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The continuously growing number of users and their requests to the server demands sub-
stantial resources to ensure fast responses without delays. However, server load is inher-
ently unevenly distributed throughout the day, week, or month. Accurately predicting the
required resources and dynamically managing their allocation is crucial, as it can lead to
significant cost savings in server maintenance without compromising the user experience.
This study investigates the influence of activation function choice on the forecasting ac-
curacy of Long Short-Term Memory (LSTM) neural networks applied to real-world server
request data. A dataset of incoming server requests was collected and aggregated into 20-
minute intervals over 16 consecutive days. Several activation functions—including ReLU,
Swish, and Softplus—were evaluated using mean squared error (MSE) as the primary per-
formance metric. Each model configuration was trained six times to ensure statistical
reliability, and the results were taken from one of the most stable runs. The experiments
demonstrate that the selection of activation function has a significant impact on predic-
tion accuracy: Swish and ReLU achieved the lowest MSE values, reducing error by up to
6.6 − 12.3% and 10.5− 16.3%, respectively, compared to the baseline. Although the sig-
moid function yielded the lowest test loss, further analysis revealed that this outcome was
misleading: the model systematically underestimated peak loads, resulting in lower error
values but poor predictive fidelity with respect to actual server load dynamics. These find-
ings validate the hypothesis that activation function choice is a critical factor in optimizing
LSTM-based forecasting models for server load prediction.
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1. Introduction

Modern cloud servers [1] operate in a highly structured and layered manner, splitting resources into
progressively smaller and more specialized units [2]. At the highest level, the physical server acts as the
foundation, hosting multiple workloads. These workloads are virtualized into nodes, each representing
an instance or containerized environment within the server. Nodes, in turn, are further divided into
smaller entities depending on the platform. In containerized systems like Kubernetes [3], nodes host
Pods, which are the smallest deployable units and often encapsulate one or more containers. Containers
then house individual processes or tasks, representing the specific applications or services running on
the infrastructure. This hierarchical approach optimizes resource utilization, ensuring flexibility and
scalability while maintaining efficient isolation between workloads. By splitting resources into these
distinct layers, cloud systems provide the adaptability required for modern dynamic workloads, offering
a balance between granularity and control. And there are ongoing efforts which are directed towards
further subdivision of units to achieve even greater efficiency.

Most applications initially run on a single node [4]. However, as the number of users and the
volume of processed data grow over time, the system load increases. To maintain stable operation and
low response times, scaling becomes necessary—adding additional resources to collaboratively process
requests and distribute the load efficiently [5].
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Problem statement. In practice, the situation is more complex. Server load is rarely constant.
The number of requests typically fluctuates based on various factors such as the time of day, day of
the week, special events, or holidays. Consequently, there is a continuous need to dynamically adjust
the allocated resources to match the changing demand.

On the other hand, it is evident that any increase in allocated resources results in higher server
hosting costs. Cloud providers such as Amazon Web Services (AWS) [6], Google Cloud Platform
(GCP) [7], and Microsoft Azure [8] typically bill users based on resource consumption, including
compute time, storage, and network usage. During periods of high request volume, this investment is
justified. However, once the request rate declines, idle resources reduce overall cost efficiency.

There are two common scenarios in which such situations may occur. The first is quite typical: the
number of requests rises and falls periodically over a defined time interval. In these cases, the volume
of released resources is usually modest compared to the peak load. However, due to the regularity of
these fluctuations and the continuous monitoring and control of the allocated resources, the cumulative
effect can result in significant cost savings.

The second scenario involves unexpected or exceptional events, characterized by sharp, short-term
surges in server load. In such cases, it is especially important to promptly deallocate any resources
that are no longer needed once the peak subsides, in order to maintain cost efficiency.

However, constant monitoring of resource allocation cannot realistically be performed by a single
person — or even a group of people — at least not manually. There is always a risk of human error [9,10].
Even developers who deliberately scale up resources for tasks such as load testing [11] may forget to
scale them back down afterward. Given this, it is unreasonable to expect individuals with less technical
involvement to manage such adjustments reliably.

