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This study introduces the GDK method, combining Global Structure Model (GSM), De-
gree Centrality (DC), and K-shell decomposition (Ks), to assess node significance in net-
works. In comparison to traditional metrics (Degree Centrality, Betweenness Centrality,
and Closeness Centrality), GDK is evaluated across three network types: social (Email),
scientific (Netscience), and technological (Router). Analysis of Variance (ANOVA) and
Kendall§ correlation show that GDK consistently achieves higher correlation in ranking
nodes, making it a more reliable tool. By integrating local and global centrality fea-
tures, GDK identifies key nodes with both direct and structural importance, outperform-
ing single-dimension measures. For example, in the Email network, GDK highlights both
direct and bridging nodes, while in Netscience, it combines local and structural criteria
to find influential nodes. The results suggest that GDK offers a more nuanced evaluation
of node importance, addressing the limitations of traditional methods. Further research
should explore its application to larger and more diverse networks.
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1. Introduction

Understanding complex systems across diverse domains, such as social interactions, biological path-
ways, and technological infrastructures, is greatly enhanced through network analysis. The analysis
focuses on the concept of node centrality, which measures the significance of individual nodes in a
network [1,2]. These centrality measures provide valuable insights that support decision-making, iden-
tifying key players, and gaining a deeper understanding of the structural properties of networks [3,4].

Although numerous centrality metrics such as Degree Centrality (DC), Betweenness Centrality
(BC), Closeness Centrality (CC), Eigenvector Centrality (EC), and Katz Centrality (KC) are avail-
able, the literature often lacks a thorough comparative analysis. Many studies overlook the overall
performance and behavior of these metrics when applied to various network topologies. This limita-
tion greatly hampers the ability to select the most appropriate metric for specific analytical objectives
and network types [5]. As networks become more intricate, it is crucial to conduct a detailed compar-
ative analysis to effectively apply centrality measures in different situations. This study introduces the
GDK method, which stands for Global Structure Model-Degree Centrality-K-shell decomposition, as
a novel approach to addressing these challenges.

In order to bridge this gap, our study utilises Analysis of Variance (ANOVA) to thoroughly compare
established centrality measures with a new metric known as GDK. ANOVA is a robust statistical tool
that helps us assess whether there are notable variations in average centrality scores among various
groups [6]. Our goal is to use ANOVA to analyse variations in centrality scores across different network
types. This will give us a strong statistical basis for making comparisons.

This research was financially supported by Universiti Teknikal Malaysia Melaka under the grant number JUR-
NAL/2022/FTKM/Q00087.
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Using ANOVA in this context has multiple benefits. First, it enables a structured and numerical
evaluation of multiple centrality measures at the same time, facilitating the interpretation of their
relative performance in a clear and straightforward manner. Additionally, ANOVA can assist in pin-
pointing particular network types where specific centrality measures excel or fall short. This valuable
information can guide researchers and practitioners in choosing the most suitable metric for their
individual requirements. Furthermore, the use of ANOVA adds a level of statistical rigour to our
comparisons, ensuring that our findings are not based solely on anecdotal evidence. This enhances the
reliability and generalisability of our results.

To summarise, this study seeks to address the current lack of information in the literature by offering
a detailed analysis of centrality measures using ANOVA in a way that is both easy to understand and
comprehensive. Through our work, we provide valuable insights into the performance of different
centrality metrics across various network topologies, contributing to the field of network analysis.
Our findings will help in selecting the most suitable centrality measures for various applications, thus
enhancing the understanding and practical usefulness of network analysis.

2. Literature review

Centrality measures are essential in network analysis as they offer valuable insights into the significance
and impact of nodes in a network. These measures assist in identifying important nodes that have a
significant impact on the structure and function of the network. Understanding centrality in a network
involves grasping the significance of a node and how it is measured using different centrality measures.
Three commonly used centrality metrics are DC, BC and CC. Table 1 provides a concise overview of
the advantages and disadvantages of each measure.

Table 1. Centrality measures strengths and limitations.

Centrality measures Descriptions

Degree centrality [7] Strength:

- Measures the number of direct connections to a node.

- Indicates immediate influence within the network.

Limitations:

- Does not capture indirect connections or the quality of the relationships.
- Does not consider strength or quality of connections.

