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In hydrological datasets, particularly rainfall, the study of extreme values is crucial. The
appropriate analysis of such datasets can provide vital information about the return lev-
els of extreme rainfall, which can play a significant role in disaster prevention. In many
situations, the GPD has been a well-respected option for studying extreme data; nonethe-
less, there are still concerns about the GPD’s threshold selection method. The commonly
used Mean Residual Life (MRL) plot technique for threshold selection in Generalized
Pareto Distribution (GPD) analysis suffers from subjectivity and requires extensive prior
knowledge, limiting its reproducibility. This paper introduces a straightforward, compu-
tationally inexpensive, and automated procedure for threshold selection. By employing
interval-based candidate thresholds and goodness-of-fit (GOF) tests, the proposed method
determines the optimal threshold that maximizes the p-value, enhancing objectivity and
accuracy. Several combinations of estimation methods and GOF tests were investigated,
with the CVM-Lmoment combination emerging as the most robust. Through extensive
simulation studies, our approach demonstrated significant improvements in reducing bias
and RMSE compared to traditional methods. The application of the proposed methodol-
ogy to a rainfall dataset from South-West England confirmed its robustness and practical
utility, making it a valuable tool for extreme value modeling and disaster management.

Keywords: generalized Pareto distribution; threshold selection; goodness of fit; L-

moments; extreme values; return level; extreme rainfall.

2010 MSC: 00B20, 62P12, 62-07, 62G32 DOI: 10.23939/mmc2025.03.819

1. Introduction

Extreme value is a crucial area of statistics that examines values near the very end of a dataset that
may hold essential information. The lowest and greatest values of a given property are called extreme
values. For instance, the measure of rainfall in mm in a certain area or the record of a country’s or
city’s annual highest and lowest temperature. Extreme value analysis (EVA) is a statistical method
that determines the likelihood that extreme values will occur using measured or observed data and a
few key presumptions [1]. There are two common distributions available for dealing with EVA: the
Generalized Pareto Distribution (GPD) and the Generalized Extreme Value (GEV).

The analysis of extreme events is crucial in fields such as finance, hydrology, and environmental
sciences, where understanding the tail behavior of distributions is essential for assessing risk. The
Peak Over Threshold (POT) method is a powerful approach within Extreme Value Theory (EVT)
that focuses on modeling these rare events by examining data points that exceed a specified threshold.
By concentrating on these exceedances, the POT method effectively captures the most extreme values
in a dataset, providing a more accurate representation of the underlying risk associated with rare
occurrences [2]. The selection of an appropriate threshold is a critical step in the POT method, as
it determines the number of exceedances and influences the stability and reliability of the resulting
statistical model [3]. Proper threshold selection ensures that the model captures the extremal behavior
while maintaining a sufficient sample size for meaningful analysis.
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Once the threshold is established, the exceedances are modeled using the GPD, which was first
introduced by John Pickands in 1975 [4]. The GPD is well-suited for this purpose because it is
specifically designed to describe the tail behavior of distributions, making it ideal for analyzing extreme
values [5]. The GPD is characterized by two key parameters: the shape parameter, which controls the
heaviness of the tail, and the scale parameter, which determines the spread of the exceedances above the
threshold [2,5,6]. Accurate estimation of these parameters is essential for reliable predictions of extreme
events. Several methods, including Maximum Likelihood Estimation (MLE) and Bayesian approaches,
have been developed to estimate these parameters, each offering different advantages depending on the
context of the application [7].

The combination of the POT method and GPD provides a robust framework for understanding and
predicting the occurrence and magnitude of extreme events. This approach has been widely applied
in various domains, such as assessing the risk of financial market crashes, forecasting extreme weather
conditions, and evaluating the reliability of engineering structures [6]. The ability of the POT-GPD
model to accurately characterize the tail behavior of distributions makes it an invaluable tool for
risk management and decision making, particularly in scenarios where extreme outcomes can have
significant consequences [8].

