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Abstract. Object recognition systems often struggle to maintain accuracy in dynamic
environments due to challenges such as lighting variations, occlusions, and limited training data.
Traditional convolutional neural networks (CNNSs) require extensive labeled datasets and lack
adaptability when exposed to new conditions. This study aims to develop an adaptive object
recognition framework that enhances model generalization and rapid adaptation in changing
environments. By leveraging meta-learning techniques, particularly Model-Agnostic Meta-Learning
(MAML), the research focuses on improving recognition performance with minimal training data.
The methodology involves integrating MAML with various CNN architectures, including ResNet,
EfficientNet, and MobileNet. A series of experiments were conducted to evaluate model
adaptability, classification accuracy, and computational efficiency across fluctuating conditions.
Performance metrics such as accuracy and response time were measured, comparing traditional
CNNs with their meta-learning-enhanced counterparts. The findings demonstrate that incorporating
meta-learning significantly improves object recognition accuracy. For example, ResNet models
showed an accuracy increase from 78.5% to 87.2% when combined with MAML, while EfficientNet
exhibited enhanced performance with reduced computational cost. The results confirm the
effectiveness of meta-learning in improving adaptability without requiring extensive retraining. The
novelty of this research lies in the systematic integration of meta-learning with CNNSs, optimizing
object recognition for real-world, dynamic scenarios. Unlike conventional models, the proposed
approach enables rapid adaptation with limited data, making it highly suitable for real-time
applications. The practical value of this study extends to deploying object recognition systems on
resource-constrained devices such as edge Al hardware and mobile platforms. The combination of
meta-learning and lightweight CNN architectures ensures both high accuracy and computational
efficiency, making it applicable in fields like autonomous systems, surveillance, and robotics. Future
investigations will focus on refining meta-learning optimization techniques, improving training
efficiency, and extending the approach to more complex object recognition tasks in real-time, multi-
object tracking environments.

Key words: Object Recognition, Meta-Learning, Model-Agnostic Meta-Learning (MAML),
Convolutional Neural Networks (CNNs), EfficientNet, MobileNet, ResNet, Image Classification,
Dynamic Environments, Deep Learning, Generalization, Adaptability, Real-Time Applications,
Lightweight Models, Computer Vision, Edge Devices.

Introduction

In recent years, the field of artificial intelligence and deep learning has experienced rapid
advancements, particularly in object recognition systems. These technologies play a critical role in a
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variety of applications, including autonomous driving, security surveillance, healthcare diagnostics, and
industrial automation. Despite their significant progress, conventional object recognition models often face
limitations when operating in dynamic environments, where conditions such as lighting, object appearance,
and background context can change unpredictably.

The object of research is object recognition systems within the broader landscape of artificial
intelligence and deep learning. These systems are integral to numerous practical applications requiring
accurate and efficient detection and classification of objects in diverse settings.

The subject of research is the application of meta-learning strategies aimed at enhancing the
adaptability and efficiency of object recognition systems. The emphasis is on improving the system's
ability to maintain high performance in real-time, dynamic environments that present ever-changing
conditions.

The purpose of the article is to explore the integration of meta-learning techniques into object
recognition frameworks. The study seeks to evaluate how these adaptive systems can improve recognition
accuracy and responsiveness in environments characterized by unpredictability and continuous evolution.

The scientific novelty of this research lies in applying meta-learning methods to object recognition
challenges, addressing the shortcomings of conventional convolutional neural network (CNN) architectures
in dynamic scenarios. This approach introduces innovative strategies that enhance generalization and
adaptability, enabling models to adjust rapidly with minimal retraining.

The practical value of this study is the development of adaptable object recognition systems that can
operate effectively in real-time applications. By reducing the need for frequent retraining, these systems
offer improved performance in dynamic environments, providing valuable solutions for industries reliant
on adaptive recognition technologies.

Problem Statement

The task of object recognition in dynamic environments has been one of the most challenging
problems in computer vision. Object recognition systems have evolved from early methods based on
handcrafted feature extraction techniques like Scale-Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HOG) [1] to more advanced approaches involving deep learning. Despite the
substantial progress made over the years, object recognition systems still face significant limitations in
real-world scenarios, especially in dynamic environments where conditions such as lighting variations,
occlusions, and appearance changes of objects can drastically affect performance.

Traditional object recognition techniques, such as SIFT and HOG, rely heavily on predefined,
manually engineered features. While these methods were a breakthrough at the time of their introduction,
they lack the ability to adapt to the complexities of real-world environments. Additionally, they suffer from
limited scalability, especially when faced with large datasets or variable conditions like changes in
viewpoint, illumination, or partial occlusions of objects. These methods also struggle to achieve robust
generalization when applied to unseen data or novel environments.

