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Continuous Hopfield networks (CHNs) have been extensively employed as neural models
for constrained optimization problems due to their parallel computing capabilities and fast
convergence properties. Nevertheless, given their reliance on rigid weight and bias param-
eters, their scalability in dynamic and volatile situations remains limited. To address this
limitation, we introduce a CHN based on fuzzy logic (Fuzzy CHN), where fuzzy inference
schemes actively tune weights and biases according to real-time feedback. This adaptive
setting enhances flexibility, convergence speed, and scalability. As a practical example, we
apply the proposed Fuzzy CHN to the economic dispatch (ED) problem in power systems,
aimed at reducing production costs while meeting operational constraints. Simulation re-
sults demonstrate that the Fuzzy CHN outperforms the classical CHN in terms of solution
accuracy, stability, and robustness against system fluctuations. Although the production
costs slightly increase, the enhanced efficiency and scalability render the Fuzzy CHN espe-
cially beneficial in large-scale, dynamic scenarios. Beyond ED, the Fuzzy CHN approach
is highly adaptable to various other constrained optimization problems in industrial en-
gineering and intelligent systems. Moreover, the incorporation of a genetic algorithm
(GA) to optimize fuzzy membership parameters further enhances cost minimization and
mismatch reduction. The proposed method provides a higher degree of scalability and
efficiency than traditional CHNs, delivering improved performance with fewer processing
iterations and greater consistency.

Keywords: continuous Hopfield network; Takagi—Sugeno fuzzy logic.
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1. Introduction

Neural networks are a key element in the evolution of intelligent processing technology, especially in
the areas of optimization, associative storage and error correction. These include the continuous Hop-
field network (CHN), largely explored due to its ability to minimize an energy function and converge
to steady-state equilibria [1]. After its invention by Hopfield in the beginning of the 1980s [2], recur-
rent neural models became widely employed in combinatorial optimization, image computing, pattern
matching and error recovery in communication systems [3-5]. But traditional CHNs depend on rigid
weight matrices and biases, which may considerably restrict the capacity to adjust to dynamic and
volatile situations.

1.1. Hopfield recurrent neural network

The CHN is a recurrent neural network composed of a monolayer of n fully interlinked cells, each
neuron being endowed with an activation function. This system is considered as a driven system
defined by a dynamic equation defined by the following equation [6]:

du
— =Tv+ I 1
o + (1)
In the formula (1), T € R™*™ represents the binding strength of the nodes, I € R™ represents the bias,

u represents the state vector of the units, and v represents the activation vector of the individual units.
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The relationship existing within the vector of states u and their activations v is expressible through
the activation function v = g(u) (typically a hyperbolic tangent), limited by 0 at the lower end and 1
at the upper end, with a flexible threshold.

A state vector u® is called a steady state point of equation (1) whenever, for any input vector u°,
u® meets the following criteria: u(t) = u® Vt > t. in some t. > 0.

The energy function Er, acts as a Lyapunov candidate function for CHN stability. This function
illustrates whether the network is reaching a stable state, as it must decrease with time (dELyqp/dt < 0)
for the system to tend towards a minimum. The Lyapunov function can be described as follows [6]:

1
Eryap(v) = —ivtTU — I'v.

The equilibrium state of the CHN network can exist if the energy function exists. In 1984, Hopfield
established that if the matrix 7' is symmetric, the energy function Ep,, exists.

Solving optimization problems by means of CHN usually involves building an energy function.
Such functions reflect a mathematical expression of the problem to be tackled [7]. The local minima
of this energy function coincide with the local optimum of the optimization problem [6,8,9]. If f
and g;, Vj = 1,...,m, represent the objective function and the set of constraints, respectively, of the
optimization problem, a feasible energy function takes the following form:

E(v) = a f(v) + Z bi gi(v) + Z 15 9i(v) gj (v), (2)

wherein «, ¢; and ¢; ; stand for the penalty factors required to control the magnitude of f and the
constraints broken. Optimizing the F cost function demands suitable parameters that ensure the
validity of solutions. Such parameters may be extracted suitably using the derivatives of F, by means
of the hyperplane procedure, preventing the system from attaining stability outside the realizable
region bounded by the constraints of the optimization problem [6,10-12].