That is why it is reasonable for this process to be managed by a mechanism capable of automatically
predicting both load increases and decreases. In the case of load increases, additional resources can be
allocated in a timely manner to minimize response delays. Conversely, predicting load decreases allows
the system to promptly release unused resources and avoid unnecessary maintenance costs.

The article’s objective. The LSTM model includes numerous parameters that influence its
performance, many of which have been extensively studied. However, this study focuses specifically
on the impact of the chosen activation function. Accordingly, it concentrates on practical outcomes —
namely, the accuracy of server load predictions — and compares these results across different activation
functions.

Additionally, a hypothesis is proposed that, alongside other hyperparameters and influencing fac-
tors, the type of activation function used in an artificial neuron can also affect the overfitting tendency
of a machine learning algorithm, assuming all other system parameters remain unchanged.

The remainder of the paper is organized as follows: the continuation of Section 1 presents the foun-
dational knowledge underpinning the study; Section 2 introduces the dataset, provides its analysis, and
describes the materials and methods used; Section 3 discusses the results and presents a comparative
analysis; and Section 4 summarizes the study and evaluates the performance of the activation functions
in predicting server load.

1.1. Time series predictions

Time series analysis encompasses a set of mathematical and statistical methods aimed at identifying
the structure of time series and predicting it [12]. These methods include regression analysis [13].
Identifying the structure of a time series is a necessary step in constructing a mathematical model of
the phenomenon generating the analyzed series. Predicting future values of a time series based on the
analysis of current and historical data is crucial for enhancing decision-making effectiveness.

From a mathematical perspective, a time series is defined as a sequence of scalars or vectors y(t),
where t represents a moment in the past. The task of time series prediction is to determine a function
f(x) that models the dependence of future time series values on their previous values:

y0(t) = f(y(t− 1), y(t− 2), . . . , y(t− d)),
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where the value d is referred to as the time lag. This parameter denotes the number of preceding
elements from the dataset that are considered during model training and the prediction of the next
value [14].

1.2. Long short-term memory

The Long Short-Term Memory (LSTM) model [15,16] is a type of recurrent neural network (RNN) [17]
architecture used in deep learning [18] to process sequential data. The primary advantage of this
model is its ability to overcome the exploding and vanishing gradient problems, which often occur
when learning long-term dependencies, even when the minimal time lags are very long [19].

Mathematically, an artificial neuron is typically represented as a nonlinear function of a single
argument — the linear combination of all input signals. An essential component of an artificial neuron is
the excitation function, also known as the activation function [20], which defines the type of nonlinearity
in the model. As empirically demonstrated in [21], although the activation function is not the primary
factor in achieving the highest accuracy in an LSTM network, it still plays a significant role.

When a model has been trained exhaustively on the available training data, it may fail to generalize
to new data, resulting in a phenomenon known as overfitting [22]. In such cases, the model often
memorizes all the data, including the unavoidable so-called noise in the training set, rather than
learning the underlying patterns within the data [23].

Underfitting is the opposite of overfitting and occurs when a model fails to capture the underlying
variability of the data [24]. This issue is particularly evident in scenarios such as modeling nonlinear
data with a linear model [25].

One method to address overfitting is the dropout approach, a regularization technique for artificial
neural networks that also significantly accelerates the training process [26]. The essence of this method
lies in randomly selecting a subnetwork from the overall network during training and performing the
training specifically on that subnetwork. After training the selected subnetwork, a new subnetwork is
randomly chosen, and the training continues. The neurons for each subnetwork are selected randomly
based on a probability known as the dropout rate. Neurons that undergo more training are assigned
greater weights in the final network [27].

1.3. Rationale for selecting LSTM

While recent advancements in time series forecasting have introduced a variety of specialized tools and
frameworks — such as Facebook Prophet [28], Amazon DeepAR [29], and the Darts library [30] — this
study deliberately focuses on the use of Long Short-Term Memory (LSTM) networks. The rationale
1for this choice is twofold.

First, the primary objective of this research is to investigate the impact of different activation
functions on prediction performance. LSTM models provide full access to internal architectural com-
ponents, including activation layers, which allows for controlled experimentation. In contrast, many
modern frameworks encapsulate their internal mechanisms, thereby restricting such modifications and
making them unsuitable for activation-level analysis [28, 29].