Subjectivity in determining the threshold point is one of the main problems with GPD [9–15]. The
visual method of selecting an appropriate threshold value can result in a number of issues. The proper
interpretation of threshold choice plots, such the Mean Residual Life plot (see [6]) for examples), is a
prerequisite for achieving a good model fit with these visual approaches. The threshold should be set
high enough to allow the GPD to approximate the excesses accurately without causing bias, but not
so high that a drop in sample size (the number of exceedances) considerably increases the variance of
the estimator [15]. The most common method for threshold selection is still to use graphical methods
(see, for example, [6] for a detailed description of these methods and [16] for an application to some of
the series used in this work). The inability to quantify threshold selection uncertainty and the inability
to estimate the uncertainty of quantiles with extended return periods are two drawbacks of graphic
techniques [9].

Recent studies have highlighted the need for more robust and objective threshold selection tech-
niques. For instance, Ref. [15] proposed an automated threshold selection method based on batched
return level mapping, demonstrating improved reproducibility but requiring significant computational
resources. Reference [9] introduced a goodness of fit (GOF) p-value approach, effectively minimizing
bias in threshold selection but facing limitations when applied to datasets with complex structures. Ref-
erence [17] evaluated several automated threshold selection methods for hydrological extremes across
multiple scales, offering a comprehensive comparison of their performance under varying conditions.
Reference [11] investigated threshold selection methods in wave extreme value analysis, emphasizing
the necessity of tailoring approaches to specific environmental applications. Reference [13] proposed an
automated sampling method for identifying independent and identically distributed samples in long-
term wave processes, which was effective in analyzing extreme wave heights caused by tropical and
non-tropical cyclones. However, its application in regions with complex weather conditions requires fur-
ther investigation. Reference [3] noted that extreme and non-extreme events often arise from different
physical processes, necessitating separate modeling approaches. Reference [18] employed detrended
fluctuation analysis (DFA) to study long-range correlations in wave height series, showing that ex-
treme events minimally affect overall trends, while non-extreme data significantly influence long-term
behavior. Furthermore, Ref. [19] demonstrated that the multifractal DFA (MF-DFA) method provided
objective thresholds for extreme precipitation, outperforming traditional methods. Reference [11] ex-
tended the application of DFA-based approaches to large-scale regions characterized by spatiotemporal
heterogeneity, showcasing their potential for robust threshold estimation. These studies collectively
highlight the importance of leveraging both statistical properties and physical processes in threshold
selection methodologies, while also underlining the ongoing challenges of computational complexity
and sensitivity to dataset characteristics.
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The novelty of this study lies in its development of an automated threshold selection procedure that
eliminates the subjectivity inherent in traditional methods while maintaining computational efficiency.
This will remove the requirement for the user of this methodology to take into account human error,
subjective measurements, or any form of prior understanding with sophisticated graphical metrics. By
focusing on a direct comparison with the widely used MRL plot technique, the proposed approach
demonstrates significant improvements in both objectivity and accuracy. Leveraging interval-based
candidate thresholds combined with goodness-of-fit tests, this methodology offers a computationally
inexpensive and effective alternative for extreme value modeling. The robustness and practicality of
this method are validated through extensive simulation studies and its application to a real-world envi-
ronmental dataset, highlighting its potential to advance the state-of-the-art in extreme value analysis.

For the application of our approach in real-life scenario, we will use a rainfall dataset. The dataset
consists of daily rainfall accumulations at a site in south-west England from 1914 to 1962, which
contains of 17531 observations [20].

2. Methodology

2.1. Theoretical background

The GPD models consist of two parameters, which are scale (σ), and shape (ξ). The threshold is
denoted as u. The cumulative distribution function (CDF) representing the relationship among these
parameters is as follows:

G(x;σ, ξ) = 1−

[

1 + ξ

(

x− u

σ

)]− 1

ξ̂

, ξ 6= 0,

G(x;σ, ξ) = 1− exp

[

−
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σ

)]