- Limited in capturing indirect influence.

Betweenness centrality [8] | Strength:

- Identifies nodes crucial for communication and information flow.

- Highlights bridges or connectors between distinct network communities.
Limitations:

- Overemphasizes nodes in small, densely connected networks.

- May not reflect importance in networks with multiple paths.

- Computational complexity in large networks.

Closeness centrality [9] Strength:

- Measures efficiency in spreading information across the network.

- Identifies nodes with quick access to others.

- Useful in cohesive networks.

Limitations:

- Assumes equal relevance of all connections.

- Misleading in networks with disconnected components or long paths.
- Does not account for varying connection strengths.

Recognizing the limitations of individual centrality metrics, researchers have increasingly explored
methods that combine multiple measures. These approaches aim to offer a more comprehensive as-
sessment of node importance, leveraging the strengths of different centrality metrics while mitigating
their individual weaknesses. One common approach is centrality fusion, which integrates various cen-
trality measures into a unified score. This fusion can be achieved through simple averaging, weighted
averaging based on domain knowledge, or more sophisticated machine learning techniques.
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Example of centrality fusion:

1. Importance of node C(v): Jiawei (2008) proposed C'(v), which combines DC, BC, and neighbor-
ing node degrees (DD), allowing for fine-tuning to match specific network characteristics or study
objectives [10].

2. The betweenness and katz centrality (BKC): Zhang et al. (2016) proposed the BKC method,
which combines BC and Katz centrality (KC). The BKC method provides a fine-tuned evaluation
of node importance by considering both the local influence of nodes and the influence they exert
through various path lengths [11].

In addition to examining individual nodes, it is essential to grasp the broader framework of a
network. The Global Structure Model (GSM) offers a thorough perspective by taking into account
global metrics such as network diameter, average path length, clustering coefficient, and network
density [12]. GSM assesses the contribution of individual nodes to the overall connectivity and structure
of the network in a way that is both thorough and easily understandable.

Although the Global Structure Model (GSM) is thorough in its approach, it does have a few
limitations. Firstly, the emphasis on global metrics may sometimes neglect important local details,
resulting in a limited understanding of the significance of individual nodes in specific situations. GSM’s
focus on overall network properties may not fully capture the dynamic nature of evolving networks, as
it tends to prioritize static structural features. In addition, GSM can be quite demanding in terms of
computational resources, particularly for networks of a large scale. This can make it less suitable for
real-time analysis. These limitations indicate that although GSM offers a wide perspective on network
structure, it may not always provide the specific insights needed for certain applications.

The Improved Global Structure Model (IGSM) enhances network analysis to overcome its limi-
tations. IGSM includes extra metrics and advanced techniques such as k-shell decomposition, which
uncover more intricate hierarchical structures and enhance network resilience. IGSM improves our
understanding of complex networks across various domains by incorporating both local and global
influences [13].

The Improved Global Structure Model (IGSM) has made efforts to address some of the limitations
of GSM. However, it is important to note that IGSM also has its own set of limitations. Analyzing very
large networks can be challenging due to the increased computational demands caused by the added
complexity and refined algorithms in IGSM. While IGSM does incorporate advanced techniques like
k-shell decomposition, it may face challenges when dealing with networks that have frequent changes
or unconventional structures. In addition, the hybrid approaches employed in IGSM for combining
multiple centrality measures can present difficulties in fine-tuning parameters and effectively balancing
various metrics. These limitations emphasize that although IGSM provides improved accuracy and
detail, it necessitates additional resources and meticulous implementation for optimal results.

A metric called GDK (Global Structure Model-Degree Centrality-K-shell decomposition) was de-
veloped to address the limitations of GSM and IGSM [14|. GDK is a centrality measure that takes
into account various aspects of a network to identify influential nodes in a more thorough manner.
It combines the Global Structure Model (GSM), DC, and K-shell decomposition (Ks) to address the
limitations of solely relying on global or local metrics. The equation for GDK formula for a node ¢ is
given in Equation (1),

Ks(j)XDC(J)

) Ks(2) x DC(4 e N
GDK(i) = exp <¥> X Z m (1)
JEN(i) Tij
GDK takes into account the complete structure of the network, understanding how nodes are connected
and the roles they play in the network as a whole. DC calculates the number of direct connections a
node possesses, emphasizing nodes that have immediate influence. Ks provides a more detailed analysis
by pinpointing the core structure of the network and classifying nodes according to their depth within

the core. Nodes in higher k-shells are considered to be more central and influential.
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Through the integration of these three components, GDK offers a thorough evaluation of a node’s
influence, taking into consideration its direct connections, its significance in the overall network struc-
ture, and its position within the network’s central core. This approach combines the strengths of GSM
and IGSM to provide a thorough and accessible analysis of node importance in different network types,
overcoming their limitations. It offers a comprehensive and easy-to-understand perspective, enabling
the identification of critical nodes.

