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The COVID-19 epidemic has highlighted the need for easier and more precise diagnoses.
Traditional techniques, such as PCR tests, are helpful but can be time-consuming and
laborious. In order to further enhance picture quality, this study presents a novel method
for identifying COVID-19 and other lung disorders utilizing chest X-rays, convolutional
neural networks (CNNs), and histogram equalization. The 1823 X-ray pictures in the
collection were divided into three categories: regular, COVID-19-positive, and additional
lung infections. Based on the combination of CNN and Topk algorithms, our proposed
approach reached 98.45% accuracy. These promising results suggest that our method
may expedite the identification of COVID-19, reducing its consequences on the healthcare
system. The dataset will be expanded in the future, along with sophisticated techniques
and the use of our created Top-k algorithms to improve decision-making.

Keywords: COVID-19; pulmonary diseases; convolutional neural network; confusion
matriz; Topk algorithms; diagnosis.
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1. Introduction

Due to the tremendous strain that the COVID-19 epidemic has placed on healthcare systems around
the world, effective diagnostic technologies are essential for facilitating early detection and treatment.
Rapid and accurate diagnostics are still crucial for limiting the spread of viruses and lowering mor-
tality, as there are approximately 400 million cases and 6 million fatalities globally [1,2]. Although
conventional methods such as PCR testing and symptom analysis are widely used, they can often
be slow, resource-heavy, and prone to human error. Medical imaging, particularly chest X-rays, has
proven to be important in diagnosing COVID-19 and associated lung conditions [3]. However, manually
analyzing these images can be time-consuming and prone to mistakes, especially in the high-pressure
environment of clinical settings. However, with recent advances in artificial intelligence (AI) and deep
learning, new opportunities have arisen to tackle these challenges [3]. CNNs are especially well-suited
for evaluating medical images because they are already effective at identifying conditions like tumors
and malignancies. This study suggests a novel method for identifying COVID-19 from chest X-rays by
employing a CNN model that has been improved by histogram equalization during the preprocessing
phase. By enhancing image contrast and preserving important details, this method makes it possi-
ble for CNN to better learn and identify the delicate patterns of COVID-19. An essential feature of
this study is the integration of decision-support tools aimed at improving clinical usability. We pro-
pose using Multi-Criteria Decision Analysis (MCDA) to assist in interpreting diagnostic results. This
will enable a more thorough evaluation by factoring in variables such as patient history, severity of
symptoms, and confidence in predictions. Additionally, integrating the Top-k algorithm, which selects
the most relevant diagnostic outcomes from the model streamlines the decision-making process for
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healthcare professionals, allowing them to focus on the most accurate and pertinent predictions while
minimizing false positives and negatives. By embedding these decision-support systems, our approach
has the potential to not only increase diagnostic accuracy but also provide clinicians with real-time,
data-driven insights to make more informed decisions. The following sections will describe the devel-
opment and testing of our CNN model, its combination with MCDA and Top-k, and the potential
impact this approach could have on improving COVID-19 diagnostics.

2. Related works

Shibly et al. proposed a hybrid model combining CNN [4] architecture with long short-term memory
(LSTM) networks to automatically diagnose COVID-19 from CXR images [2]. The combination above
highlights the value of integrating complementary deep learning models to increase the diagnostic’s
accuracy by utilizing both the CNNs’ feature extraction capabilities and the LSTM networks’ tem-
poral dependencies. Similarly, other research efforts have focused on the role of image preprocessing
techniques in enhancing model performance showed in papers [5,6] in which the authors explored var-
ious image enhancement methods, such as contrast adjustment and noise reduction, to improve the
quality of CXR images prior to analysis. These enhancements have been shown to greatly boost the
accuracy of COVID-19 detection by permitting CNNs to capture finer details in lung images [7]. In
addition to these advancements, some studies have also emphasized the use of decision-support mech-
anisms to enhance diagnostic workflows [7,8]. Multi-Criteria Decision Analysis (MCDA) and Top-k
algorithms presented in our previous papers [9-12|, although not widely adopted yet in COVID-19
diagnostic models. It should be noted that the proposed approaches represent a new direction for
further research. Moreover, the findings shows that it can help refine and prioritize outputs from CNN
models, ensuring that the focus on the most relevant and accurate results will be easy for healthcare
providers. For instance, the authors Wang et al. proposed a new ensemble learning approach that com-
bines multiple CNN models with different architectures to improve the robustness and generalization
ability of COVID-19 detection [13,14]. According to their findings, the ensemble model performed
better in sensitivity and accuracy than individual CNN models. Furthermore, another work presented
by the authors in [8] studies the augmentation techniques’ impact on data on the performance of
CNN models for COVID-19 detection. Their finding shows the augmenting the training dataset with
rotated, flipped, and cropped images can ameliorate and improve model accuracy and prevent over-
fitting. Finally, several studies have explored the use of transfer learning to accelerate the training
of CNN models for COVID-19 detection. Researchers can improve performance and shorten training
times by using pre-trained models that have been developed on large-scale image datasets to fine-tune
the models on smaller COVID-19 datasets. In addition, the collective findings from these studies [15]
illustrate the growing importance of deep learning in medical imaging, particularly in the context of
pandemic response. By building on these foundations, our work aims to further optimize COVID-19
detection using advanced CNN models enhanced with preprocessing techniques and decision-support
systems.