, ξ = 0,

where for ξ > 0 : x > u and for ξ < 0 : u 6 x < u − σ
ξ
. The parameters σ > 0, −∞ < ξ < ∞

and −∞ < u < ∞. Here x is the random variable. To estimate σ and ξ parameters, our study
will consider two of the very well-known and effective estimation technique, which are Maximum
Likelihood Estimation (MLE) and L-moment [2, 21]. MLE is a statistical method that uses observed
data to calculate a supposed probability distribution’s parameters [22]. To do this, one must optimize a
likelihood function in order to maximize the likelihood of the observed data under the similar statistical
model [22]. Where the likelihood function is maximized in the parameter space is known as the
maximum likelihood estimate [22]. Now, let’s consider probability distribution function (pdf) of GPD
when ξ 6= 0,
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taking the logarithm to obtain the log-likelihood function:
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Now, let us consider the other case when ξ = 0. The pdf of GPD of such case can be represented as:

g(x;σ) =
1
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The likelihood function in this case is:
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and the log-likelihood function is:

logL(σ) = −n log σ −
1

σ

n
∑

i=1

(xi − u).

The likelihood function of the GPD is used to estimate the parameters ξ and σ by maximizing the
likelihood (or equivalently, the log-likelihood) function given the observed data.

To illustrate the shape of a probability distribution, statisticians employ a set of statistics known
as L-moments [21, 23–25]. Comparable to traditional moments, these are linear combinations of order
statistics, or L-statistics. A continuous stochastic variable, such as Y , has a probability distribution
whose quantile function (QF) is defined as

QY (p) = F−1
Y (p) = inf{y ∈ R : FY (y) > p}, for 0 6 p 6 1,

where Fy(Y ) = p is the cumulative distribution function of Y [26]. A compilation of the L-moment
theory was made by [21]. The rth L-moment in terms of the QF is defined by

Lr =

∫ 1

0
Qy(p)P

∗
r−1(p) dp,

where

P ∗
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r
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k=0
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)(
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k

)

pk
]

is the Legendre polynomial with rth shift and Lr is the rth L-moment. More detailed information is
available in [26].

Our methodology uses p-value of the goodness of fit (GOF) test along with the estimation technique
to find the best possible threshold from the dataset which defines the extreme values. The statistical
incompatibility of the data with the null hypothesis is larger with smaller p-values, if the underlying
assumption used to calculate the p-values is correct, according to [27]. With 0 representing complete
incompatibility and 1 representing perfect compatibility, this metric may be understood as evaluating
how well the model fit the data [28]. Parameters for GPD must be estimated in order to perform GOF
testing. The Kolmogorov–Smirnov (KS) and Cramér–von Mises (CVM) tests are the two GOF tests
that the study will take into account while choosing the ideal threshold point.

A nonparametric test for determining if two continuous, one-dimensional probability distributions
are equal is the KS test, sometimes referred to as the KS test.
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where n is the sample size, x(i) denotes the i-th order statistic of the sample, meaning the i-th smallest

value in the sorted sample data, G
(

x(i); û, σ̂, ξ̂
)

is the CDF of the GPD evaluated at x(i), with the

parameters û, σ̂, and ξ̂ being the estimated threshold, scale, and shape parameters, respectively.
By using the two-sample KS test or the one-sample KS test, one can ascertain if two samples or one
sample came from the same reference probability distribution. The KS statistic quantifies the empirical
distribution functions of two samples, or the sample’s empirical distribution function and the reference
distribution’s CDF.

On the other hand, a popular set of goodness of fit statistics for fitting to a continuous distribution
is the CVM family [29],
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.

The CVM is frequently used to evaluate how well observed sample data fits into a given model [30].
CVM is used to evaluate how well a cumulative distribution function fits to a given empirical distri-
bution function or to compare two empirical distributions. CVM should function in GPD with similar
integrity as comparable to the KS test, as [31] has discussed.
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2.2. Automated threshold selection method

The interval-based methodology aims to systematically divide the dataset into manageable segments to
identify candidate thresholds for extreme value analysis. This approach ensures that threshold selection
is both objective and computationally efficient by utilizing equal-sized intervals and statistical criteria
for refinement. By focusing on intervals, the methodology reduces subjectivity, leverages inherent
dataset structure, and improves the reproducibility of results.

The methodology we propose for the selection of optimum threshold in GPD is as follows:

1. Divide the dataset into N equal interval after sorting it in ascending order. We found that when N

is around 150 to 200 the results for the first candidate threshold u1 (see point 2) seem to converge
to a single point.