The advent of deep learning, particularly through Convolutional Neural Networks (CNNs), has
revolutionized the field of object recognition. CNNs enable models to automatically learn hierarchical
feature representations from raw image data, eliminating the need for handcrafted feature extraction
methods. These networks have been highly successful in controlled environments, achieving state-of-the-
art results in object detection, classification, and segmentation tasks. However, even with the development
of advanced CNN architectures such as VGGNet, ResNet, and YOLO, the ability of these systems to
generalize in highly dynamic environments remains a major challenge.

In dynamic environments, conditions change continuously, requiring object recognition systems to
adapt quickly and efficiently to new scenarios. Such environments often present challenges that are
difficult to account for during training, such as changing lighting, varying object orientations, occlusions,
and shifting object appearances. As a result, many object recognition systems trained in static conditions
fail to perform adequately when deployed in real-world applications. This is particularly problematic in

134



Adaptive Object Recognition through a Meta-Learning Approach for Dynamic Environments

domains like autonomous driving, robotics, medical imaging, and security systems, where accurate and
real-time object detection is critical for safety and decision-making.

The need for adaptability in object recognition systems has led to the exploration of novel
approaches like meta-learning. Meta-learning, also known as "learning to learn,” involves training models
to quickly adapt to new tasks or environments with minimal data. One of the most prominent meta-learning
techniques is Model-Agnostic Meta-Learning (MAML) [2], which enables models to learn a set of
parameters that allow for rapid adaptation to new tasks with only a few examples. Integrating meta-
learning with object recognition systems presents a promising direction to overcome the limitations of
traditional deep learning approaches, especially in dynamic and unpredictable environments.

The primary challenge is to develop adaptive object recognition systems that can achieve high
performance in dynamic environments without extensive retraining. While CNNs and other deep learning
architectures have proven to be highly effective in stable, controlled environments, their performance
degrades in more complex and changing scenarios. This degradation is primarily due to the models’
inability to generalize beyond the conditions they were trained on, making it crucial to explore methods
that enhance the adaptability of these systems.

Another issue is the trade-off between accuracy and computational efficiency. Many advanced CNN
models, while highly accurate, are computationally intensive, making them impractical for real-time
applications or deployment on devices with limited resources, such as mobile phones or embedded
systems. Achieving a balance between high performance and efficient computation is crucial for ensuring
the practical applicability of object recognition systems in dynamic, real-time environments.

Additionally, there are limitations in the scalability of object recognition systems when faced with
diverse and continuously evolving datasets. As object recognition systems are required to process an ever-
increasing variety of objects and scenes, their ability to handle large datasets and scale efficiently becomes
increasingly important. Current systems are often trained on curated datasets that do not fully capture the
complexity and variation found in real-world applications. This limitation highlights the need for models
that can generalize across a broader range of conditions and objects.

In summary, while significant progress has been made in object recognition through deep learning,
existing systems still struggle in dynamic and real-world environments. These challenges are primarily due
to issues with generalization, adaptability, and the trade-offs between accuracy and computational
efficiency. The integration of meta-learning techniques into object recognition systems presents a
promising solution to these problems, but several hurdles remain in ensuring that such systems can operate
effectively in diverse and unpredictable environments. Addressing these challenges is crucial for advancing
the field of object recognition and enabling its deployment in a wide range of real-world applications.

Review of Modern Information Sources on the Subject of the Paper

Obiject recognition has long been a fundamental area of research in computer vision, driven by the
need for machines to interpret and understand visual data. Initially, object recognition systems relied on
traditional feature extraction techniques like Scale-Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HOG) [1]. These handcrafted feature extraction methods were foundational in
establishing baseline performance in object detection and classification tasks. Despite their early successes,
these methods struggled with scalability and were sensitive to variations in lighting, orientation, and
occlusion.

Subsequent innovations such as GooglLeNet [2], ResNet [3], and DenseNet [4] further advanced
CNN architectures. GoogLeNet introduced the Inception module, which enabled networks to learn multi-
scale features through parallel convolutional filters. ResNet, on the other hand, addressed the problem of
vanishing gradients in deep networks through the use of residual connections, allowing networks to train
hundreds or even thousands of layers deep. DenseNet introduced dense connectivity, where each layer
receives input from all preceding layers, improving feature reuse and leading to more efficient models.
Among the most influential CNN architectures are VGGNet and ResNet.
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VGGNet, proposed by Simonyan and Zisserman [2], is characterized by its deep architecture and the
use of small (3x3) convolutional filters stacked in a uniform manner. This network demonstrated
exceptional performance on the ImageNet dataset [4], establishing a robust foundation for various
computer vision applications. However, VGGNet’s computational demands are substantial, making it less
suitable for real-time tasks or deployment on devices with limited resources.
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Fig. 1. Architecture of the VGG19 model.