3. Methodology

Figure 1 illustrates the research framework for this study. From the literature review, we identified
the centrality measures to be used for comparison: DC, BC, CC, GSM, IGSM, and the proposed
method GDK. This study employs a two-stage analytical approach to compare these centrality measures
across various network types. The first stage involves using Analysis of Variance (ANOVA) to identify
significant differences among the centrality measures. If significant differences are found, the second
stage evaluates the performance of the proposed GDK method using the Kendall correlation test.

Start

Objective:
Comparing different centrality measures
including GDK with ANOVA

Literature
Review

Analyze with

No ANOVA and Yes Result &
Kendall Discussions
Correlation

Fig. 1. Research framework.

3.1. Datasets

This study employs three distinct datasets that represent various types of networks: social, scientific
collaboration, and technological. These datasets were selected to represent a wide range of real-world
networks, thereby establishing a comprehensive foundation for evaluating the effectiveness of different
centrality measures. Preprocessing is implemented on each dataset to ensure accuracy and consistency.
Isolated nodes are eliminated, and edge weights are standardized when applicable. Table 2 summarizes
the node and edge counts, density, and degree distributions of these networks. All datasets are un-
weighted and undirected, obtained from the Network Repository (https://networkrepository.com) [15].

Table 2. Summary of Network Datasets.

Network Nodes | Edges | Description
Email 1005 25571 | High-density social network from email commu-
nications within an organization

Netsciences | 379 914 Sparse scientific collaboration network with clus-
ters of co-authors
Router 502 1035 Hierarchical technological network representing

internet router connectivity
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3.2. Analysis of variances

Analysis of variances (ANOVA) is an effective method of statistical analysis that allows for the com-
parison of means between multiple groups, helping to identify any significant differences among them.
This tool is especially valuable in our research for comparing centrality measures across various network
conditions [6,16]. One of the main benefits of ANOVA is its capacity to handle multiple comparisons at
once and its adaptability to different experimental designs. Using ANOVA, we can thoroughly evalu-
ate the performance and statistical significance of different centrality measures across various network
types. This method allows us to analyze the rankings and effectiveness of each centrality measure,
offering a comprehensive comparison in various network contexts.

3.3. Kendall correlation coefficient

Kendall’s correlation is a non-parametric statistic used to measure the ordinal association between two
measured quantities. It evaluates the correspondence between the rankings of the data points and is
particularly useful in situations where the data does not necessarily follow a normal distribution, or
the relationship between variables is non-linear. Kendall’s tau provides a coefficient value that ranges
from —1 to 1, where increasing values indicate perfect agreement between two rankings [17,18].

In the context of network analysis, Kendall correlation is employed to assess the correlation between
the ranks of nodes as determined by different centrality measures and an external criterion of node
importance or influence. In our study, Kendall correlation is used to compare the effectiveness of
traditional centrality measures DC, BC, CC, GSM, IGSM the novel GDK method. Equation for
Kendall correlation is given as in Equation (2),

Ne — Ng

"7 05 n(n—1) @)

4. Result and discussions

Initially, the nodes will be evaluated based on various centrality measures, and the ten most significant
nodes will be determined. Tables 3, 4, and 5 display the top ten ranked nodes for each centrality
measure in the Email, NetScience, and Router networks, respectively. These tables provide information
on the prominence of nodes, as determined by various centrality measures and network models. Take
the notation “Rank 1 for DC: 104 (71)” as an example. In this case, the number 104 is the node’s
identity, while 71 indicates the DC value for node 104.

Table 3. Node position for Email network.