In reality, real-world information is contaminated by noise, uncertainty and unexpected fluctuations.
In digital communication systems, for example, encrypted signals transmitted over noisy channels
may suffer disturbances that require robust error correction schemes [13]. Likewise, in optimization
problems, the uncertainties involved in cost functions or constraints require more flexible and adaptive
learning paradigms. Traditional CHNs, functioning on the basis of rigid weights and biases, may
encounter challenges in these circumstances, since they do not have the capacity to dynamically adapt
their parameters in reaction to varying circumstances.

1.2. Fuzzification as a strategy for managing uncertainty in CHNs

To handle uncertainty in CHNs, we introduce an evolutionary adaptation process involving fuzzy logic
that enables CHNs to automatically tune their weights and biases in response to error feedforward and
uncertainties. Fuzzy logic, originally introduced by [14], offers a systematic mathematical approach
to fuzziness and imperfect knowledge. In contrast to conventional binary logic, involving clear-cut
judgments, fuzzy systems allow smooth transitions from one state to another, making them perfect for
situations calling for a robust and flexible approach [15].

The incorporation of fuzzy logic within neural networks, frequently known as fuzzy neural networks
(FNNs), has proven to have considerable benefits in terms of enhanced scalability, learning efficacy
and noise acceptance [16-18|. FNNs were developed in a wide range of domains, among them control
systems, robotics, pattern identification and smart decision-making [19]. Guided by these achievements,
our proposed model expands the fuzzification concept to CHN by implementing a fuzzy inference system
(FIS) that performs weight adjustments and bias compensations depending on the degree of uncertainty
of the incoming signal.

A number of key considerations underlie the fuzzification of CHN parameters: (a) Standard CHNs
are extremely vulnerable to tiny fluctuations in the input data. By incorporating fuzzy control on
weight adjustment, we reduce the impact of noise and obtain a significantly more steady convergence.
(b) Rigid weight arrays prevent the network from self-adjusting in dynamic contexts. A fuzzy CHN
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enables weights and biases to be tuned in real time depending on the size of the error, thus enhancing
generalization. (c) Hopfield networks occasionally converge to inappropriate local minima, potentially
deteriorating the performance of the solution. The fuzzy approach incorporates progressive, controlled
tuning to mitigate the danger of early convergence. (d) The fluctuating nature of Hopfield networks
can prevent efficient recovery of stored models. The incorporation of fuzzy control rules enhances
stability by automatically updating the network.

1.3. Main contributions

Motivated by past investigations into fuzzy neural architectures, we introduce a new fuzzy inference

system (FIS) tailored to control the weight and bias components of CHNs. Among our main contri-

butions are the following:

— A new fuzzy logic-based CHN model which includes a fuzzy logic-based procedure for adjusting
weights and biases, thus enhancing flexibility and robustness.

— A systematic fuzzy inference system (FIS) approach that tunes weight and bias parameters using
linguistic rules inspired by the uncertain nature of the input data.

— An empirical benchmark proving the efficiency of fuzzy CHNs in error rectification processes, out-
performing standard CHNs.

— A conceptual investigation of the way in which fuzzification enhances the convergence characteristics

and stability of CHNs.

This work constitutes considerable progress in the incorporation of fuzzy logic concepts within Hopfield
networks, enabling more intelligent, noise-resistant and flexible associative storage systems.

The rest of the paper is organized as follows: Section 2 describes the economic allocation problem.
Section 3 describes in detail the design of the fuzzy inference system and its contribution to weight and
bias modulation. Section 4 presents extensive experimental evidence, comparing the performance of
conventional and fuzzy CHN under noisy conditions. Finally, Section 5 closes the paper with remarks,
conclusions and future advances in the field of fuzzy CHN.

2. Economic dispatch problem

In this section, we introduce the economic dispatch (ED) problem by presenting its fundamental
concepts and solution methodologies. We discuss various approaches proposed to solve the ED problem,
highlighting their strengths and limitations. Additionally, we explore the key challenges associated
with ED, recent advancements in solution techniques, and practical applications. Finally, we provide a
detailed mathematical formulation of the ED problem, laying the foundation for further analysis and
implementation.

Economic dispatching (ED) has emerged as a central optimization problem in advanced energy
scheduling networks. It consists of determining the optimum generation of electricity by central power
plants at the lowest possible cost, subject to certain system requirements. The idea is to determine the
volumes produced by individual power plants that minimize the overall cost of electricity production,
while meeting both demand and the technological restrictions of the power system.