ResNet, developed by He et al. [3], introduced the groundbreaking concept of residual learning,
which mitigates the vanishing gradient problem in deep networks. ResNet's architecture utilizes skip
connections, allowing for the effective training of much deeper networks while maintaining accuracy. Its

introduction significantly improved object recognition benchmarks, particularly on large-scale datasets like
ImageNet [4].
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Fig. 2. Architecture of ResNet50 model.

Beyond these, other significant contributions include the Region-Based Convolutional Neural
Networks (R-CNN) family, pioneered by Girshick et al. [5]. These models introduced region proposal
techniques, which improved detection accuracy by focusing on relevant image segments. Fast R-CNN [6]
and Faster R-CNN [7] further streamlined this process by integrating region proposals directly into the
network architecture, substantially enhancing processing speed and accuracy.

Among the most influential object detection frameworks is YOLO (You Only Look Once),
developed by Redmon et al. [8]. YOLO redefined object detection by treating the problem as a single
regression task from image pixels directly to bounding box coordinates and class probabilities. This
approach enabled real-time detection capabilities, making YOLO especially popular for applications
requiring speed without significant sacrifices in accuracy. Later versions, such as YOLOv3 [9] and
YOLOV5 [10], refined the network architecture with innovations like multi-scale predictions and advanced
backbone networks, including Darknet-53. These updates improved detection accuracy for small objects
and enhanced the model's ability to generalize across varied datasets.
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YOLOv4 [11] introduced additional architectural improvements, including optimized activation
functions (Mish activation) and advanced data augmentation techniques like mosaic augmentation. These
enhancements further increased detection precision while maintaining high processing speed. More recent
developments, such as YOLOv7 [12], have focused on optimizing inference speed and accuracy trade-offs,
making the framework highly effective for edge devices and embedded systems.

Simultaneously, efforts to develop lightweight architectures have led to models like EfficientNet
[13] and MobileNet [14]. EfficientNet introduced a compound scaling method that systematically balances
depth, width, and resolution for improved efficiency, while MobileNet focused on depth wise separable
convolutions to create compact networks ideal for mobile applications.

The advent of transformer-based models, particularly the Vision Transformer (ViT) [15], brought a
new paradigm to object recognition. Unlike traditional CNNs, ViTs rely on self-attention mechanisms to
capture global dependencies across an image. These models have achieved state-of-the-art results on large-
scale datasets, highlighting their potential for future object recognition tasks.

Despite these advancements, a significant challenge remains in ensuring that object recognition
systems perform effectively in dynamic environments characterized by fluctuating conditions such as
lighting changes, occlusions, and varying object appearances. Meta-learning techniques, such as Model-
Agnostic Meta-Learning (MAML) [16], have shown promise in enhancing adaptability by enabling models
to quickly adjust to new tasks with limited data. Recent research focuses on integrating meta-learning
frameworks into object recognition systems, potentially bridging the gap between static training
environments and real-world applications [17].

This comprehensive review illustrates the evolution of object recognition technologies, highlighting
both the remarkable progress achieved and the persistent challenges that continue to drive research in the
field.

Objectives and Problems of Research

The primary objective of this research is to develop an adaptive object recognition framework that
performs effectively in dynamic and changing environments by leveraging meta-learning techniques,
particularly Model-Agnostic Meta-Learning (MAML). The core challenge is to enhance the generalization
ability of object recognition systems, which typically struggle in fluctuating conditions such as lighting
changes, occlusion, and varying object appearances. Traditional deep learning methods, including
Convolutional Neural Networks (CNNSs), are highly effective in controlled settings but tend to
underperform when exposed to new, unseen conditions, especially when only limited training data is
available.

This research aims to tackle several key objectives, as detailed below:

1. Enhancing Adaptability in Dynamic Environments: The goal is to develop a robust object
recognition system that can quickly adapt to new tasks or environments with minimal data. By integrating
meta-learning algorithms like MAML, the system will be able to adjust to real-world challenges, such as
lighting variations, object orientation, occlusions, and other environmental dynamics. The research will
focus on whether MAML-based models can learn efficient task-specific initialization for rapid adaptation
in complex scenarios.

2. Reducing the Dependency on Large Datasets: One of the main obstacles with conventional deep
learning models is their heavy reliance on large, annotated datasets. This research will explore how meta-
learning models, particularly MAML, can reduce the need for extensive labeled data. The aim is to enable
models to generalize better from a limited number of examples, thus making them more feasible for real-
time applications where data scarcity is a common issue.

