odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 12, No. 3, pp. 803-808 (2025) I\/I @P”ti"g

athematical

Solution of the dynamic problem of thermoelasticity
in stresses for a strip

Musii R. S.

Lviv Polytechnic National University,
12 S. Bandera Str., 79013, Lviv, Ukraine

(Received 12 June 2025; Accepted 30 August 2025)

The method for solving a two-dimensional dynamic thermoelasticity problem in stresses
for a strip with a rectangular cross-section is proposed. The initial system of equations in
stresses, which describes the plane-stress state of the strip, is selected. A solution method
is developed based on approximating the distributions of all components of the dynamic
stress tensor using cubic polynomials with respect to the thickness coordinate of the strip.
This reduces the original system of two-dimensional unsteady equations to a system of one-
dimensional unsteady equations involving integral characteristics along the thickness. To
solve the resulting system of equations, a finite integral transform is applied with respect
to the transverse coordinate of the strip, and the Laplace transform is used for the time
variable. General solutions to the considered dynamic thermoelasticity problem under
unsteady thermal and force actions on the strip are presented. A criterion for assessing
the bearing capacity of the strip is proposed. The analysis reveals the existence of four
types of resonant frequencies under the specified unsteady conditions.

Keywords: strip; non-stationary thermal and force actions; plane-deformed state; com-
ponents of the stress tensor; stress intensities; resonant frequencies.
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1. Introduction

During their operation, plate elements are subjected to intense unsteady temperature and force effects.
To assess their bearing capacity, it is necessary to solve dynamic thermoelasticity problems formulated
in terms of stresses. This makes it possible to determine the stress intensity o;. According to the Huber-
Mises criterion, o; < 04 [1], where o4 is the dynamic limit of elastic deformation of the element material.
The formulation of the problem of thermoelasticity under stresses was considered, in particular, in [2-5].
They mainly provide solutions to static problems of thermoelasticity in stresses and a few solutions
to some one-dimensional dynamic problems. For a more complete study of the thermoelastic state of
structural elements, it is necessary to solve two-dimensional problems. The initial systems of equations
for two-dimensional dynamic problems for plates and cylindrical bodies were written in [6,7]. The aim
of this paper is to construct a solution to the two-dimensional dynamic problem of thermoelasticity
for a strip in stress.

2. Relationship of the dynamic problem of thermoelasticity for the strip

In the Cartesian coordinate system Oxizoxs, we consider a strip of rectangular cross-section with
thickness 2h and width 2d. The material of the strip is homogeneous and isotropic. The strip is
subjected to unsteady volume force F = {F7;0; F3} and the temperature field 7. Their expressions
do not depend on the coordinate zo, and the surfaces of the strip x3 = £h and x7 = =£d are free
from surface force load. Under these conditions, we have a plane-deformed state of the strip. As a
starting point, we choose the system of equations of the plane dynamic problem of thermoelasticity in
stresses [7, 8|
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Here, U = 011 + 033, C?2 = (1—v)(1+v) (1 —-2v)"1p7tE, C3 = E/[2(p(1 —v))], C; and Cy are the
propagation velocities of elastic waves of expansion and deformation; A; = {?—;2 + ;—xg; C§ = 2C22; o, v
are the coefficients of linear thermal expansion and Poisson’s ratio; E' is the Young’s modulus; p is the
density; t is the time. The initial conditions for the defining functions at ¢t = 0 are as follows
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Here, T, \i/, 011, 013, 092, 033 are time derivatives ¢ of the determining functions.
When the surfaces of the strip are free from force loading, the system of boundary conditions on
the surfaces x3 = +h has the form:
2uE 1 §2uE 2UE  9FE 9 [(do13\T .
— 3 ~ 2 g el V) —om o - o )
ozy  CF Ot ot Oz, Oz
Accordingly, on the surfaces x1 = +d it is written
PPt 1 92ut PTE  OFL 9 <aa*1g>i N

ox3  C% ot? pa(l+v) Ot2 dry Oz \ Or T3 =Y 433 * (7)

Here, C? = 2(1 — 1/2_1022, T* = T(x1,%h,t), FZ-jE = Fi(x1,%h,t);
0., = o (Edwzit), T =T (£T;a3t), Fi = F (£T;31).
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The solution of the initial problem (1)—(4) is reduced to the joint solving two interconnected wave
equations (1) and (2) and the subsequent solving of equation (3) under initial (5) and boundary (6)—(7)
conditions.