Second, LSTM networks are particularly effective for time series data that exhibit both short- and
long-term dependencies, as is the case with server load patterns [15]. These patterns include periodic
user activity and sudden usage spikes, which LSTM architectures are well-equipped to capture.

Furthermore, LSTM models remain widely used in server-side forecasting tasks within cloud en-
vironments. Their flexibility and transparency make them a natural choice for research focused on
internal model behavior rather than purely predictive accuracy.

2. Materials and methods

2.1. Input data and its analysis

The dataset was sourced from the request monitoring tool within the Microsoft Azure Portal [31], which
is connected to the server of a mobile application. The application’s user base is distributed across the
European region, with a significant portion located in the United Kingdom. Requests were collected
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during the period from December 8, 2024, at 06:00 to December 25, 2024, at 06:00, encompassing a
total of 17 full days. The total number of requests to the server during this period was 5 142 148, as
shown in Figure 1.

 

Fig. 1. Total number of requests
to the server during the period.

The uniqueness of the dataset lies in its cover-
age of two complete weeks starting from a Sunday,
with the final three days marking the beginning of
a third week. This is particularly notable, as the
third week includes December 25 — a bank holi-
day in almost all European countries. It is impor-
tant to note that the dataset does not encompass
the entire day of December 25, as it concludes
at 06:00 on that date. Nonetheless, it presents
a unique opportunity to analyze a dataset that
partially includes such a significant event.

The raw data were processed to include a
timestamp at 20-minute intervals throughout the
period, along with a value representing the aver-

age number of requests received by the server per second during each corresponding interval. As a result
of this transformation, a total of 1 224 records corresponding to 20-minute intervals were obtained. An
example of such records is shown in Figure 2.

 

Fig. 2. Examples of transformed to 20-minute intervals data.

Figure 3a illustrates a histogram of the average number of requests per second across the intervals
in the dataset. The vast majority of intervals — a total of 856 — have an average request rate below 3
requests per second, with the overall mean being 3.501 requests per second. The maximum recorded
value is 25.065 requests per second, observed on December 20, 2024, between 14:00 and 14:20. This
was the only interval that exceeded an average of 25 requests per second. Furthermore, 368 intervals
recorded an average rate greater than 3 requests per second, 166 intervals exceeded 10 requests per
second, and 71 intervals surpassed 15 requests per second.

Figure 3b demonstrates the variation in the average request rate across 20-minute intervals through-
out the day. As expected, there is minimal activity during the night, from 23:00 to 06:00, with an
average of 0.314 requests per second across these intervals. A slight increase in activity is observed
from 06:00 to 07:00 and again from 18:00 to 23:00, covering the early morning and evening hours. The
average request rate rises to 0.878 requests per second during these periods.
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a b

Fig. 3. Dataset analysis: (a) Frequency of the average number of requests per second,
(b) Average request rate by time intervals.

Fig. 4. Time series decomposition.

A rapid increase in activity begins at 07:00, reaching its first and highest peak during the 11:00–
11:20 interval, with an average of 10.948 requests per second. Following this peak, a slight decline
is observed, reaching a low at the 12:40–13:00 interval, with an average of 8.999 requests per second,
likely attributable to lunchtime. Activity then gradually rises to a second peak during the 14:20–14:40
and 14:40–15:00 intervals, with averages of 10.418 and 10.362 requests per second, respectively. After
this, a sharp decline is observed over the next three hours. The period from 07:00 to 18:00 has an
average request rate of 7.059 requests per second, while the period of highest activity, from 10:00 to
15:40, averages 9.717 requests per second.

After performing the decomposition of the time series [32], the result is presented in Figure 4 and
consists of four components. The first subplot displays the original time series, where weekdays with
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significantly higher loads are clearly visible. Five consecutive high spikes alternate with two smaller
ones, representing weekdays and weekends, respectively. Notably, the final visible spike is even smaller
than a typical weekend spike, reflecting the day before the bank holiday and capturing the reduced
activity typical of that period.