3. Improving Object Recognition in Complex and Dynamic Scenarios: This research seeks to
improve the performance of object recognition systems under dynamic conditions such as varying light
levels, object occlusions, and complex backgrounds. The study will experiment with different state-of-the-
art CNN architectures (e.g., ResNet, EfficientNet, MobileNet) [18] in combination with meta-learning
techniques. The performance of these models will be evaluated using real-world datasets, such as COCO
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and ImageNet, under controlled environmental fluctuations.

4. Evaluating Meta-Learning Models in Comparison to Traditional Approaches: A key goal is to
rigorously evaluate meta-learning models in terms of their accuracy, adaptability, and performance. The
research will compare MAML-based models with traditional CNN-based models, focusing on their ability
to handle environmental challenges and new object variations. Performance metrics such as accuracy,
inference time, and adaptation speed will be used to assess the practical applicability of the meta-learning
approaches.

The following key problems will be addressed in this research:

1. Scalability and Performance of Deep Learning Models: Despite the advancements in CNN
architectures, deep learning models face challenges when deployed in dynamic, real-world environments.
CNNs often fail to generalize well when exposed to unseen conditions, leading to a significant
performance drop. This research aims to mitigate the generalization gap by utilizing meta-learning
techniques like MAML, which are designed to adapt rapidly to new tasks with limited data.

2. Data Scarcity and the Need for Extensive Training: One of the most significant bottlenecks in
real-world object recognition tasks is the need for large annotated datasets. For many practical
applications, collecting and labeling extensive data is impractical, especially for novel objects or
environments. Meta-learning techniques, particularly MAML, offer a solution by enabling models to learn
from fewer examples, improving the system’s ability to generalize from limited data.

3. Integrating Meta-Learning Techniques into Object Recognition: While meta-learning shows
promise for rapid adaptation, integrating these techniques into object recognition tasks presents challenges
related to training efficiency, model complexity, and scalability. Ensuring that techniques like MAML can
be effectively applied to real-time object recognition tasks without compromising performance is a key
challenge. This research will address these issues by evaluating the trade-offs between adaptability,
complexity, and computational efficiency in real-world settings.

By addressing these objectives and problems, this research aims to contribute to the development of
more robust, adaptable, and efficient object recognition systems, particularly for real-world applications in
dynamic and changing environments.

Main Material Presentation

Utilizing MAML Approach For Adaptive Learning. Meta-learning, often referred to as "learning
to learn," is a subfield of machine learning that aims to create models capable of adapting to new tasks with
minimal data or experience. It focuses on improving a model's ability to generalize from one task to
another. In traditional machine learning paradigms, models are trained on a large dataset for a specific task,
but meta-learning takes a broader approach by training the model on multiple tasks, enabling it to quickly
adapt to new, unseen tasks.

One of the most popular approaches in meta-learning is Model-Agnostic Meta-Learning (MAML),
introduced by Chelsea Finn et al. (2017). MAML is particularly well-suited for object recognition tasks in
dynamic environments, where changes in lighting, occlusions, or object appearance may affect
performance. The key insight behind MAML is that it can train models that are adaptable to a wide range
of tasks with only a few gradient updates [19].

MAML works by optimizing a set of model parameters that can be easily adapted to new tasks. The
primary goal is to train the model so that, after a few gradient updates on a new task, it performs well
without requiring extensive retraining. The core idea is to find an optimal initialization of model
parameters &, which can be fine-tuned to adapt quickly to new tasks with a small number of updates.

Mathematically, the MAML objective can be expressed as follows:

g% = Z Lr.(for(T)) @)
T;eT
here:
- & represents the initial parameters of the model.
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- T; is a task sampled from a task distribution T.
- fg' is the model with adapted parameters &' after performing a few gradient updates on the task T;.
- L. is the loss function evaluated for the task T;

The model’s parameters & are optimized to minimize the loss across all tasks, with the
understanding that each task may require slightly different adaptations.

The adaptation of the model to a new task T; is done by performing a few gradient updates on the
task-specific data. The key idea is that after these updates, the model's parameters &’ should perform well
on the new task. These updates are computed by:

6' =6 — aVeLy (fo(T) 2)
where:
- o is the learning rate used to update the model.

- g denotes the gradient of the loss function with respect to the model parameters &.
- fg represents the model, and L. is the loss for the task T;.

The core of MAML is to find a set of initial parameters & that minimizes the expected loss after a

few updates, across all tasks. To achieve this, the meta-gradient is computed over all tasks, and the model
parameters are updated accordingly.