2. Determine the means M1, . . . ,MN for each interval. Choose the means Mi, . . . ,MN that exceed
the dataset’s first quantile, Q1. Find the average from these newly chosen means. This average
will be the first candidate threshold, u1, where u1 =

[Mi>Q1]+...+MN

N
.

We do this because a rain dataset’s first quantile typically has substantially lower values than
the dataset’s remaining values. Therefore, it increases the computational load of selecting the
appropriate candidate thresholds by artificially increasing the number of candidate thresholds.

3. The end point of the threshold is denoted as un and un is a significantly large value which depends
on the dataset, usually around the 5th most largest value as we got good results through our
simulation study when un is around this region. But it obviously depends on the structure of the
dataset.
The candidate thresholds u1, u2, . . . , un are series of values with equal differences between them.
Simulation studies are used to determine the value of n, which is chosen to be in the 100−300 range.
In general, better results will come from larger values of n. Our study’s findings consistently appear
to converge when n is near the 100ı300 range. Anything between 100 and 300 is acceptable because
it won’t significantly impact the outcome. The study did take into consideration the conclusion
of [14], which states that when n = 100, better results were obtained.

4. Estimate the parameters of GPD utilizing the candidate thresholds u1, u2, . . . , un. To estimate the
GPD parameters, only the data where xi > u0 will be used.

5. Apply GOF test to achieve the p-values. The ideal threshold u0 for the GPD will be chosen as the
one that maximized the p-value of the GOF test.

2.3. Simulation study

The objective of the simulation study is to find the best combination between the GOF test and the
estimation technique, which best serves our methodology. For the simulation study, the exponential
GPD composite model was chosen to generate the dataset. The exponential GPD model that this
study is adapting is also supported by research by [32],

f(x|θ) =

{

ρ f∗
1 (x|θ), if x 6 u0,

(1− ρ) f∗
2 (x|θ), if x > u0.

where

ρ =
α(1− e−λu0)

α+ e−λu0

.

Here α is the tail index and λ is the rate. The distribution is divided by the model at the threshold
value u0. The pdf of the parent distribution is defined by,

f∗
1 (x|θ) =

f1(x|θ)

F1(x|θ)
,

f∗
2 (x|θ) =

f2(x|θ)

1− F2(x|θ)
.

The data in the lower tail are modeled by the pdf f1(x|θ), which is considered to be exponential
distribution with λ as the rate. The observations in the higher tail are modeled by the pdf f2(x|θ),
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which is the GPD [33–35]. The ρ the mixing weight [35]. The details about composite models, specially
exponential pareto composite model is discussed in detail by [33] and [34].

The Rstudio programming environment was used to carry out the simulation study. Following are
the steps for simulation study:
1. Generate random number from exponential GPD composite model with the parametric values as

follows: Rate(λ) = 0.303 for the exponential portion, Threshold(u) = 35, Scale(σ) = 12.5, and
Shape(ξ) = 0.010 for the GPD component. With small, moderate, and big datasets in mind, the
sample sizes are considered to be 1000, 10000, and 50000, respectively. The gendist package was
used to generate random values for the Exponential GPD composite model. The details about the
functionality of the gendist package is discussed by [35].

2. Apply the automated threshold selection method (see section 2.2) to determine the optimum thresh-
old value in each sample.

3. Repeat the steps 1 and 2 for 1000 times for each sample size and store the results to determine the
bias and RMSE.

4. For comparison we apply the classic graphical method (MRL plot) using the same data generating
technique and settings in step 1 to determine the optimum threshold.

5. As MRL plot technique is a subjective method, it is very difficult to repeat step 4 a thousand times.
Hence for our study, we repeated the step 4 ten times and stored the results to determine the bias
and RMSE.