3. Methodology

Chest X-ray image database. A subset of the COVID-QU database, a large collection of chest
X-ray pictures created to aid in the creation of machine-learning algorithms for COVID-19 detection,
was used to train our model. The chest X-ray image

Table 1. Image categories and counts. . . .
database used in this study is a subset of the COVID-

Cov(fgt_:(f§01;,};itive Number5?c))é‘ Images QU Dataset (Kaggle). We selected 1823 images |16,
Normzl 668 17], which are distributed across three key categories as
Other lung viruses 619 presented in Table 1.

As illustrated in Figure 1, the dataset includes ex-
amples of COVID-19 positive chest X-ray images. Figure 1 shows normal lung X-rays, while Figure 2
depicts the distribution of images across the three diagnostic categories. This specific distribution in
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Fig. 2. Sample images from the COVID-QU dataset: Normal lung case.

Figure 3 allows the model to differentiate Wumibier of knages In Bach Folder
between normal and infected lungs while
also learning the subtle features of COVID-
19 in contrast to other viral lung infec-
tions. The kind of data mentioned above
has to be used. Thus, the COVID-19 posi-
tive X-Rays images were selected to help
the model recognize unique patterns as-
sociated with the disease, such as lung
opacities and ground-glass appearances.
Standard images serve as a reference for
comparison, enabling the model to distin- ]
guish between healthy and diseased lungs. normal C:t"e"g‘gw
Lastly, the inclusion of lung virus images Fi o . .
from other viral infections ensures that the ig. 3. Distribution of images in the COVID-QU database.
model does not overfit COVID-19-specific features. Consequently, this aspect still maintains broader
diagnostic applicability. This balanced dataset aims to provide CNN with a well-rounded understand-
ing of different lung conditions, ensuring it is capable of making accurate distinctions not only between
COVID-19 cases and healthy lungs but also between COVID-19 and other viral infections.

By carefully curating this selection of images, a robust and diverse dataset was aimed to be created
to allow the model to generalize well across various pulmonary conditions, while ensuring optimal
performance in detecting COVID-19.

Number of Images

T
virus

4. Project stages

4.1. Image size standardization

To ensure consistency and compatibility with the CNN model, all images were resized to a uniform
dimension. This preprocessing step is crucial for reducing computational complexity and ensuring
consistent feature extraction across the dataset [18,19].
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4.2. Grayscale conversion

Converting images to grayscale allows the model to focus on essential texture and intensity variations,
reducing overall data complexity. By eliminating color information, the model emphasizes critical
patterns in lung opacity. The grayscale transformation is mathematically represented as:

f(z) = max(0, z). (1)

As shown in Equation (1), this transformation enhances the model’s ability to detect abnormalities [20].

4.3. Data splitting
The dataset was divided into training and validation sets to assess model performance on unseen data:

Training Set = 80 (2)

Equation (2) ensures that the model generalizes well to new data [18].

4.4. CNN architecture design
The CNN architecture was designed with multiple convolutional and pooling layers to extract mean-
ingful features from images. The convolution operation is defined as:

k—1 k—1

O(i,j) = Y Y I(i+m,j+n)- K(m,n). (3)

m=0n=0
As shown in Equation (3), convolution aids in the identification of patterns at various spatial locations.
Moreover, feature maps are downsampled using max pooling:

P(i,j) = maXRO(Z'—I—m,j—l—n). (4)
m,ne

Equation (4) reduces spatial dimensions while retaining essential features [19]. The CNN architecture
used in this study is illustrated in Figure 4.

4.5. Model hyperparameter tuning

To maximize the model’s performance, key hyperparameters such as the learning rate, batch size, and
the number of training epochs were fine-tuned. This process involved several iterations to achieve an
optimal balance between training time and accuracy [18].

4.6. Model training

The model was trained using cross-entropy loss:
C
L==Y yeclog(fe), (5)
c=1
where y. is the true label and g, is the predicted probability. The weights were updated using gradient

descent:

oL
Wnew = Wold - Ua—w (6)

Equation (6) ensures that the model learns by minimizing classification errors [19].