Rank | DC CcC BC IGSM GSM GDK
1 | 104 (71) | 332 (0.3828) | 332 (0.0395) | 104 (515.8471) | 104 (4838.6856) | 104 (979.9149)
2 | 332(52) | 22 (0.3817) | 104 (0.0369) | 332 (503.3707) | 332 (4802.1983) | 332 (820.7015)
3 15 (51) | 104 (0.3782) | 22 (0.0335) | 22 (501.1832) | 22 (4785.8883) | 22 (809.9942)
4 41 (51) | 41 (0.3776) | 577 (0.0316) | 41 (497.5011) | 41 (4750.0736) | 41 (805.4516)
5 22 (51) | 40 (0.375) | 75 (0.0301) | 40 (490.9043) | 40 (4696.4356) | 40 (779.9895)
6 40 (49) | 75 (0.3743) | 232 (0.0277) | 75 (487.1374) | 75 (4685.0018) | 15 (750.6963)
7 | 195 (47) | 232 (0.3734) | 134 (0.0273) | 232 (486.4053) | 298 (4673.0331) | 232 (748.3476)
8 | 232 (45) | 51 (0.3732) | 40 (0.0265) | 51 (480.6753) | 232 (4670.037) | 195 (739.3571)
9 20 (43) | 134 (0.3699) | 354 (0.0264) | 134 (478.5796) | 51 (4643.302) | 75 (738.3966)
10 | 75 (43) | 377 (0.3686) | 41 (0.026) | 377 (477.087) | 134 (4615.5582) | 20 (707.5227)

In the Email network (Table 3), it can observed that DC and CC generally yield similar rankings.
Node 104 ranks first in both DC (71) and CC (0.3828), signifying its central position in terms of both
direct connections and proximity to other nodes. Notably, BC presents a different pattern, with node
577 (Rank 4) holding a relatively low BC value (0.0316). This variation suggests that BC may not
effectively capture the most influential nodes in terms of overall connectivity, unlike DC and CC, which
are more consistent in identifying central nodes. Additionally, GDK consistently ranks node 104 at
the top across all measures, confirming its robustness in identifying key players within the network.
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Table 4. Node position for NetScience network.

Rank DC CC BC IGSM GSM GDK

1 43 (34) | 106 (0.0664) | 106 (0.0266) | 106 (128.2385) | 43 (140.4358) | 44 (955.6695)

2 44 (27) | 204 (0.0645) | 184 (0.0231) | 44 (121.4767) | 44 (140.2482) | 43 (921.7126)

3 106 (27) | 184 (0.064) | 328 (0.0191) | 184 (118.923) | 106 (137.1197) | 45 (833.6304)

4 45 (21) 84 (0.0629) | 204 (0.0181) | 43 (117.7064) | 204 (125.4203) | 53 (799.3097)

5 531 (20) | 326 (0.0603) | 120 (0.0171) | 204 (116.9759) | 184 (124.0598) | 54 (756.8205)

6 894 (20) | 185 (0.0597) | 44 (0.0168) | 84 (116.6048) | 84 (122.7888) | 56 (748.7766)

7 893 (20) | 44 (0.0595) | 84 (0.0155) | 185 (110.6491) | 45 (118.4643) | 55 (748.7766)

8 892 (20) | 46 (0.0576) | 326 (0.0148) | 326 (106.2136) | 185 (115.1861) | 69 (748.7766)

9 906 (19) | 215 (0.057) | 46 (0.0117) | 328 (105.6451) | 53 (110.5472) | 68 (748.7766)

10 891 (19) | 220 (0.0569) | 305 (0.0117) | 45 (105.5319) | 326 (110.1332) | 204 (694.1783)