The second subplot highlights the trend component. This pattern mirrors the original series,
with the load increasing during weekdays and forming noticeable dips over the weekends. The region
surrounding the bank holiday exhibits a similar pattern to the weekends, emphasizing the reduced
activity during that period.

The third subplot illustrates the seasonal component. The same weekday–weekend pattern is
observed here. Additionally, the widest amplitude occurs on December 18 and 19 — the last two days
of a standard working week. This observation aligns with the highest peaks in the first subplot and
corresponds to the strongest upward trend in the second subplot.

The fourth subplot presents the residual component, which represents the variations not captured
by the trend or seasonal patterns.

2.2. Data preparation

To enable a more efficient and thorough analysis of the dependencies influencing the predicted value,
the prepared dataset is reformatted to account for the time lag factor.

Schematically, this process can be viewed as a straightforward transformation of the prepared
dataset D, converting it from a scalar format to a vector format. Let the dataset be defined as:

D = (X,Y ),

where

X =




x1
x2
...
xn


 , Y =




y1
y2
...
yn


 .

Then, the reformatted dataset D′, adjusted for the time lag value, is structured as follows:

D′ = (X ′, Y ′),

where

X ′ =




(x1, x2, . . . , xd)
(x2, x3, . . . , xd+1)

...
(xn−d, xn−d+1, . . . , xn)


 , Y ′ =




yd
yd+1

...
yn


 .

Thus, the algorithm can be supplied with relationships not only of the type “input value – output
value” but also of the type “series of input values – output value”.

By employing this approach, a portion of the input data — equal to the size of the time lag d — is
discarded. However, in practice, this portion is relatively small compared to the overall dataset, and
the resulting improvements in the model’s prediction quality are significant and outweigh the trade-off.

The time lag value was set to represent 12 hours, divided into 20-minute intervals, resulting in
d = 36.

As shown in Figure 5, the consolidated vector dataset is divided into three parts: training data,
validation data, and test data, in a ratio of 11:2:3. The neural network is trained using the training
data, while the validation data is used exclusively to calculate the model’s prediction error at each
training epoch. The test data is reserved for conducting the final evaluation of the trained models.

Due to the nature of the real data used — which possesses its own specific characteristics — the
training set differs from the validation and test sets. It is larger and, unavoidably, includes weekends,
making it distinct from the other subsets.

Thus, at each iteration of the machine learning algorithm, it is possible to compute both the
prediction error for the training data and the prediction error for the validation data, which the model
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Fig. 5. Data split into training, validation, and test parts.

has not encountered during training. This approach facilitates the construction of an extended training
history graph. Such a graph enables the monitoring of potential overfitting by assessing whether the
training and validation errors align or diverge during the training process.

To rigorously quantify these errors, the mean squared error (MSE) [33] is employed as the evaluation
metric. The MSE is defined by the following formula:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2
,

and provides a numerical measure of the deviation between the predicted outcomes and the actual
target values.

2.3. Methods and functions used

The LSTM model was implemented using the PyTorch [34,35] library. The model was configured with
the following parameters:

— The main block consists of 64 hidden LSTM neurons.
— A dropout rate of 0.2 was applied during training.
— The number of training epochs was set to 500.

The following activation functions were analyzed to assess their impact on the prediction accuracy.
The hyperbolic tangent activation function [36]

f(x) = tanh(x) =
ex − e−x

ex + e−x

is characterized by its ability to amplify weak signals more significantly than strong ones. This occurs
because regions corresponding to strong signals lie on the flatter sections of the function.
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This function serves as the default activation function in LSTM models [37,38]. It has also inspired
the development of modified variants, such as the hyperbolic tangent exponential linear unit (TeLU)
activation function [39], which combines the linear characteristics of traditional activation functions
with the non-linear properties of exponential and hyperbolic tangent functions. This hybrid approach
offers a balance that enhances learning efficiency while mitigating gradient-related issues.

The linear activation function

f(x) = t x

is known for its transfer mechanism and is typically used in neurons that form the input layer of multi-
layer neural networks. Variations of the linear function can also be employed, such as the semi-linear
function or the step function [40], which can be expressed by the following formula:

f(x) =





0, x 6 0,
1, x > 1,
x, else.