The ED issue could be represented mathematically as an optimization problem under specific
constraints, in such a way that the objective function denotes the total cost of the plant, and the
constraints reflect the workload demands and running restrictions of the plant’s generators.

Over the years, a variety of techniques have been deployed to tackle the problem of economic
distribution. These techniques generally belong to two main families: conventional methods, like
linear programming (LP), quadratic programming (QP) and nonlinear programming (NLP), and ad-
vanced techniques, including evolutionary algorithms (EA) and swarm intelligence (SI). The LP based
methods tackle the ED problem by performing a linearization of the cost function and implementing
optimization algorithms. However, this methodology is restricted to problems involving linear cost
functions [20]. Numerous power grids feature a quadratic cost function per generator, resulting in
a quadratic programming equation. QP approaches are therefore more likely to be applied to real-
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world applications in comparison with LP approaches [21]. Evolutionary algorithms, such as genetic
algorithms (GA), differential evolution (DE) and particle swarm optimization (PSO), are increasingly
becoming popular tools for resolving the DE problem, notably when it comes to complex, non-linear
cost functions and large-scale energy systems [22]. Swarm intelligence methods, including Ant Colony
Optimization (ACO) and PSO, are commonly employed to tackle the DE problem, delivering strong
performance in complicated optimization landscapes [23].

Although optimization methods have greatly progressed, the ED problem continues to pose a series
of difficulties. Most generators exhibit non-convex cost functions, resulting in several local minima.
This creates a challenge for classical optimization techniques, leading to sub-optimal solutions. Load
needs can change over the course of a day, and predictive uncertainties can result in sub-optimal
dispatch allocation decisions. Such uncertainty has to be considered in the optimization planning
process [24]. The growing spread of sustainable power sources (such as wind and solar) brings variability
to electricity production, making the ED problem even harder to solve. Optimal dispatch should
incorporate the random character of renewable production [25].

Current studies have concentrated on combinations of various optimization methods to enhance
the performance and efficiency of DE solutions. For instance, composite methods that combine PSO
with Simulated Annealing (SA) or GA showed better performance in terms of global search ability [26].
To address the uncertainty in renewable energy generation, robust optimization methods have been
developed to ensure that the system remains optimal even under uncertain conditions [27]. To cope
with the uncertainty of renewable energy generation, robust optimization approaches were introduced
to guarantee that the system maintains optimum efficiency despite uncertain circumstances [28].

The ED problem is still a crucial challenge in power network optimization. While conventional
approaches including linear and quadratic programming have been used extensively, modern techniques,
including evolutionary algorithms and swarm intelligence, have shown improved performance in solving
complex ED problems in the real world. With the increasing spread of renewable energies, both robust
and hybrid optimization schemes are increasingly popular. As power grids shift to intelligent grids,
distributed optimization techniques are likely to play an increasingly vital part in securing cost-effective
and sustainable power generation.

Problem formulation. Economic dispatching (ED) attempts to dispatch energy generation
among generators in such a way as to meet a specified power need P; with the minimum total cost.
The total cost function is expressed as a quadratic function:

N
C(P)=> aP},
i=1

where represents the energy produced by generator 4, ¢; represents the price ratio of generator i, N
represents number of power units.
In addition, there are power constraints:

7

N
ijn<Pi<Pmax, ZPz:Pd
i=1

This ensures that each generator operates properly up to its capacity, while satisfying customer de-
mands.

3. Fuzzy logic-enhanced CHN for solving the economic dispatch problem

In this section, we design an appropriate Continuous Hopfield Neural Network (CHN) for solving
the Economic Dispatch (ED) problem. We then introduce a fuzzy-enhanced version of the CHN to
address the limitations of the classical ED-CHN, improving its adaptability and performance in complex
scenarios.
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To tackle the ED problem with a continuous Hopfield network (CHN), we express a neural energy
function where the minimum matches the solution of the ED problem. The CHN energy function is
described as follows:

wi ViV — > 6:Vi,
ZZJ Z

=1 j=1
where V; is the output of neuron ¢, w;; are the synaptic connection weights between neurons i and
7, and 6; are the bias terms. The synaptic weights and biases are designed to encode both the cost
minimization and constraint satisfaction. A penalty term A is introduced to enforce the equality
constraint via:

2
penalty (Z P PD) .