3. Methodology for constructing the solution

To solve the system of equations (1)—(4), the functions ¢ and 013 are approximated by the thickness
coordinate x3 by cubic polynomials

1 1
=Y it o= apgoy (e t) ) (8)
=1 =1

The coefficients 1j_1, ay3(;_1) of the approximation polynomials (8) are given by the integral charac-
teristics of the functions ¢ and o3

1 rh 3 fh | rh 3 rh
N=— dxs, M = — dxs, Ni3 = — dxs, M3 = — d 9
5% /_h1/1 T3, 57,2 /_h¢963 23, Niy = g7 | owsdes, Mig 2h2/ ozrzdry  (9)

—h
and the given boundary values of these functions. We obtain the expressions
3 1 5 3 3 3 5 5M
o) = 5N =g by =g M = St V) = eV~ 50N, Ye) = a¥e — 5
3 5 3 5
Q13(0) = §N13, Qiz1) = %Ml?n Q13(2) = _WNl?n Q3(3) = —ﬁMlg-

Here, 1, = ¥T 4+~ , 9y = 9T —1p~. The system of equations for determining the integral character-
istics of N, M, Ni3, M3 is obtained by integrating equations (1), (2) according to formulas (9) using
expressions (8) is as follows:

9 10* 3 3. 4. .. (0 19 15 5, .
<a—3ﬁ_gﬁ_ﬁ>N_q)l_W(¢ +97), <8—:E%_Eﬁ_ﬁ>M_q)2_W(¢ — 7)),
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The initial conditions will be as follows
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The functions ®; and ®5 in the equations (10) are as follows
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For the boundary values of ¥ of the function ¥ on the surfaces of 1 = +d of the band, we obtain
the equation

)

M(x1,0) = — Ty(21,0), Nig(21,0) =0, Ms(z1,0) = 0.
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Considering the conditions for conjugation of the values of the functions 1 and o3 at the vertices of the
rectangle of the strip cross-section [9] on the functions N, M, Ny3, M3, UF along the coordinate z,
we obtain the following boundary conditions

10 (d)
8t2 axl + h 8331 (5M13 + 3N13 )

T (x1, £h,0).

e e N(id t) = —h [F5(£d,t) — Fy (£d,t)] —cipa(l + y)— (11)
2
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E(Ed,t) =0, Nig(+d,t) =0, Myz(+d,t)=0.
In accordance with the inhomogeneous boundary conditions (11)—(12) on the functions N and M, we
present the solutions of the first two equations of the system (10) in the form

N1, t) = 5 {[No(dot) + Nua(=d )]+ T2 [NL(d,0) = Now(=d,8)] | + o, 1)

M1, 0) = 5 { VL, 0) 4 Mas(=d, 5] + 22 (M, ) — Ma(=d,)]} + Mo ).

Then the functions Ny(x1,t) and Mo(:El, t) are defined from the following equations

d? 1 d? 3 n 1 d2 3\1 1

Z? 1d> 15 15 1d> 15
— = 55— 5 | My = P9 — — (T — ™ —— M, + M,,) + == (M, + M,,
<dx§ 2 ar? h2> 0= P2 oW —vT)+ <c§ az " h2> [( + M) + M.
under uniform boundary conditions on the surfaces 1 = +d. Here, N, = N(d,t), Ny = N(—d,1)
M, = M(d,t), My = M(—d,1).

7
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The system of interdependent equations (10) is solved by applying the finite integral transform [10]
with kernel K(ay,x1) = W, where o = Lk and the Laplace transform in time ¢t. After the
transformations, we obtain the expressions of the functlons E, N, M, Ni3, Mi3 in the form

< ot 3 _ d gpt
(1, 1) = Z</o {0_45111 ol —fo) /_d Ay (o1, To) K(ag, z1) dzy

« c dzx
st k 4 1

tn ~ -
tpa(l +v)esay sin FO Ty ¢ — to)} dto — pa(l +v)c2 T (ay, 0)> K(og, z1), (13)
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ciy/ai + 15 £ Xk ' **
t
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a4+ 3 h
k h?2

Mys(x1,t) =Y /Ot <%F1(1)(ak,to) — % [E (o to) + Fy (g, to)] + % [Ni(to) — Nux(to)]

1— (~1)* _/ AP (a1, )
ak\/a —d dzy

K(Oék,ﬂfl)d$1> = =
Oé% + h2

X sin [cmlaz + %(t - to)] dto K(ag, x1). (17)

Here, the boundary values of the functions N and M at the ends of x1 = +d of the strip are as follows

t 2 4 _ h . 3C4t0
N(id,t): 2h[F (d,t — to) — F; (id,t—to)]asm .
C

1 t
B wﬂ(id,t ~ t)sin 24 O}dto — &pa(l +v)Ty(+d,0),

t 2
M(+d,t) = / <{% [F(£d,t —to) — Fy (2d,t — to)] + 32 F\V (£d,t — 1)
0
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According to the expressions (13)—(17) of the functions *, N, M, Ni3, M3 functions, 1) and o3 are
written in the form. Here, the boundary values of the functions N and M at the ends of 1 = +d of

the strip are equal

3 3 5 (x5 a3
Y(xy,23,t) = 2 < — ﬁ) N(z1,t) + 5 <F — m) M(zy,t)

ST e - L (37— 55 ()
4 p2 ) TR g T T3 ) e
3:?,, ) 3
013($1,333,t):§ 1—ﬁ le(xl,t)+§ s M3(wy,t).