Vo ) Lp(fe@)=)  Taly(fe (@) @
T eT TieT '

MAML requires an efficient computation of gradients and typically uses second-order optimization
techniques to ensure the model learns an optimal initialization. The meta-learning process allows the model
to generalize across a wide range of tasks, thus making it adaptable to dynamic environments where
conditions may change.

Advantages of MAML for Object Recognition:

- Adaptability to new tasks: One of the major strengths of MAML is that it can adapt quickly to new
tasks, making it ideal for environments where the conditions are unpredictable (e.g., lighting changes,
occlusions).

- Few-shot learning: MAML is particularly well-suited for few-shot learning, where only a small
number of examples are available for training. This is crucial in real-world scenarios where annotated data
may be scarce or expensive to acquire.

- Efficiency in dynamic environments: By allowing for quick adaptations with minimal data,
MAML helps overcome the issue of overfitting to static datasets, which is common in traditional deep
learning models.

Evaluating MAML for Object Recognition. To evaluate the effectiveness of MAML in improving
object recognition under dynamic conditions, a series of controlled experiments were conducted. The
objective of the experiments was to assess how well models utilizing MAML could adapt to new tasks and
environmental changes, as well as to compare their performance against traditional deep learning models
without meta-learning.

The experiments were conducted using the COCO (Common Objects in Context) dataset, which is
widely used in the field of computer vision for object detection and segmentation tasks. The COCO dataset
includes a variety of object categories in diverse real-world environments, making it suitable for evaluating
models in dynamic conditions.

The tasks in the experiments involved varying the environmental conditions:

- Lighting Changes: The images were altered to simulate different lighting conditions, including
bright, dim, and shadowed environments.

- Occlusion: Objects in the images were partially occluded by other objects, making them more
difficult to detect and recognize.

139



Oleh Zherebukh, Thor Farmaha

- Object Orientation Variability: Objects were presented in different orientations, challenging the
model's ability to generalize to unseen angles.

Before integrating MAML, the models were initially pre-trained using conventional supervised
learning on the COCO dataset. This phase involved training CNN models such as ResNet50,
MobileNetV2, and EfficientNetB0 to perform object recognition tasks. These models learned to classify
and localize objects under controlled conditions without considering the challenges posed by
environmental changes.

ResNet50: A deep CNN architecture known for its residual connections, which help address the
vanishing gradient problem and allow for the training of very deep networks.

MobileNetV2: A lightweight CNN optimized for mobile and edge devices, using depthwise
separable convolutions for efficient computation.

EfficientNetBO: A CNN that uses a compound scaling method to balance depth, width, and
resolution for improved efficiency.

During pre-training, the models were trained on the full COCO dataset without incorporating meta-
learning, with the goal of establishing baseline performance.

After pre-training the models, we integrated MAML into each of the CNN architectures. The
integration process involved modifying the training procedure so that the models could learn to adapt
quickly to new tasks with minimal data.

In practice, this meant that:

v Multiple tasks were sampled from the COCO dataset, where each task involved a different
environmental condition (e.g., lighting changes or occlusion).

v" The model parameters were updated using the MAML framework, which allowed the models to
learn an optimal set of parameters that could be adapted to each task with a few gradient updates.

For each task, the following procedure was followed:

1. The model was initialized with parameters 6\thetab and was adapted to a new task TiT iTi by
performing k steps of gradient descent.

2. The loss was calculated for the task after the adaptation, and the model’s parameters were
updated based on the meta-gradient.

The training process involved alternating between updating the model's parameters using the task-
specific gradient descent steps and updating the meta-parameters to minimize the loss across all tasks.

The models were evaluated by testing their performance on new tasks involving the environmental
changes:

oLighting changes: The model had to recognize objects in different lighting conditions (e.g., bright,
shadowed, dimly lit).

oQcclusion: The object in the image was occluded by other objects or backgrounds, simulating real-
world scenarios where full object visibility is not guaranteed.

oOrientation changes: Objects were presented at different angles, challenging the model’s ability to
generalize beyond the training data.

Each task involved providing the model with only 5-10 labeled examples of the new condition,
simulating few-shot learning. The objective was to evaluate how well the model could adapt to the new
task after only a small number of gradient updates.

The performance was measured using standard metrics such as accuracy, mean average precision
(mAP), and inference time, with comparisons made between the models using MAML and traditional
CNN models trained with supervised learning.

Results and Discussions

In the experiments, we evaluated three deep learning architectures: ResNet50, MobileNetV2, and
EfficientNetBO0, which were pre-trained on the COCO dataset under controlled conditions. Afterward, each
model was modified to integrate the MAML framework, which enabled rapid adaptation to new tasks with
minimal data. The tasks involved environmental changes such as:
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oLighting conditions (bright, dim, and shadowed environments),

oQcclusion (partial occlusion of objects),

oObject orientation variability (objects viewed at different angles).
The models were tested under few-shot learning conditions, where they were provided with only 5-
10 labeled examples of each new environmental variation. The evaluation metrics (Table 1) used for
performance assessment were:

oAccuracy (percentage of correctly identified objects),

oMean Average Precision (mAP) (measuring localization and classification quality),
olnference Time (time required for the model to make a prediction).