The neuron dynamics follow the differential equatlon

dU U —i—Zw” Z’,

where Uj; is the internal state (membrane potentlal) of neuron 4, and the output is given by a sigmoid

activation function:
1

1+ el
The final generated power P; is obtained by mapping V; linearly to the actual generation limits:
P = Pimin + V- (Pimax _ Pimin).
Due to the CHN’s natural energy minimization dynamics, the system tends to converge on a solution
that meets the ED’s objective and restrictions.
To transform the classical CHN to fuzzy CHN, we consider four fuzzy variables: Power mismatch,
Total cost, weights, and bias,

Vi, =

Mismatch =

)

N
ZPi_Pd

1=1

N
= Z CiPi2
i=1
Three Gaussian membership functions are used for both inputs:

N (x2—-02)°
pr(z) = \/(76 p< 5012 >

1 (r —0.5)2
p(z) = WGXP <—W> )

1 (z — 0.8)2
pr(z) = 27(0.1)? g OXP <_W> .
Fuzzy rules:

— If Power Mismatch is Low, then Weight Adjustment is Low.

— If Power Mismatch is Medium, then Weight Adjustment is Medium.
— If Power Mismatch is High, then Weight Adjustment is High.

— If Cost Function is Low, then Bias Adjustment is Low.

— If Cost Function is Medium, then Bias Adjustment is Medium.

— If Cost Function is High, then Bias Adjustment is High.
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Fuzzy rules determine weight and bias adjustments:
Weight adjustment W:

Wadjust = pr.(Mismatch) - 0.2 4+ pps(Mismatch) - 0.5 + pp (Mismatch) - 0.8.
Bias adjustment b:
badjust = L(C(P)) - 0.3 + par(C(P)) - 0.6 + p (C(P)) - 0.9.
Defuzzification: The Weighted Average Method determines crisp values for W and b:

W= (pi-wi), b= (ui-bi).

Note that Gaussian membership functions ensure a gentle switch between fuzzy sets. Fuzzy adjustment
of weights and biases ensures self-adjustment and prevents fluctuations. Fuzzy rules driven by power
mismatch and cost equilibrium ensure power adequacy and economic efficiency. Last but not least,
weighted average defuzzification guarantees smooth parameter maintenance.

By incorporating fuzzy logic within the CHN, we provide a self-adaptive optimization engine for
the ED problem. This enhances convergence velocity, robustness and efficient energy dispatch.

4. Experimental results

This section concentrates on solving a number of instances of the economic distribution problem by
means of conventional and fuzzy continuous Hopfield networks (CHNSs), and presents a comparative
study of their effectiveness.

4.1. Case study: economic dispatch with four generators
In this case study, we envisage a power system consisting of four thermal generation units with a total
customer demand of 300 MW. Different generators operate within specific restrictions: Generator 1
(20-100 MW), Generator 2 (30-90 MW), Generator 3 (40-120 MW), and Generator 4 (50-130 MW).
The cost function adopted per unit is a simple quadratic function of the form C(F;) = q; -Pf, wherein
the unit cost multipliers are given by [0.01,0.015,0.02, 0.012] respectively. Power assignment is initiated
with arbitrary power values ranging within permissible limits, and the network automatically adjusts
these values iteratively, while minimizing costs and meeting requirements.

, ) , ) In conventional CHN, a stationary

Power Mismatch Membership Cost Function Membership . . |

Low Medium High matrix of weights and biases are em-

é—l 1| Low Medium High é—l 1
§o.8 §o.8 ployed, and the system grows accord-
E o6 £ 06 ing to the standardized Hopfield up-
5 04 04 grade rule. On the other hand, fuzzy
802 i $o2 CHN dynamically adjusts weights and
g, g, biases at subsequent iterations, by
0 50 100 0 50 100 150 200 means of Gaussian fuzzy membership
. PgwerMismatch - . ACost Function . functions (LOW, Medium, High); see
Weight Adjustment Membership Bias Adjustment Membership . .
=4[ Low Mef%m High 2, Low Medium High Fllgm.re 1. These fupctlons address the
go.s /\ go.a : existing power mlsmatch and total
éo.e éo.e \\ cost, thereby enhancmg convergence
= 04 = 04 \ speed and solution efficiency. The
802 802 \ fuzzy parameters — member weights
g, g, for input (power offset) and output
0 05 1 0 0.5 1 (cost) — are processed as tunable vari-
Weight Adjustment Bias Adjustment ables in the system. Figure 2 gives the
Fig. 1. Membership functions of the inputs and outputs fuzzy mamdani system associated with
associated with the fuzzy variables of fuzzy CHN. fuzzy CHN.