Table 5. Node position for Router network.
Rank DC CC BC IGSM GSM GDK

1 100 (109) 2 (0.3288) 2 (0.0668) 100 (845.1704) | 100 (1620.3389) | 89 (11703.718)
2 139 (96) | 100 (0.3281) | 0 (0.0645) 139 (829.8676) | 139 (1480.9218) | 384 (11265.1154)
3 350 (79) 89 (0.3271) | 100 (0.0593) | 2 (803.9336) | 350 (1342.5666) | 350 (11148.0373)
4 62 (75) 139 (0.3262) | 139 (0.0534) | 89 (801.4374) | 89 (1260.3286) | 356 (10977.0779)
5 48 (74) 0 (0.3222) 159 (0.0451) | 0 (793.9552) 384 (1177.504) | 369 (10730.8361)
6 242 (67) | 242 (0.3176) | 508 (0.0425) | 242 (782.7952) 0 (1170.327) 279 (10634.9075)
7 135 (66) | 384 (0.3162) | 99 (0.0397) | 99 (770.6143) | 135 (1146.4641) | 381 (10550.5609)
8 113 (66) | 426 (0.315) | 350 (0.0395) | 62 (770.2913) | 48 (1146.3471) | 185 (10509.5205)
9 89 (63) 99 (0.3138) | 62 (0.0389) | 384 (769.8855) | 2 (1140.2801) | 367 (10461.6821)
10 0 (63) 216 (0.3135) | 179 (0.0373) | 350 (769.115) | 356 (1115.4977) | 100 (10457.6264)

GDK’s ranking closely aligns with that of CC, suggesting its utility in identifying nodes critical for the
flow of information across the network.

The NetScience network (Table 4) exhibits similar trends, with GDK consistently identifying central
nodes that are also highly ranked by CC. For instance, node 43 ranks first in CC (0.0664), followed by
node 44, and similarly, these nodes are ranked highly by GDK. However, BC shows greater variation,
with node 328 (Rank 3) holding a relatively lower BC value, indicating that BC may be more sensitive
to specific paths or clusters in the network rather than overall connectivity. This suggests that while
GDK and CC capture a broader perspective of node importance, BC may be more specialized in
identifying nodes that bridge distinct parts of the network. The consistent ranking of nodes by GDK
highlights its effectiveness in identifying nodes that are crucial for network connectivity, making it a
valuable tool for network analysis.

In the Router network (Table 5), GDK again demonstrates strong performance in identifying central
nodes. Node 100 ranks first in both DC and GDK (with values of 109 and 11703.718, respectively),
reflecting its high connectivity and critical role in facilitating network communication. Interestingly,
BC shows a different pattern, with nodes like 139 (Rank 2) and 62 (Rank 4) receiving higher BC
values, suggesting that these nodes may play more specialized roles in controlling traffic flow within the
network. Despite this, GDK consistently ranks nodes such as 100, 139, and 350 highly, reinforcing its
ability to capture nodes that are essential for maintaining effective communication within the network.
In comparison to BC, GDK appears to provide a more comprehensive view of node importance by
considering both connectivity and structural positioning within the network.

Overall, the detailed analysis of Tables 3, 4, and 5 across the Email, NetScience, and Router net-
works demonstrates the effectiveness of GDK in identifying central nodes. While traditional centrality
measures such as DC and CC provide consistent rankings, BC exhibits more variability in its iden-
tification of key nodes. GDK, by contrast, maintains high consistency in its rankings and proves to
be a powerful tool for network analysis, identifying nodes that are central not only in terms of direct
connections but also in their structural roles within the network. This analysis highlights the potential
of GDK to offer deeper insights into the dynamics of complex networks, making it a valuable addition
to traditional centrality measures.
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4.1. ANOVA analysis

The results from the ANOVA tests are presented for each centrality measure across the three network
types: Email, NetScience, and Router. The ANOVA results indicated statistically significant differences
between the centrality measures in their effectiveness at identifying influential nodes. Results for
ANOVA analysis for each network were as in Table 6 where SS is the sum of square implying the
measure of variation or differences in the data, df is the degrees of freedom, refers to the number of
independent information used in the calculation and F is the F-test value.

In Table 6, C(Centrality) measures the sum of squares for the centrality measures, showing how
much variance is explained by the differences between measures. Higher values indicate greater ex-
plained variance. F-value and P-value: The F-value assesses whether the variance between centrality
measures is significant compared to within-group variance. A high F-value and a low P-value (typically
< 0.05) indicate significant differences between centrality measures.

The analysis of the Email network uncovers notable variations among the centrality measures. The
sum of squares for centrality measures is 3.26 x 10!, accompanied by a remarkably high F-statistic of
23258.28 and a P-value of 0. The values suggest that the centrality measures have varying mean values,
indicating their unique roles in capturing the importance of nodes in this network. This indicates that
different centrality measures offer distinct perspectives and cannot be substituted for one another.