Here, W, (x1,t) = U + 0~ U, (z1,t) =0T — U™,

Accordingly, for the component o11 of the stress tensor, we obtain the expression

on(x1,t) = & i /0 t <p<1 + u>{g [0k, 0) = Blan, t — to) ages sin(aresto)|
k=1

pa(l +v)Ta(Ed, t —to)

X Sin

>dt0 —cipa(l + v) Ty(£d,0).

—a [T(ak, 0) — Tk, t — to) ages Sin(OékC?)to)} }

+ Sin(ak03t0) /d dF1 (:L'l, t— to)
Q. C3 —d dxl

K(ak, xl) dx1>dt0 K(ak, 331).

The stress components 099 and o33 are found using the algebraic relations (4). Note that the solutions
to the quasi-static problem of thermoelasticity in stresses for the strip are given in [9].

To predict the strip carrying capacity from the known components o11(z1,z3,t), o13(z1,23,1t),
o92(x1,3,t), 033(x1,x3,t) of the stress tensor and temperature T'(z1,x3,t) are determined by the
formula [2,4, 6]

o = \/(0“11 —022)% + (022 — 033)2 + (033 —011)% + 60%3/\/5
the stress intensity o; and compare it, according to the Huber—Mises criterion, with the elastic strain
limit o4 of the strip material.

4. Conclusion

The obtained general solutions of the dynamic problem of thermoelasticity for a strip make it possible to
predict the bearing capacity of a plate element in the form of a strip under nonstationary temperature
and force actions. This technique allows us to estimate the resonant effects of the thermoelastic
behavior of the strip at four types of natural frequencies of its mechanical vibrations

— 2 3 _ 2 15 _ 2 3 o 2 15
w1 =1 ak—i-ﬁ, W = C1 O‘k"‘ﬁ? w3 = Cy a’f—i_ﬁ’ Wy = Cy ak"‘ﬁa

and is the scientific basis for the selection of safe temperature and power loading conditions of plate
elements in the form of a strip.
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Po3B’'sa30k gnHamivHOI 3aga4i TepMONpPY>XHOCTI
Yy Hanpy>XeHHsAX ANsi CMyru

Myciii P. C.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eya. C. Bandepu, 12, 79013, m. Jlveis, Ykpaina

3aIpoOHOBAHO METOIUKY MOOYIOBH PO3B’S3KY JIBOBHMIDHOI AMHAMIYHOI 3aJadi T€pMO-
[PY?KHOCT1 y HAIPYKEHHSX JJIsi CMyTI'M HPsIMOKYTHOTO mepepidy. 3a Buxijay Bubpana
cucTeMa PIBHSHB Y HAIIPYKEHHSX, IO OMHUCYE IJIOCKO-JedopMoOBaHuil craH cMmyru. Poz-
BUHYTO METOIUKY MOOYIOBU PO3B’sI3KY JAHOI 3aJadi sKa I'PYHTYETbCS HA AlPOKCHMAIIIT
PO3MOIIIB BCIX KOMIIOHEHT TE€H30pa JUHAMIYHUX HAIPYKEHb KyOIYHUMU TIOJIIHOMAMHA 33
TOBIUHHOIO KOOPJAWHATOIO CMYTH. Y Pe3yJIbTATI CHCTEMa BUXIJIHUX JTBOBUMIDHUX HECTa-
IIIOHAPHUX PIBHAHBb HA Il KOMIIOHEHTHU 3B€JIEHA JI0 CUCTEMH OJIHOBUMIDHUX HECTAIlIOHAPHUX
PIBHSIHB Ha IHTErpajbHI XapaKTEPUCTUKU 38 TOBIINHHOIO KOODAMHATOIO JAHIX KOMIIOHEHT.
st po3B’sI3yBaHHS OTPUMAHOI CUCTEMHU PIiBHSIHDb BUKOPHUCTAHO CKiHYeHE iHTerpaJjbHe Iie-
PETBOPEHHS 3a MOIEePETHOI0 KOOPAMHATOIO CMYTH Ta iHTerpaJbue nepeTBopeHHs Jlamnaca
3a 9aCOBOI0 3MIHHOMI. 3aIUCAHO 3arajbHi PO3B’S3KHM PO3IJIsiyBaHO! JUHAMIYHOI 3aadi
TEPMOIIPY?KHOCT1 38 HECTAI[IOHAPHUX TeMIIepaTyPHUX 1 CHUJIOBHUX JIiii Ha CMyry. 3alpoIrio-
HOBAHO KPHUTEPiil s OIMHKU HeCydol 3/aTHOCTI cMyru. BusB/IEHO PE30HAHCHI YacTOTHU
YOTUPHOX THIIB JIJII CMYT'H 3& PO3IJISIyBAHUX HECTAIIOHAPHUX JIiil.

Knw4osi cnoBa: cmyza; Hecmauionaphi menaiosi i cunrosi 0i; naocko-oedopmosaru
CMaM; KOMNOHEHMU MEH3OPA HANPYHCEHD; THMEHCUBHOCTIVE HANPYHCEHD; DEZOHAHCHT 4aC-
momau.
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