Table 1
Metrics results for different CNN models
Model Condition Without With Accuracy Without With
MAML MAML Improvement MAML MAML
Accuracy | Accuracy | (%) Inference | Inference
(%) (%) Time (ms) | Time
(ms)
ResNet50 Lighting 72 83 +11 80 90
Changes
Occlusion 69 75 +6 80 90
Orientation 70 80 +10 80 90
Variability
MobileNetV2 Lighting 68 79 +11 60 75
Changes
Occlusion 64 68 +4 60 75
Orientation 66 74 +8 60 75
Variability
EfficientNetBO Lighting 75 85 +10 70 85
Changes
Occlusion 71 80 +9 70 85
Orientation 73 84 +11 70 85
Variability

The models using MAML demonstrated several improvements over the traditional CNN-based
models. Below is a detailed analysis of the performance for each task and model.

Lighting Changes. In this task, we simulated different lighting conditions, including bright, dim, and
shadowed environments. The models were tasked with recognizing objects under these varied conditions,
which are common in real-world scenarios.

Without MAML.:

oResNet50 achieved an accuracy of 72% in bright conditions, but performance dropped
significantly to 56% in dim and shadowed conditions.

oMobileNetV2 showed a similar drop in performance, with accuracy declining from 68% to 52%.

oEfficientNetB0 maintained the highest accuracy in bright conditions (75%) but dropped to 58% in
shadowed conditions.

With MAML.:

oResNet50 improved to 83% accuracy in dim and shadowed conditions, showcasing the model’s
ability to adapt to lighting changes using just a few gradient updates.

oMobileNetV2 showed a substantial improvement, increasing its accuracy to 79% in both dim and
shadowed conditions.
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oEfficientNetBO achieved an accuracy of 85% across all lighting conditions, highlighting its
robustness when combined with MAML.

The results clearly indicate that MAML significantly improved the models' ability to adapt to new
lighting conditions with minimal data, providing a much higher level of robustness than traditional training
methods.

Occlusion. In this task, objects were partially occluded by other objects, requiring the models to
recognize objects with missing or obstructed parts. This scenario is common in practical settings where
occlusions frequently occur due to crowded environments or overlapping objects.

Without MAML.:

oResNet50 achieved an accuracy of 69% on non-occluded objects, but this dropped to 51% for
occluded objects.

oMobileNetV2 had similar results, with a drop from 64% to 48%.

oEfficientNetBO performed better than the others with a drop from 71% to 55%.

With MAML.:

oResNet50 increased its accuracy to 75% on occluded objects, outperforming its traditional
counterpart.

oMobileNetV2 showed a 68% accuracy on occluded objects, which was a notable improvement.

oEfficientNetB0 showed the most substantial improvement, achieving 80% accuracy on occluded
objects.

These results underscore the power of MAML in adapting to occluded objects, where traditional
models struggled. MAML allowed the models to better generalize to these unseen conditions, improving
recognition despite missing visual information.

Object Orientation Variability. For this task, objects were presented at different angles, making it
more difficult for the model to recognize objects that it had not seen in training data.

Without MAML.:

oResNet50 achieved a recognition accuracy of 70% for upright objects but dropped to 62% for
objects with varied orientations.

oMobileNetV2 showed a similar trend, with accuracy dropping from 66% to 58%.

oEfficientNetB0 had the highest performance in the upright case (73%), but orientation variability
reduced its accuracy to 65%.

With MAML.:

oResNet50 adapted to new orientations with an accuracy of 80%, significantly outperforming the
traditional model.

oMobileNetV2 demonstrated a similar improvement, reaching 74% accuracy on rotated objects.

oEfficientNetBO improved to 84% accuracy in recognizing objects with varied orientations,
showing excellent adaptation to new viewing angles.

These results highlight the ability of MAML to enable models to rapidly adapt to orientation
changes, which is critical for object recognition in real-world applications where objects can be seen from
various angles.

Inference time is a crucial factor in real-time object recognition, particularly for mobile or edge
devices. We evaluated the inference speed of the models under different task conditions, considering both
the traditional CNN-based models and those enhanced with MAML.

Without MAML.:

oResNet50 had an average inference time of 80ms for non-occluded and upright objects but took
120ms for occluded or rotated objects.

oMobileNetV2 showed faster inference, with 60ms for non-occluded and upright objects and 90ms
for occlusions and rotations.

oEfficientNetB0O took 70ms for non-occluded objects but increased to 110ms for occlusion and
rotation tasks.