To optimize these fuzzy parameters and enhance the efficiency of the fuzzy CHN, a genetic algorithm
(GA) is implemented. The GA explores the space of fuzzy membership weights to minimize the
resulting energy cost, with a population size of 30 individuals and operating for 60 iterations. The
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outcome is reported by means of graphs of cost vs. iteration, power mismatch vs. iteration and terminal
power sharing across generators. This automated experimental scheme delivers a detailed comparison
and pinpoints the conditions in which the fuzzy-augmented CHN has superior performance to the

classical model.
M WeightBiasAdjustment M

Power Mismatch (3) Weight Adjustment (3)
(mamdani)
/iii/\ 6 rules /\/\/\
Cost Function (3) Bias Adjustment (3)

System WeightBiasAdjustment: 2 inputs, 2 outputs, 6 rules
Fig. 2. The fuzzy system associated with fuzzy CHN.

We provide an in-depth comparison of the conventional CHN and the augmented fuzzy CHN,
concentrating on measuring their effectiveness via key metrics like cost minimization and mismatch
demand; see Figure 3. Power mismatch remains consistently positive, showing that fuzzy CHN corrects
power deviations better than classic CHN. The cost related to fuzzy CHN is nearly identical to that
of conventional CHN. The incorporation of a genetic algorithm (GA) within fuzzy CHN increases its
efficiency even further. The GA optimizes the fuzzy membership parameters (weights and biases)
across multiple generations, thus keeping the system continuously tuned for cost minimization and
mismatch minimization.

Combined Analysis Plots
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[ Classical
I Fuzzy

3
a

Classical CHN | -
Fuzzy CHN

h
o N o
S & 3

~
a

Power Mismatcl

a
3

25

200
Classical CHN | | 100
Fuzzy CHN
. ; : 0 . . . . . 0
1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 G1 G2 G3 G4
Iterations Iterations

Fig. 3. Total cost, demand mismatch, and energy distribution across generators.
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4.2. Scalability analysis with varying generator counts

In this section, we examine the optimization of economic dispatching by running our methods on many
instances featuring a variable number of generators. Every generator works under particular constraints
and is driven by a quadratic cost function. The optimization procedure begins with arbitrary power
assignments and iteratively tunes them to minimize costs while meeting demand restrictions.

Table 1 offers a comprehensive comparison of classical and fuzzy CHN for various counts of gen-
erators (2 to 26). Columns 6, 7 and 8 give Diff.Mismatch = Classical Mismatch — Fuzzy Mismatch,
Diff.Cost = Classical Cost — Fuzzy Cost, and Avg. Diff = (Diff.Mismatch + Diff.Cost) /2, respectively.
We note that the fuzzy CHN approach typically decreases the power disparity as opposed to the
classical CHN method. In particular:

— For several cases, such as generators 3, 4, 10, 11, 14, 15, and more, the fuzzy CHN has a significantly
lower mismatch.

— The difference in mismatch is often positive, indicating that the fuzzy CHN corrects power devia-
tions better than the classical CHN.

— The cost associated with Fuzzy CHN is slightly higher than the classical cost, as seen in the negative

values given by column 7 of Table 1.

— The Average Difference column further highlights that, on average, the fuzzy CHN consistently
performs better in reducing both cost and mismatch.

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 757-766 (2025)



764 Okba K., Bouhanch Z., El Moutaouakil K., Benslimane M.

Table 1. Comparison of Classical and Fuzzy CHN for Economic Dispatch.