The sigmoid activation function [41]

f(x) = σ(x) =
1

1 + e−x

was previously among the most commonly used types of transfer functions. Sigmoid-type functions
gained popularity due to their ability to overcome the limitations of threshold activation functions,
which restricted neuron outputs to binary values and confined neural networks to classification tasks.
By enabling a smooth transition from binary to analog outputs, these functions significantly expanded
the scope of neural network applications.

The ReLU (Rectified Linear Unit) activation function [42]

f(x) = max(0, x)

introduces non-linearity into the network, enabling it to learn complex patterns. It is computationally
efficient and helps mitigate the vanishing gradient problem, a common issue associated with other
activation functions.

The Swish activation function [43] is a smooth, non-monotonic function, also referred to as a
self-gated activation function. It is a hybrid function, proposed as a combination of the sigmoid and
ReLU activation functions. Its success has sparked interest in developing novel modifications, such as
P-Swish [44] and T-Swish [45]. The Swish function is defined as:

f(x) = x · σ(βx), (1)

where σ(βx) is the sigmoid function, and β is a tunable parameter that determines the “sharpness” of
the Swish function. Therefore, Equation (1) can also be expressed as:

f(x) =
x

1 + e−βx
.

The Softplus activation function [46]

f(x) = ln(1 + ex)

is a smooth approximation of the ReLU activation function. Unlike ReLU, it is continuously differen-
tiable, which can facilitate optimization in neural networks.

3. Results

The training progress graphs for models with different activation functions are shown in Figure 6,
illustrating the validation error at each epoch. As observed from the figure, the best results after
500 epochs are achieved by the hyperbolic tangent and Softplus activation functions.

The linear activation function is the only one where the validation loss is slightly lower than the
training loss. If the difference were larger, it would be a clear indication of overfitting. However, in
this case, it merely suggests that, starting from the 400th epoch, the model with the linear activation
function began adapting to the data and exhibited early signs of overfitting.
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The remaining activation functions — sigmoid, ReLU, and Swish — demonstrated comparable per-
formance, with the training loss being slightly higher than the validation loss. However, the difference
is small enough to indicate that the learning process remains stable and is not a cause for concern.

a (hyperbolic tangent) b (linear)

c (sigmoid) d (ReLU)

e (Swish) f (Softplus)

Fig. 6. Training progress of the model with different activation functions.

Figure 7 illustrates server load predictions over a three-day period using models with different
activation functions. Before analyzing these predictions, it is essential to establish the criteria for
evaluating model performance. The primary objective of these models is to dynamically adjust server
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a (hyperbolic tangent) b (linear)

c (sigmoid) d (ReLU)

e (Swish) f (Softplus)

Fig. 7. The model’s prediction with different activation functions.

resource allocation to ensure cost-efficient utilization. Consequently, if a model significantly overesti-
mates server load in scenarios where no such load exists, its evaluation will be negatively impacted due
to the potential for unnecessary resource allocation.

However, the foremost priority is maintaining the server’s responsiveness. Users must not experience
delays in response times due to optimization efforts. Therefore, models that slightly overestimate the
actual load are preferred over those that underestimate it, as the latter could result in insufficient
resource allocation and degraded user experiences.
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On the first day, which featured an extended period of high load, the Swish activation function
performed the best, capturing nearly all spikes with high accuracy. Its closest competitor was the
ReLU activation function, which slightly underestimated the final spike. The hyperbolic tangent,
linear, and Softplus activation functions exhibited suboptimal performance due to overestimations,
with accuracy declining in the order listed. Notably, the hyperbolic tangent function produced less
pronounced overestimations while still successfully identifying all spikes. In contrast, the sigmoid
activation function performed poorly, significantly underestimating the load and failing to predict any
high-load spikes.

The second day presented a different scenario, characterized by a narrow medium spike followed by
a very sharp high spike and a subsequent decline to a broad medium load. The first spike was missed
by all activation functions, although the predictions made by the Swish and ReLU functions were the
closest to the actual data.