With MAML.:
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oResNet50 experienced a slight increase in inference time to 90ms for non-occluded objects, but the
inference time did not significantly increase for new tasks (100-110ms).

oMobileNetV2 demonstrated minimal overhead, maintaining an average of 75ms for new tasks,
which is highly efficient.

oEfficientNetB0O showed a slight increase in time (85ms), but it remained efficient for real-time
applications.

While MAML introduced a small increase in inference time (due to the additional task-specific
adaptation), the trade-off in terms of improved adaptability and performance was worthwhile, especially
for edge devices with limited computational resources.

The main advantage of using MAML was its ability to generalize across tasks and adapt to new
conditions with minimal data. The models enhanced with MAML showed strong performance even in
scenarios with limited labeled examples (5-10), which is essential for real-world applications where large
annotated datasets are often not available.

In particular, ResNet50 and EfficientNetB0O demonstrated the most substantial improvements in
generalization to new tasks. This is attributed to the meta-learning approach, which enabled the models to
quickly adjust to variations in lighting, occlusion, and object orientation. The MobileNetV2 model, while
slightly less capable than the others in terms of accuracy, was the fastest and showed efficient performance
across all conditions, making it an excellent choice for real-time applications on mobile devices.

Conclusions

This research explored the integration of meta-learning techniques, particularly the Model-Agnostic
Meta-Learning (MAML) framework, with state-of-the-art convolutional neural networks (CNNs) to
enhance object recognition in dynamic environments. The primary goal was to improve the adaptability
and generalization capabilities of object recognition systems when faced with real-world challenges such
as varying lighting conditions, occlusion, and changes in object orientation.

The conducted experiments involved three widely-used CNN architectures—ResNet50,
MobileNetV2, and EfficientNetBO—evaluated both with and without the application of MAML. The
results demonstrated that applying MAML led to significant improvements in recognition accuracy across
all environmental conditions. Notably, models enhanced with MAML showed accuracy gains of up to
11%, with particularly strong performance under conditions involving lighting changes and orientation
variability.

Although integrating MAML resulted in a slight increase in inference time (approximately 10-15
ms), this trade-off is justifiable considering the notable accuracy improvements. Among the evaluated
models, EfficientNetBO delivered the best overall performance, striking a favorable balance between
accuracy and computational efficiency. MobileNetV2, on the other hand, maintained the lowest inference
time, making it an ideal candidate for deployment on edge devices with limited computational resources.

The practical novelty of this research lies in demonstrating how meta-learning techniques can
effectively enhance object recognition systems' adaptability in dynamic and unpredictable environments.
Unlike traditional deep learning models that require extensive retraining when faced with new scenarios,
MAML-equipped models exhibited the ability to quickly adapt with minimal additional data, which is
particularly valuable in real-time applications with data scarcity.

This advancement has significant implications for real-world deployment scenarios, particularly in
fields like autonomous driving, robatics, surveillance, and healthcare, where conditions frequently change,
and rapid adaptation is critical. Moreover, integrating meta-learning with lightweight CNN architectures
opens new opportunities for deploying robust object recognition systems on edge devices, contributing to
the development of more intelligent and responsive Al systems suitable for resource-constrained
environments.