3. Results and discussion

3.1. Selection of optimal pair of GOF and estimator

Selecting the ideal GOF test and the best estimating method are crucial for determining the ideal
threshold in GPD. As mentioned in Methodology’s section, this study considered two estimating meth-
ods in addition to two GOF tests. A total of 4 combinations of estimators and GOF tests have been
taken into consideration. At this point, the investigation proceeded to calculate the bias and RMSE for
each estimated parameter in each combination. This should give a broad picture of the performance
for all sample sizes. It is important to remember that the most exact and consistent outcomes are the
ones that this research is most interested in. From Table 1, the most consistent result is obtained by
thoroughly examining the CVM’s combined results with L-moments. One could argue that it doesn’t
always provide the most accurate outcome. However, a closer look at the estimated parameter values,
bias and RMSE reveals that it is not far off from the true parameters. In terms of bias and RMSE for
u and σ, the combination of CVM and L-moment may not yield the greatest results, but for the shape
parameter, it has shown to be the most accurate. Considering the bias and RMSE of u, and σ, the
results are not entirely unsatisfactory. They are regarded as being at the upper end of the accuracy
spectrum. The overview of the simulation study indicates that any combination from KS-MLE or
CVM-Lmoment is a good choice when the sample size is small.

As we move on to sample sizes of 10 000 (intermediate datasets), it becomes difficult to identify
the perfect combination. As of now, KS and the L-moment appear to be the ideal combination. As
with all other combinations in this sample size range, the results produced by combining KS and
MLE are not all that different from the results produced by combining KS and L-moment. Using
CVM and L-moment together yields results that are closest to the actual threshold of 35, with an
estimated threshold of 33.685. Moreover, this combination provides the lowest bias and RMSE for ξ.
Consequently, it can be said that for modest datasets, both the KS-Lmoment and CVM-Lmoment are
optimal.

Finally, when it comes to large datasets (sample size = 50000), it becomes extremely challenging to
choose the optimum combination of GOF test and method of estimation technique. Strictly examining
the dataset, one can be persuaded that the combination of CVM and MLE is adequate. According
to [36], it is a well-known phenomena that the accuracy level rises as sample size does. As a result,
when the sample size is relatively large, these parallels in the results are visible. Looking at the CVM-
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Table 1. The table reports the results obtained from the simulation study including the RMSE, bias and
average P-value at different sample sizes for KS and CVM for each estimated parameter.

Sample size GOF
Method

of estimation
E[û] E[σ̂] E[ξ̂] p-value

u σ ξ

RMSE Bias RMSE Bias RMSE Bias

1000
KS

MLE 33.380 13.018 0.002 0.986 1.668 1.620 0.534 −0.518 0.011 0.008
Lmoment 32.106 13.316 −0.003 0.988 2.920 2.894 0.825 −0.816 0.014 0.013

CVM
MLE 33.013 13.757 −0.026 0.981 2.028 1.987 1.265 −1.257 0.037 0.036

Lmoment 33.004 13.078 0.009 0.988 2.035 1.996 0.588 −0.578 0.006 0.001

10000
KS

MLE 34.101 13.151 0.008 0.986 0.985 0.899 0.651 −0.650 0.003 0.002
Lmoment 34.636 13.206 0.007 0.989 0.540 0.362 0.707 −0.706 0.004 0.003

CVM
MLE 33.868 13.255 0.002 0.981 1.202 1.132 0.756 −0.755 0.008 0.008

Lmoment 33.685 13.179 0.008 0.990 1.373 1.315 0.681 −0.680 0.003 0.002

50000
KS

MLE 34.254 13.145 0.010 0.982 0.850 0.745 0.645 −0.645 0.001 0.000
Lmoment 34.270 13.161 0.009 0.988 0.834 0.730 0.661 −0.661 0.001 0.001

CVM
MLE 33.635 13.142 0.010 0.980 1.421 1.365 0.642 −0.642 0.001 0.000

Lmoment 33.975 13.100 0.012 0.989 1.106 1.025 0.600 −0.600 0.002 −0.002

Lmoment result, none of the bias and RMSE are the lowest, with the exception of σ. This is not a
huge issue, though, because the predicted parameters from this CVM-Lmoment pair are close enough
to the exact parameters to be usable, thus even while it might not be the most accurate, it cannot be
stated that it won’t function with a larger dataset. For the parameters that this pair estimated, the
bias and RMSE are also relatively low.