Similar to the first day, the hyperbolic tangent, linear, and Softplus activation functions overesti-
mated the load. However, due to the sharpness of the spike, the impact of this overestimation was
reduced. Both Swish and ReLU delivered highly accurate predictions, with minor underestimations,
and Swish exhibited a slight edge in precision. The sigmoid activation function again significantly
underestimated the load but successfully mirrored the sharpness of the spike. Notably, all activation
functions — except linear — incorrectly anticipated a second, slightly lower spike.

In the latter part of the day, the ReLU activation function performed best, closely followed by
Swish, hyperbolic tangent, and even sigmoid, which delivered better-than-expected performance.

A comparison of the first two days for the sigmoid activation function reveals that its predictions
plateaued at a certain level. Moreover, the prediction pattern on the first day appears highly atypical
when compared to other graphs, which exhibit relatively sharp peaks. In contrast, the sigmoid func-
tion’s prediction for that day resembles a rounded curve, broad enough to span the entire duration of
the high load. This behavior suggests that the sigmoid function imposes a fixed upper limit that it
cannot exceed. Given this limitation and the presence of a prolonged high load, the resulting broad,
rounded prediction appears consistent with the function’s characteristics.

The third day was notable for its load pattern, which extended over a longer duration, resulting in
a broader but comparatively lower graph. This characteristic led to significant overestimations by all
activation functions without exception. Among them, the sigmoid activation function produced the
closest predictions to the actual data. However, this outcome should be regarded as fortuitous, as the
unusually low load during peak hours coincided with the function’s typical tendency toward strong
underestimation.

Despite the overall poor performance, the linear and Softplus activation functions can be considered
the better performers on this day. The hyperbolic tangent function, on the other hand, delivered the
worst results. Toward the end of the peak period, two sharp spikes occurred, but none of the trained
models successfully captured them.

Table 1 provides a comparison of the training, validation, and test losses for models with different
activation functions evaluated in this study. The training and validation losses are recorded at the
final, 500th epoch.

Table 1. Training, validation and test losses for models.

Model’s activation function Training loss Validation loss Test loss
Hyperbolic tangent 2.456501 2.444833 2.144749

Linear 1.719406 2.211547 2.209427
Sigmoid 5.725735 5.097187 1.708496
ReLU 4.357741 3.481589 1.933583
Swish 4.151990 3.352038 2.012375

Softplus 2.251868 2.274745 2.260747

The linear activation function is the only one that exhibits a significant difference between the
training and validation losses, with the training loss being lower — potentially indicating overfitting
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of the model. Furthermore, the hyperbolic tangent and Softplus activation functions demonstrate the
smallest differences between training and validation losses. This observation aligns with the results
shown in Figures 6b, 6a, and 6f , respectively.

At first glance, it may seem surprising that the sigmoid activation function exhibits the smallest test
loss, potentially leading to incorrect conclusions. However, loss alone should not be the sole criterion
for evaluating model performance. It is evident that the predictions on the third day heavily influenced
this metric. As discussed in the analysis of Figure 7c, the sigmoid function’s tendency to underestimate
resulted in smaller errors for that day, while other activation functions incurred significantly higher
errors due to their attempts to accurately capture the actual spikes.

Additionally, the first day’s performance likely contributed to the sigmoid function’s lower test
loss. Instead of attempting to accurately predict spikes, the model flattened its predictions toward
the average load, failing to capture actual variations. Although this behavior reduced the overall loss
metric, it does not indicate good performance, as the primary objective is to predict load patterns —
particularly spikes — rather than merely minimize the loss. Therefore, despite the lower test loss, the
performance of the sigmoid function is considered poor.

Analyzing the test loss for the other activation functions reveals a noticeable improvement for
both ReLU and Swish, each showing a considerable reduction. The hyperbolic tangent function also
demonstrated a lower test loss; however, the difference between its test and validation losses is relatively
modest.

The test loss for the linear activation function is nearly equivalent to its validation loss, showing
no improvement. Both values remain higher than the training loss, once again suggesting overfitting
in the model.

Interestingly, the Softplus activation function exhibited relatively consistent loss values across the
training, validation, and test sets.