Generators | Classical Mismatch | Classical Cost | Fuzzy Mismatch | Fuzzy Cost | Diff. Mismatch | Diff. Cost | Aver. Diff.
2 957 10.87 957 10.87 0 0.00 0.00
3 935 25.11 933.09 25.48 1.91 —0.04 0.94
4 923 23.16 900.89 29.68 22.11 —0.64 10.74
5 838 53.02 838 53.02 0 0.00 0.00
6 835 72.08 835 72.08 0 0.00 0.00
7 789 98.21 789 98.21 0 0.00 0.00
8 808 55.30 807.73 55.37 0.27 0.00 0.13
9 720 153.70 720 153.70 0 0.00 0.00
10 712 126.44 706.36 128.06 5.64 —0.07 2.78
11 670 108.81 660.41 113.65 9.59 —0.23 4.68
12 717 106.65 717 106.65 0 0.00 0.00
13 597 196.26 597 196.26 0 0.00 0.00
14 580 141.21 571.58 144.59 8.42 —-0.14 4.14
15 589 170.28 577.38 172.60 11.62 —0.09 5.77
16 548 193.97 529.65 198.96 18.35 —0.18 9.09
17 528 171.62 511.98 177.47 16.02 —0.22 7.90
18 592 131.59 592 131.59 0 0.00 0.00
19 395 253.12 391.32 254.26 3.68 —0.04 1.82
20 320 285.53 308.72 289.62 11.28 —0.12 5.58
21 355 327.19 355 327.19 0 0.00 0.00
22 279 353.39 269.06 356.88 9.94 —0.09 4.92
23 322 280.19 306.21 287.85 15.79 —0.23 7.78
24 304 301.97 287.17 306.90 16.83 —0.14 8.34
25 343 263.29 329.90 265.95 13.10 —0.08 6.51
26 210 325.54 210 325.54 0 0.00 0.00

In general, these results suggest that the fuzzy CHN method delivers a more stable and cost-
effective solution for economic dispatch, especially in cases where an ascending number of generators
is employed. The capacity of the fuzzy system to adapt its parameters accordingly to variations in
consumer demand underlies its higher performance compared with conventional CHN.

The incorporation of a genetic algorithm (GA) within fuzzy CHN improves its performance even
further. The GA helps optimize the fuzzy membership parameters (weights and biases) across multiple
generations, guaranteeing that the system is continually fine-tuned for cost minimization and disparity
reduction. This optimization procedure provides a degree of flexibility and performance that classical
CHN, with its fixed parameters, cannot match. By tuning its fuzzy parameters in reaction to system
response, Fuzzy CHN can yield better results with less iterations and more steady performance.

5. Conclusions

The CHNs have long been employed as neurodynamic models for solving constrained optimization
problems due to their inherent parallelism and convergence characteristics. However, conventional
CHNSs rely on fixed weight and bias parameters, which limits their scalability and effectiveness in
dynamic and uncertain environments. To address this limitation, we propose a new continuous Hopfield
network based on fuzzy logic (Fuzzy CHN), in which fuzzy inference mechanisms are incorporated to
adaptively adjust the weights and biases of the network in response to real-time system feedback. This
flexible framework improves the adaptability, convergence speed, and robustness of the network.

As an application example, the proposed Fuzzy CHN was applied to the Economic Dispatch (ED)
problem in power systems’an optimization task focused on minimizing generation costs while satisfying
operational constraints. Simulation results demonstrate that the Fuzzy CHN consistently outperforms
the classical CHN in terms of solution accuracy, stability, and responsiveness to changing system
conditions. In particular, the Fuzzy CHN reduces power mismatch by up to 18.35% (compared to
the classical CHN) for systems with 16 generators. While the associated costs of the Fuzzy CHN
are slightly higher, with an average increase of approximately 0.23%, the reduction in mismatch and
enhanced performance, especially in systems with more than 10 generators, outweigh this slight cost
increase.
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Beyond the ED problem, the Fuzzy CHN framework is extensible to a wide range of constrained
optimization tasks in engineering and intelligent systems. The integration of a Genetic Algorithm (GA)
further refines the fuzzy membership parameters, enabling enhanced cost minimization and mismatch
reduction. The proposed optimization procedure offers greater adaptability and efficiency compared to
the traditional CHN, allowing the Fuzzy CHN to tune its parameters more effectively, achieve improved
outcomes in fewer iterations, and ensure more stable performance.
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HenepepeHa mepexxa Xondpisniga Ha OCHOBI HEYITKOI JIOriKK
ANA 3aja4i eKOHOMIYHOro AucrneryepyBaHHS

Ox6a K.2, Byxanu 3.', Exp Myrayakins K.', Bencrivan M.?