Generally, if we look at Table 1, as the sample size increases, the results through the table become
more consistent. The values of RMSE and bias also reduces for every single combinations of GOF and
Estimation technique. Ultimately, the results from the simulation study affirm that moving forward
with the CVM-Lmoments combination is a rational and well-supported choice.

3.2. Comparison with MRL plot technique

The MRL plot method is a highly subjective graphical style that requires some prior knowledge to
understand. References [2,17] include further information regarding MRL plots. The inability to repeat
the MRL plot in a simulation study as much as one would like due to its high time consumption is one
of its main drawbacks. However, analyzing a single MRL plot produced from a single set of random
variables would be unfair. The data used in this comparison study was produced using the identical
settings from the preceding section of the Exponential GPD model. With small, moderate, and big
datasets in mind, the sample sizes are 1000, 10000, and 50000, respectively. Ten MRL plots have been
produced for each sample size, and the investigation is still ongoing to ascertain the bias and RMSE
for û. This should give a general notion of how the accuracy of the two techniques compares.

Table 2. The table reports the comparison between MRL Plot and proposed Automated Threshold selection
approach in terms of threshold, RMSE and bias based on the exact same parameter settings as of Table 1.

Sample size
MRL plot Automated approach

E[û] RMSE Bias E[û] RMSE Bias

1000 30.250 4.781 4.750 33.004 2.035 1.997

10000 31.200 3.932 3.800 33.685 1.373 1.315

50000 32.000 3.066 3.000 33.975 1.106 1.025

When compared to the graphical method, our automated threshold selection strategy appears to
have reduced RMSE and bias values. Therefore, it is evident from both tables that our approach
outperformed the MRL plot technique of the POT method.

4. Application to the rainfall data

Upon examining the South–West England daily rainfall dataset and applying the automatic threshold
selection technique with the P-value of the GOF test (refer to Automated Threshold Selection Method),
we obtain 33.557mm as the value of û0. This cutoff setting is sensible and practical given that the
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dataset’s maximum value is 86.6mm. Scale and shape are calculated to be 8.461 and 0.169, respectively,
using L-moment. In order to address the validity of such out, let us examine the graphs in Figure 1.
The predicted model obtained by the automated threshold selection method has a very good fit, as
indicated by the Probability plot and the Q-Q plot. Additionally, we contrast our automated threshold
selection method with the MRL plot method that Coles et al. (2001) examined. According to [6], 30mm
is the threshold value, shown in Figures 2 and 3. According to [14], an automatic threshold is typically
defined as a value over which the plot becomes linear, subject to sampling error.

Fig. 1. Plots showing diagnostic information for the fitted GPD model when the threshold is chosen using our
automated threshold selection approach on the south–west England rainfall dataset. Return level in the third
figure is a reference to rainfall (mm). The rainfall (mm) in the fourth figure is denoted by x, and its probability

density is represented by f(x).

According to [6], linearity also happens between 30 and 60mm, but for 60mm few data points are
above cutoff with sampling error [14]. Hence 30mm is a reasonable choice. We may also use a similar
justification to support our automated threshold selection of 33.557mm. It is a challenge in the MRL
plots. Which particular area on the graph represents the best outcome depends on the researcher. The
difficulties in interpreting the MRL plot and its subjective nature are well-illustrated in [14].

Table 3. The estimated parameter of GPD model fitted to rainfall data.

GOF
Method

of estimation
û σ̂ ξ̂

KS
MLE 35.600 10.608 0.057

L-moment 36.057 9.065 0.160

CVM
MLE 59.557 57.674 −2.132

L-moment 33.557 8.461 0.169

Table 3 shows the estimated parameter values using CVM with MLE, which is one thing to note.
Based on MLE and CVM, the estimated value of u is about 60mm. According to [14], the MRL plot
for the rainfall dataset in South-West England is linear (with sampling error) over 30 and 60mm, as
we can see in Figure 2. Thus, the combination of CVM and MLE is more oriented in the 60mm range.
In comparison to other combinations, the estimated values of the shape and scale parameters deviate
considerably for CVM-MLE and hence may be considered less reliable.
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Fig. 2. An illustration of the MRL plot derived from daily rainfall data. The dashed line represents automated
threshold selection approach. The solid line represents threshold value using the MRL plot technique.