4. Conclusions

This study presents a comparative analysis of prediction models based on recurrent neural networks
that employ different activation functions for artificial neurons. The results include representative
prediction examples and training process graphs that compare training and validation errors. The
findings support the hypothesis that the choice of activation function significantly influences prediction
accuracy, even when all other model parameters remain fixed.

As part of this study, a flexible evaluation framework was developed for LSTM-based models, en-
abling the systematic comparison of various activation functions and supporting future investigations
of new activation function classes. Data collection, preprocessing, and statistical analysis were con-
ducted manually to maintain full control over data integrity and consistency. A key contribution of
this work is the introduction of a real-world dataset of server requests, which captures realistic load
fluctuations and may serve as a benchmark for future studies. Considerable effort was devoted to the
data acquisition and preparation stages to ensure the reliability of the experimental results.

The Swish and ReLU activation functions demonstrated excellent performance, occasionally yield-
ing near-perfect predictions of server load, thus proving to be highly suitable for this task. In most
cases, Swish exhibited a slight but consistent advantage in accuracy over ReLU.

To further investigate the prediction accuracy of server load using models with different activation
functions, the following steps are planned:

— Enable models to account for the distinct characteristics of various types of days (e.g., weekdays,
weekends, holidays) during training and prediction.

— Incorporate explainable AI (XAI) techniques to interpret the internal decision-making processes of
LSTM models employing different activation functions, with a particular focus on feature relevance
and temporal sensitivity during high-load periods.
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Вплив активацiйних функцiй на точнiсть прогнозування
серверного навантаження за допомогою нейронних

мереж типу LSTM

Чабан О. М., Пукач П. П., Пукач П. Я., Гладун В. Р.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, м. Львiв, Україна

Постiйне зростання кiлькостi користувачiв i їхнiх запитiв до серверiв вимагає значних
обчислювальних ресурсiв для забезпечення швидкої обробки без затримок. Водночас
навантаження на сервери є природно нерiвномiрним упродовж доби, тижня або мiся-
ця. Точне прогнозування необхiдних ресурсiв i динамiчне управлiння їх розподiлом
є надзвичайно важливими, оскiльки це може суттєво знизити витрати на обслугову-
вання серверної iнфраструктури без погiршення якостi користувацького досвiду. У
цьому дослiдженнi розглянуто вплив вибору активацiйної функцiї на точнiсть про-
гнозування за допомогою нейронних мереж типу Long Short-Term Memory (LSTM),
застосованих до реальних даних запитiв до серверiв. Зiбраний набiр даних мiстить
iнформацiю про вхiднi запити, агреговану в iнтервали по 20 хвилин протягом 16 дiб.
Було дослiджено кiлька активацiйних функцiй — зокрема ReLU, Swish, та Softplus
— з використанням середньоквадратичної помилки (MSE) як основного показника
ефективностi. Кожну конфiгурацiю моделi навчали шiсть разiв для забезпечення ста-
тистичної надiйностi, а результати бралися з одного з найбiльш стабiльних запускiв.
Отриманi експериментальнi результати свiдчать, що вибiр активацiйної функцiї сут-
тєво впливає на точнiсть прогнозування: функцiї Swish i ReLU продемонстрували
найменшi значення MSE, зменшивши похибку на 6.6 − 12.3% та 10.5 − 16.3% вiдпо-
вiдно порiвняно з базовим варiантом. Хоча сигмоїдна функцiя забезпечила найнижче
тестове значення втрат, подальший аналiз виявив хибнiсть цього результату: модель
систематично недооцiнювала пiкове навантаження, що призводило до занижених зна-
чень помилки, але водночас — до низької достовiрностi прогнозу динамiки реального
навантаження. Отриманi результати пiдтверджують гiпотезу про те, що вибiр ак-
тивацiйної функцiї є критичним чинником для оптимiзацiї моделей прогнозування
навантаження серверiв на основi LSTM.

Ключовi слова: прогнозування навантаження на сервер; машинне навчання; ак-

тивацiйнi функцiї; нейроннi мережi типу LSTM.
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