L Tabopamopia mamemamury ma nayku npo dani, Iosimexnivnud gaxyavmem Tasu,
Ynisepcumem Cidi Moxameda Ben A6deanaxa (USMBA) y ®eci, Mapoxko
2 Jlabopamopis nayx, inocenepii ma menedarcmernmy, Buwa wrora mexnonoziti Peca,
Ynisepcumem Cidi Moxameda Ben A6desnaxa (USMBA) y micmi Pec, Mapoxko

Henepepsui mepexi Xondinma (CHN) akTuBHO BUKOPUCTOBYIOTHCS K HEHAPOHHI MO
JJIsE PO3B’SI3aHHS 38149 OMTUMI3AIl 3 0OMEKEHHSIMU 3aBASKI CBOIM MOYKJIUBOCTSIM I1apa-
JIeJIbHUX 00UnC/IeHb 1 mBUKii 306i2kHoCcTi. OMHAK Yepes 3a/Ie2KHICTD Bl 2KOPCTKO 33 IaHUX
BaroBux KoedilieHTiB i 3mileHsb ix MacITaboBaHiCTh Y AUHAMITHUX 1 HECTAOIILHUX YMO-
Bax 3aJnImaerbes obmexxkenorw. 11106 momosaTu 1o mpobiiemMy, 3arpOIIOHOBAHO HETIEPEPBHY
Mmepexy Xondinaa va ocHosi newirkoi joriku (Heuirky CHN), ne cxemu HediTKOro BUCHO-
BYBAHHS JIMHAMIYHO HAJIAINITOBYIOTH BATH Ta 3MIIEHHS BiIIIOBIIHO /10 3BOPOTHOIO 3B’ SI3KY
B peajbHOMYy Yaci. Takuit afanTUBHUH TiIXi MiABUIIYE THYIKICTD, MBUIKICTH 30i:KHOCTI
Ta MacmTaboBaHICTh MOJeNi. fK NpuKIa] IPAKTHIHOIO 3aCTOCYBaHHS, BHKOPUCTAHO 3a-
nponorosany Heuitky CHN 1u1s1 3a7a4i ekonomiunoro nucneryepysannst (ED) B enepre-
TUYHUX CUCTEMAX, IO CIIPsIMOBAHA HA 3MEHIIIEHHsI BUTPAT HA BUPOOHUIITBO €JIEKTPOEHEPTil
[Ipy JOTPUMAHHI €KCILUIyaTAIliiHIX 00MeXKeHb. Pe3ysibTaTu MOIE/IOBaHHS TIOKA3YIOTh, 10
veuirka CHN nepepepinye knacuuny CHN 3a TogHiCTIO pO3B’si3Ky, CTabLIBHICTIO Ta CTiii-
KICTIO JI0 KOJIBaHb y CHCTeMi. Xo4da BATPATH HA BUPOOHUIITBO MOXKYTH €O 3POCTH,
iiBuieHa epeKTUBHICTD 1 MaciTaboBaHicTh pobJisiTh HeuiTKy CHN 0co6/inBO BUTiIHOO
JJIsI BeTUKUX 1 aunamiaamx cucteM. Kpim 3amagi ED, miaxin mewitkoi CHN e Bucokoedex-
TUBHUM 1 JJIs IHIMUX 3a/1a9 ONTUMIBAINT 3 0OMEKEHHSIMU B TaJIy3l ITPOMUCJIOBOI iHKeHepil
Ta iHTesieKTyasbHuxX cucreM. JJogaTKoBO, BKIOUeHH reHeTudHoro ajgropurmy (GA) mia
onTUMizaIll mapaMeTpiB HEIITKOI HAJIEKHOCTI 11ie OiyibIle MiACUIIoe 3/IaTHICTD 10 MiHiMi-
3allil BUTPAT 1 3MeHIIeHHs HeBIIIOBiqHOCTel. 3aIpolIoHOBaHuil MeTo/ 3abe31edye BUIIN
piBern MaciTaboBaHoCTi Ta edexkTuBHOCTI, Hi2K Tpasaumiitai CHN, nemoncrpyroun nokpa-
IeH] pe3yJIbTaTh IPU MEHIiN KiTbKOCTi iTepariiit 00pobKu Ta OLIbIIi# cTabiIBHOCTI.

Knrouosi cnoBa: nenepepsha mepesica Xondiada; newimxa sozixa Taxazi—Cysero.
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