. 5. Resulting parameter maps for MLF model: α, DMLF, excess kurtosis (K), spectral entropy (H) 

Comparison with mono-exponential model. To assess the effectiveness of the MLF-based 

approach, four parameter maps (Fig. 5) were compared with the conventional ADC map (Fig. 6). For this 

comparison, the DWI signal data from the same slice were also fitted to a mono-exponential model. 

 

Fig. 6. Resulting ADC parameter map for mono-exponential model 

ADC parameters map has worse contrast between WM and GM than K and α of the MLF model. 

Some similarity with entropy can be observed, regions with lower entropy have higher ADC value. Also, 

parameter map values are in range from 0 to 0.003 which is expected for classical ADC. 

To quantitatively evaluate accuracy of both models Root Mean Squared Error (RMSE) between 

fitted function and data was computed for each voxel. To exclude outliers with very high errors, 1% of 

voxels with highest RMSE was ignored. These outliers are probably due to noise in the data, because they 

are observed with both models. Then average RMSE for all voxels fit with MLF model is 0.03, while for 

mono-exponential model it is 0.06. Thus, we can confirm that by considering subdiffusion MLF model 

better fits DWI data. Fig. 7 provides more information on distribution of errors. 
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Fig. 7. RMSE histograms for voxels fit to MLF and mono-exponential models 

Conclusions 

In this study fractional order approach to DWI analysis is investigated. Specifically, a method based 

on CTRW theory proposed in [3] was implemented and validated on open-access dataset. The main results 

obtained in this paper are as follows: 

• A Python software was developed that implements the discussed method and provides some 

research tools for conveniently applying it to samples from CDMD dataset and results analysis.  

• It was verified that the method can be applied to data from CDMD dataset, and the results were 

compared with the ones reported in the original paper. They mostly align, except DMLF having too wide 

dynamic range. 

• The results obtained with MLF model were compared with the classical mono-exponential 

approach. The accuracy of fitting data to each model was evaluated with RMSE and it demonstrated that 

MLF model has twice lower error than the mono-exponential one (0.03 vs 0.06 respectively). 

It is worth noting that these experiments were performed for a single sample from CDMD dataset, 

therefore one of the future research directions is to repeat this research for the whole dataset. The results of 

this research provide a baseline that can be used for testing further improvements of an investigated 

approach. For example, a case when both α and β are changing can be considered. 
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ЗАСТОСУВАННЯ МОДЕЛІ ДИФУЗІЇ ДРОБОВОГО ПОРЯДКУ В АНАЛІЗІ ДАНИХ ДИФУЗІЙНО-

ЗВАЖЕНОЇ МАГНІТНО-РЕЗОНАНСНОЇ ТОМОГРАФІЇ 

Отримано: Лютий 20, 2025 / Переглянуто: Лютий 28, 2025 / Прийнято: Березень 03, 2025 

© Манохін Д., Соколовський Я., 2025 

Анотація. У цьому дослідженні розглядається застосування рівняння дифузії дробового порядку 

для аналізу дифузійно-зваженої магнітно-резонансної томографії (DW-MRI або DWI) з метою валідації 

та розширення попередніх досліджень на основі відкритого набору даних. Було реалізовано модель 

дробового порядку з використанням функції Міттага-Леффлера та перевірено її коректність шляхом 

відтворення результатів, представлених у науковій літературі. Далі метод був застосований до 

відкритого набору даних Connectome Diffusion Microstructure Dataset (CDMD) для аналізу реальних 

зображень головного мозку. Отримані карти параметрів показали покращений контраст між білою та 

сірою речовиною, що підтвердило потенціал моделі для розрізнення властивостей тканин мозку. 

Ефективність моделі дробової дифузії була порівняна з традиційною моноекспоненційною моделлю, 

демонструючи вищу точність у відтворенні затухання дифузійного сигналу за критерієм 

середньоквадратичної похибки (RMSE). Це дослідження встановлює відтворювану базу для майбутніх 

робіт у галузі моделювання дробової дифузії в МРТ та пропонує розширення дослідження на більші 

набори даних, а також вдосконалення методів оцінювання параметрів для покращення діагностичних 

можливостей. 

Ключові слова: дробова похідна, дробове рівняння дифузії, аномальна дифузія, функція Міттаг-

Леффлера, ентропія, ексцес, Python, MRI, DWI. 
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