The ANOVA results for the NetScience network reveals significant findings. The centrality measures
exhibit a sum of squares of 87345834, an F-statistic of 4732.56, and a p-value of 0. These findings
suggest notable variations among the centrality measures, similar to the Email network. The high F'-
statistic confirms that the centrality measures effectively capture different aspects of node importance
in the NetScience network.

Table 6. ANOVA table.

Network Source SS df F P-value
C(Centrality) | 3.26 x 1019 | 5 23258.28 0
Email alpha 351 x 10722 | 1 1.25 x 10727 | 1
Residual 1.91 x 100 | 67973
C(Centrality) | 87345834 5 4732.56 0
NetScience | alpha 1.45 x 1072 | 1 3.95x 1072 | 1
Residual 3.24 x 108 87653
C(Centrality) | 6.3 x 10 5 14706.01 0
Router alpha 1.54 x 10719 | 1 1.8x107% |1
Residual 1.09 x 10M | 126773

The centrality measures in the Router network exhibit notable variations, with a sum of squares
of 6.3 x 1019, an F-statistic of 14706.01, and a P-value of 0. The results demonstrate the statistical
differences between the centrality measures, underscoring their individual significance in comprehend-
ing the importance of nodes in the Router network. The high F-statistic suggests that using various
centrality measures is important for capturing the complex nature of node influence.

Overall, the ANOVA highlights the importance of centrality measures in determining node impor-
tance within the network. Although changes in the alpha parameter do not impact node rankings,
exploring different network parameters or additional centrality metrics may offer a more thorough
understanding of network dynamics.

4.2. Kendall correlation test

The Kendall correlation test results across three distinct networks (Email, NetScience, and Router) re-
veal insightful patterns regarding the effectiveness of centrality measures in capturing node importance.
The result for the test is in Figures 2—4.

In the Email network (see Figure 2), traditional metrics like BC consistently show lower Kendall’s
Tau values, indicating weaker correlations with the spreading ability metric across different alpha
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values. In contrast, our novel metric, GDK, consistently outperforms BC and competes closely with
CC, often achieving Tau values above 0.6. This trend highlights GDK’s effectiveness in identifying
influential nodes in complex networks, presenting a promising alternative to traditional centrality
measures.

In the NetScience network (see Figure 3), BC

il again exhibits the lowest Tau values, reflecting its

limited effectiveness in capturing node importance

0.55 relative to spreading ability. GDK shows signifi-

cant improvement, with Kendall’s Tau values ris-

0691 ing to 0.68 and above across alpha values. This

. increase demonstrates GDK’s enhanced capabil-

. ity to accurately assess node centrality within the
650 NetScience network compared to other metrics.

= 22 Similarly, in the Router network (see Fig-

045 —% BC ure 4), GDK maintains strong performance, con-

e I;;T sistently achieving Tau values above 0.7, compa-

Lt | il \_'\‘—/\'/.\. rable to established measures like CC and IGSM.

002 0.04 0.06 0.08 010 This consistency across different alpha values un-

: derscores GDK'’s reliability in identifying crucial

nodes for network dynamics.

Overall, GDK emerges as a robust and promising metric for evaluating node centrality across various
network types. Its ability to consistently yield higher Tau values compared to traditional centrality
measures suggests that GDK offers more precise insights into node importance and network dynamics,
advancing the field of network analysis.

Fig. 2. Kendall correlation test for Email network.
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Fig. 3. Kendall correlation test Fig. 4. Kendall correlation test
for NetScience network. for Router network.

5. Conclusions

This comparative analysis evaluated the performance of various centrality measures across different
network types, with ANOVA revealing statistically significant differences among them. The results
confirm the hypothesis that different centrality measures capture distinct aspects of node importance.
Notably, the novel Global Structure Model-Degree Centrality-K-shell decomposition (GDK) metric
consistently demonstrates strong performance across diverse networks, often aligning closely with tra-
ditional measures such as Degree Centrality (DC) and Closeness Centrality (CC). However, GDK
provides additional insights into node influence, offering a more comprehensive understanding of cen-
trality by integrating both local and global network properties.
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In networks like the Email network, GDK distinguishes itself by ranking nodes not only based
on their direct connections but also by highlighting their roles in bridging different segments of the
network. This dual approach complements the rankings provided by DC and CC. In the NetScience
network, GDK excels at identifying influential nodes by effectively capturing both local and global
centrality, which is crucial for understanding the structure and influence within large-scale, complex
networks. Similarly, in the Router network, GDK, along with CC and IGSM reliably identifies key
nodes, demonstrating its robustness across varying network structures and its ability to handle different
types of connectivity.