Fig. 3. Daily rainfall dataset in mm plotted versus time in years in a scatter plot. The automated method’s
threshold selection is represented by the dashed line, and [6] suggested threshold is shown by the solid line.

Table 3 shows that the KS yields consistent estimates for the estimated threshold (û), ranging
from 35.600 to 36.057mm. However, the CVM method with MLE produces a notably higher value
(59.557mm), which appears to be an outlier. The σ̂ and ξ̂ parameters also show variations across
methods, with the CVM-MLE method again diverging significantly from the others. Most methods
estimate a positive shape parameter, indicating a heavy-tailed distribution, except for the CVM-MLE
method which suggests a bounded distribution.

The 95% confidence intervals presented in Table 4 provide further insight into the reliability of these
estimates. Most methods show overlapping confidence intervals for the threshold parameter, ranging
from approximately 25−30mm at the lower bound to 71−84mm at the upper bound. The L-moment
method for KS shows the narrowest interval [30.450, 84.270], potentially indicating higher precision,
while the CVM method with L-moment shows the widest interval [26.450, 82.060], reflecting greater
uncertainty.

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 819–831 (2025)



828 Alif F. K., Ali N., Safari M. A. M.

Table 4. The 95% confidence interval for all the combinations of methods
of estimation and GOF test using bootstrap percentile method.

GOF
Method

of estimation
û 95% confidence interval

KS
MLE 35.600 [27.600, 81.890]

Lmoment 36.057 [30.450, 84.270]

CVM
MLE 59.557 [25.300, 71.000]

Lmoment 33.557 [26.450, 82.060]

Given these results, the suggested threshold of 33.557mm based on the methodology appears rea-
sonable, falling within or close to the lower bounds of most confidence intervals. This aligns with the
conclusion that the genuine threshold value should be in the range of 33mm to 36mm. However, the
wide range of confidence intervals, spanning approximately 50mm in most cases, highlights signifi-
cant uncertainty in the threshold estimation. This uncertainty should be carefully considered in any
subsequent analysis or decision-making processes related to extreme rainfall events.

In conclusion, while the analysis supports a threshold value in the range of 33 to 36mm for defining
extreme rainfall events, the consistency between KS and MLE methods provides more confidence in
their estimates compared to the CVM method. The wide confidence intervals underscore the need for
cautious interpretation and the importance of considering upper bounds (up to approximately 84 mm)
in risk assessments to account for potential underestimation of extreme events. Future studies might
benefit from incorporating additional estimation methods or exploring the sensitivity of results to
different threshold choices within the identified range.

The 95% confidence intervals were calculated using the bootstrap percentile method. We used 1000
bootstrap samples for our confidence intervals. Each sample used our automated threshold selection
technique to estimate the optimum threshold value. The step by step protocol is discussed in detail
by [14]. See [37] for deep understanding of the bootstrap methodology. From Table 4, the combination
of CVM-MLE has the lowest uncertainty, but as we can observe in Table 3, the estimated parameters
including the threshold value are a bit unrealistic. With the exception of this pair, every other pair’s
95% confidence interval range is similar. Moreover, all the values of û falls within the 95% confidence
interval range, which makes them statistically significant. Therefore, it is reasonable to conclude that
while our simulation analysis indicates that the CVM-Lmoment pair should yield the ideal outcomes,
other pairs aside from CVM-MLE should not be too far off.

5. Conclusion

This study introduces an automated approach for threshold selection in the GPD framework, address-
ing critical challenges in extreme value analysis. The methodology, which integrates GOF tests with
systematic threshold selection, offers an objective and computationally efficient alternative to tradi-
tional methods like the MRL plot. Through this research, significant contributions have been made to
enhance the reliability and practicality of extreme value modeling.