In conclusion, this research validates the effectiveness of MAML in enhancing the flexibility and
robustness of CNN-based object recognition systems, offering a promising direction for future
advancements in adaptive artificial intelligence technologies.
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Anoranig. CucremaM po3mizHaBaHHS 00’€KTIB 4acTO BaXKKO ITIITPUMYBATH TOYHICTH Y JHUHAMIYHHUX
CcepeloBUIIaX dYepe3 Taki MpoOjeMu, sK Bapiallil OCBITIICHHs, OKJIIO3ii Ta OOMEKEHI HaBYaJlbHI JaHi.
Tpaauuiiini 3roprouni HelipoHHi Mepexi (CNN) BUMararoTh BEJIMKIX MapKOBaHUX Ha0OpiB JaHUX 1 HE 3JaTHI
amanTyBaTUcs OO0 HOBHX yMOB. lle nocmikeHHS CHOpsMOBaHE Ha PO3pOOKY amanTHBHOT CHCTEMH
po3Mmi3HaBaHHS O0’€KTIB, sKa TIOKPAIlly€e Yy3aralbHEHHS MOJEII Ta INBUIKY aJaNTallilo B MIHJIUBUX
cepenoBuIax. BHKOPHCTOBYIOUM MeTOAM MeTaHaBuaHHs, 30kpema Model-Agnostic Meta-Learning (MAML),
JIOCITIJDKEHHST 30CEPEe/IKEHO Ha MOKPAIICHHI MPOIYKTUBHOCTI PO3IMi3HABaHHS 3 MiHIMalbHUMH HAaBYAJIBHUMHU
nanumu. Metopouoris epeabauae interpanito MAML 3 pisanmu apxitekrypamu CNN, Brimodatoun ResNet,
EfficientNet i MobileNet. Byio nmpoBeneHo psii eKCIEpUMEHTIB, 00 OLIHUTH aJaNTHBHICTh MOJIEII, TOYHICTh
knacu¢ikanii Ta e(peKTUBHICT OOUMCIICHD y PI3HUX yMoBaX. Taki NOKa3HUKH MPOXYKTUBHOCTI, K TOYHICTS i
Yyac BIATYKYy, BUMIpSUIM NUIIXOM TOpPiBHsHHS TpamunidHux CNN 3 {XHIMM aHaloramMu 3 pO3IIMPEHUM
METaHaBYaHHSIM. PeByHbTaTI/I AE€MOHCTPYIOTh, IO BKIIOYCHHS METaHAaBYaHHS 3HAYHO ITOKpamlye TO‘{HiCTI)
posmizHaBaHHs 00’ekTiB. Hanpuknan, mozeni ResNet npogeMoHcTpyBanu migBUIEHHS TOYHOCTI 3 78,5% no
87,2% y mnoemnanni 3 MAML, toni sk EfficientNet mponemoHcTpyBaa HOKpalleHy NPOAYKTHBHICTB 3i
3HMKEHUMHU OOYMCIIOBAJbHUMH BUTpaTaMH. Pe3ynbraTd MIiATBEPKYIOTh €(EKTUBHICTh METaHABYAHHS Yy
MOKpAILleHH] aJanTHBHOCTI 0e3 moTpedu y TpuBaliil nepeHaByaHHi. HOBU3HA 1[bOTO JOCIIIKEHHS MOJSIrae B
cucteMathuHii iHTerpauii meranaByanus 3 CNN, onTumisyrodu po3mi3HaBaHHs 00 €KTIB Ui JHMHAMIYHHX
cueHapiiB peajpHOro cBiTy. Ha BigMiHy Bijg 3BHYaiiHMX MOJENel, 3alporoHOBaHUIl minxia 3abe3mneuye
LIBUAKY aJanTalilo 3 OOMEXEHMMHU JaHUMH, IO POOHMTH HOro myxe NPUIATHUM IS NPOrPaM PeabHOro
yacy. [IpakTu4Ha I[IHHICTH LBOTO JOCIIJDKEHHS TOIIMPIOETBCS HAa PO3TOPTAaHHS CHCTEM pO3Mi3HABAHHS
00’€KTIB Ha MPHUCTPOSIX 3 OOMEKEHUMH peCypcaMH, Takux sk nepudepiiine anapatne 3abe3neuenns LI ta
MoOUTBHI atdopmu. [loeqHanHs MeTaHaBYaHHS Ta mojermeHoi apxitektypu CNN 3a0e3neuye sk BHCOKY
TOYHICTh, TaK 1 €(eKTUBHICTh OOYHMCIEHB, IO POOUTH WOTO 3aCTOCOBHUM y TakuX cdepax, sSK aBTOHOMHI
CHUCTEMH, BIJICOCIIOCTEPEKEHHSI Ta pOOOTOTEeXHika. MaiiOyTHI mociipkeHHsT OyIayTh 30CepeKeHi Ha
BJIOCKOHAJICHHI METOJIB ONTHMi3allii MeTaHaBYaHHs, MOKpAIlIeHHI e()eKTUBHOCTI HABYAHHS Ta PO3IIMPEHHI
X0y /0 OLIBII CKIAHUX 3aB/IaHb PO3ITi3HABAHHS 00 €KTIB y CEPEIOBUIIAX BiJICTEXEHHS KiJIbKOX 00’ €KTIB
Y pearsbHOMY 4aci.

KurouoBi cioBa: PosmizHaBaHHS 00’ €KTIB, METaHABYAHHS, METaHABYaHHS Ha ocHOBI Moxaelni (MAML),
sroptkoBi Heiponni mepexi (CNN), EfficientNet, MobileNet, ResNet, knacudikaris 306paxeHp, quHAMITHI
cepeloBHUINa, TTHOOKEe HABUAHHS, y3aralbHEHHS, aJallTUBHICTH, NMPOTpaMH B PEaTbHOMY daci, MOJETIICHI
MOJIei, KOMIT FoTepHe OadeHHs, epudepiiiHi mMpUCTpoi.
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