GDK is distinguished by its ability to combine local centrality (captured by measures like DC) with
global centrality (captured by CC and other global metrics). This integration enables GDK to provide a
more nuanced and holistic view of node importance, addressing the limitations of traditional centrality
measures that may miss the broader network dynamics. Theoretically, this aligns with the growing
recognition in network theory that centrality is not just about a node’s immediate connections, but
also its strategic position within the larger network context. These findings highlight the strengths and
limitations of each centrality measure, with GDK offering a more balanced and insightful perspective
on node influence. The introduction of GDK as a new tool advances the field of network analysis by
capturing both local and global aspects of centrality in a unified framework, making it a more versatile
and robust method than existing techniques.

Future research should focus on applying GDK to larger, more complex networks and exploring
its potential integration with other analytical methods, such as community detection algorithms or
machine learning-based models, to further enhance our understanding of complex systems and their
dynamic behaviors.
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MopiBHANbHUIA aHaNI3 NOKA3HUKIB LEHTPaNbLHOCTI Mepex
3a gonomoroio ANOVA

Myxrtap M. ®.!, Xami’t H. C.', Hopain C. K. C.', Baitnan H. A}, A6ac 3. A2

L Daxyavmem mexariunoi ma eupobruwoi inorcenepii, Texnivnut ynisepcumem Manatizii Meaaxa,

76100 Jlypian Tynezan, Menaxa, Manratizia
76100 Typian Tyneean, Menaxa, Manratizia

YV npomy gociimkensi npeicrasieHo Meron, GDK, skwmii 06’enHye 1s100a/bHY MOJIENb
crpykrypu (GSM), cryniap nenrpaasrocti (DC) Ta K-maposy gexkommosurio (Ks) st
OL{HKY 3HAYYNIOCT] BY3JB y Mepexkax. Y NOPIBHAHHI 3 TPaJMIHiiHUMU MeTpUKaMH (CTy-
[iHb [EHTPAJBHOCTI, IPOMIXKHA IEHTPAJbHICTh Ta GJU3bKICTH HEHTPAIBLHOOCT), METOJ
GDK orniHmoeTbest 11t TpbOX THINB Mepesk: conjasbHa (Email), naykosa (NetScience) Ta
rexrosoriuaa (Router). Qucnepciiiauit ananiz (ANOVA) ta xkopessinifianii anamnis Ken-
JaJuia mokasyoTh, mo GDK crabijbHO Jocsirae BUINOT KOPeJIAlil y paH:KyBaHHI By3JIiB, 1110
poOUTH ftoTo GINMBIT HAMIHIM IHCTPYMEHTOM. [HTerpyoUun JJOKaIbHI Ta TJI00aJIbHI 0CO0IH-
Bocrti nearpasbrocTi, GDK inenTudikye Ki1090Bi By3/n sk i3 IpsIMOIO, Tak i 31 CTPyKTyP-
HOIO BasKJIMBICTIO, MIEPEBEPITYIOYN OJHOBUMIpHI mokasuuku. Hampukiam, y mepexi Email
GDK Bupminsie sk mpsimi, Tak i By3/Ju-TocepeHUKM, TOAi K y Netscience Bim xombiHye
JIOKAJTBbHI Ta CTPYKTYPHI KpUTEpil /I MOITyKy BILIMBOBUX BY3JiB. Pe3ymbraTu cBigIaTh,
o GDK 3abesneuye Gijiblil jieTajbHY OIIHKY BaXKJIMBOCTI BY3JIiB, yCyBayOUn 0OMezKEeHHST
Tpaautitaux MeTodiB. [lomarbi JociizKeHHsST MalOTh Ha METi BUBYUTH HOTO 3aCTOCYBaH-
Hsl 710 OUIBIIMX Ta PI3HOMAHITHININX TUIIB MEPEXK.

Kntouosi cnoBa: mepesica; uenmpanvricms; ANOVA; xombinauyii.
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