The simulation studies conducted in this research highlight the effectiveness of the proposed method
in reducing bias and RMSE across different sample sizes. By systematically identifying thresholds
that optimize model fit, the methodology ensures accurate parameter estimation and overcomes the
subjectivity associated with graphical techniques. This improvement is particularly evident in datasets
with varying sample size, where the method consistently outperforms the MRL plot in terms of accuracy
and reproducibility.

The practical utility of the approach is demonstrated through its application to South–West Eng-
land’s rainfall dataset. The results showcase the method’s robustness in real-world scenarios, providing
reliable estimates for critical thresholds and enabling precise modeling of extreme rainfall events. These
findings underscore the method’s potential in applications requiring accurate risk assessments, such as
hydrological studies, disaster management, and climate adaptation planning. By delivering a reliable

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 819–831 (2025)



An automated threshold selection procedure for generalized Pareto distribution with . . . 829

framework for threshold selection, this research addresses the practical needs of stakeholders in these
domains.

Beyond its immediate contributions, this study offers a foundation for further advancements in
extreme value analysis. The approach’s simplicity and adaptability make it suitable for diverse ap-
plications, including financial risk assessment, environmental monitoring, and engineering reliability
studies. Future research could explore integrating additional estimation techniques or alternative GOF
criteria to enhance model performance further. Moreover, extending the methodology to account for
challenges like data heterogeneity and non-stationarity would broaden its applicability to dynamic and
complex datasets.

In conclusion, this research significantly advances the field of extreme value theory by providing a
structured, objective, and efficient threshold selection methodology. By addressing the limitations of
conventional methods, it equips researchers and practitioners with a robust tool for modeling extremes
across a range of disciplines. This contribution not only enhances the accuracy and reliability of extreme
value models but also paves the way for innovative approaches in risk management and decision-making
under uncertainty. The outcomes of this study have the potential to influence future developments in
statistical modeling and its application to real-world challenges.
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Автоматизована процедура вибору порогового значення
для узагальненого розподiлу Парето iз застосуванням

до набору даних про опади

Алiф Ф. К., Алi Н., Сафарi М. А. М.

Кафедра математики та статистики, Факультет природничих наук,

Унiверситет Путра Малайзiя, 43400 UPM Серданг, Селангор, Малайзiя

У гiдрологiчних наборах даних, зокрема про опади, вивчення екстремальних значень
має вирiшальне значення. Вiдповiдний аналiз таких даних може надати життєво важ-
ливу iнформацiю про рiвнi повторюваностi екстремальних опадiв, що вiдiграє значну
роль у запобiганнi стихiйним лихам. У багатьох випадках узагальнений розподiл Па-
рето (GPD) є надiйним методом для вивчення екстремальних даних. Проте, iснують
певнi проблеми з вибором порогового значення для цього розподiлу. Широко викори-
стовуваний метод побудови графiка середньої залишкової тривалостi життя (MRL)
для вибору порогового значення в GPD аналiзi є суб’єктивним, вимагає значних попе-
реднiх знань i обмежує вiдтворюванiсть результатiв. У цiй роботi представлена про-
ста, обчислювально недорога та автоматизована процедура вибору порогового значен-
ня. Використовуючи iнтервальнi пороговi значення та критерiї згоди (GOF), запропо-
нований метод визначає оптимальне порогове значення, що максимiзує p-значення,
пiдвищуючи об’єктивнiсть та точнiсть. Було дослiджено кiлька комбiнацiй методiв
оцiнки та критерiїв згоди, серед яких комбiнацiя CVM-Lmoment виявилася найбiльш
стiйкою. Завдяки розширеним симуляцiйним дослiдженням запропонований пiдхiд
продемонстрував значнi покращення у зменшеннi змiщення та середньоквадратичної
похибки (RMSE) порiвняно з традицiйними методами. Застосування запропонованої
методологiї до набору даних про опади з Пiвденно-Захiдної Англiї пiдтвердило її на-
дiйнiсть та практичну цiннiсть, що робить її цiнним iнструментом для моделювання
екстремальних значень та управлiння стихiйними лихами.

Ключовi слова: узагальнений розподiл Парето; вибiр порогу; якiсть наближення;

L-моменти; екстремальнi значення; рiвень повернення; екстремальнi опади.
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