4.7. Evaluation metrics

The performance of the model was evaluated using standard metrics derived from the confusion matrix:

A TP + TN (7)
ceuracy =
"7 TP+ TN + FP + FN’
TP
Precision — — 18
recision = s (8)
TP
l=—"-—
Reca TP T TN 9)
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Precision - Recall
F1-S =2. . 10
core Precision + Recall (10)

Equations (7)—(10) provide insight into the model’s predictive performance [18].
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Fig.4. The CNN architecture used in this study.

4.8. ROC curve

The Receiver Operating Characteristic (ROC) curve was used to evaluate the classification performance
across various threshold values. The true positive rate (TPR) and false positive rate (FPR) are given
by:
TP FP
TPR=———, FPR=_———-——. 11
TP + FN’ FP + TN (1)
Equation (11) helps visualize the trade-off between sensitivity and specificity in classification perfor-

mance [19].

5. Results and discussions

Our proposed approach was trained and validated using the database, which contains X-ray images
categorized as COVID-19-positive patients, normal X-ray images, and other lung virus cases. This
diverse dataset allowed the model to learn the distinctive characteristics of COVID-19 while establishing
a baseline for comparison with other lung disorders. The training and validation sets guaranteed the
model’s strong generalization to unknown data, essential for clinical applications. Analyzing the ROC
curve, we notice that the CNN model has enhancing the ability to differentiate between regular,
other pneumonia, and COVID-19 patients. Therefore, the combination with the TopK algorithm
enhances this ability. The model continuously demonstrates great accuracy across all categories with
an outstanding Area Under the Curve (AUC) of 0.96 for standard and pneumonia cases and 0.97
for COVID-19. Consequently, each curve approaches the graph’s upper-left corner, suggesting strong
sensitivity and specificity. These AUC values illustrate the model’s dependability in identifying the
conditions for which it was trained. In practical terms, the model’s high AUC for COVID-19 reflects
its ability to accurately identify true cases while keeping false alarms low. This little advantage in
identifying COVID-19 implies that the model is particularly good at identifying this illness. Because
of this, it may be a useful tool in clinical situations where prompt and accurate diagnosis is crucial.
Finally, all things considered, the CNN precision in identifying certain lung disorders gives medical
professionals an extra degree of assistance. This little advantage in identifying COVID-19 implies
that the model is particularly good at identifying this illness. Because of this, it may be a useful
tool in clinical situations where a prompt and accurate diagnosis is crucial. Despite the precision
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ROC for multi-class data of the CNN model in identifying certain lung
R — Pt disorders, medical professionals receive addi-
o 081 el tional help when diagnosing chest X-rays. Fi-
% 06 /// nally, this methodology has the potential to im-
2 //’ prove patient care and resource allocation in
% 047 et healthcare systems by increasing diagnostic con-
£ 02 //i ROG curve of normal (AUC = 0.96) fidence and aiding in the prioritization of urgent
/// — ROC curve gig‘g‘\"/'lgn(j\‘b"‘c°gigg*#c=0‘96> cases. Figures 6 and 5 illustrate the accuracy

00— 02 oz 0B 0B 70 and the ROC curve, respectively.
False Positive Rate The ROC curve, presented in Figure 5,

Fig.5. ROC curve of the CNN model. demonstrates the model’s ability to balance sen-

sitivity and specificity across different threshold settings. Better performance in differentiating between
positive and negative examples is shown by a curve that is closer to the top-left corner. According to
our findings, the CNN is a trustworthy and accurate tool for clinical decision-making for diagnosing

COVID-19.
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Fig. 6. Fast-CovNet performance.

The training and validation loss curves depicted in Figure 6b further support the model’s perfor-
mance. The decreasing loss values over epochs indicate that the model is learning effectively from
the training data and generalizing well to the validation set. The model’s dependability in practical
applications is ensured by the convergence of the training and validation loss curves, which indicates
that the model is not overfitting. These findings underscore the potential of integrating deep learn-
ing techniques like CNNs in the healthcare sector, especially for rapidly and accurately detecting
respiratory diseases. Future work will explore enhancing model robustness through the integration of
Multi-Criteria Decision Analysis (MCDA) and the Top-k algorithm to further support decision-making
processes by selecting the most relevant cases for diagnosis. In addition, if the dataset is imbalanced,
techniques like class weighting or oversampling might be necessary to address potential biases. The
choice of model architecture and hyperparameters can also impact performance. Experimenting with
different models and tuning hyperparameters could lead to further improvements.

6. Our approach, future directions, and potential for clinical trials

To ensure the practical applicability of this Al model within the Moroccan healthcare system, future
clinical trials must leverage a more extensive and carefully curated dataset that reflects local demo-
graphics and specific clinical needs. This initiative will be supported by a Big Data infrastructure,
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enhanced by the SPTopKws mechanism a newly developed Top-K algorithm optimized for large-scale
data processing. While PySpark was used in this study, deploying the model within a full-scale Big
Data environment will be crucial for validating its scalability and performance on larger datasets.

Additionally, a recommender system powered by SPTopKws [9-11] will be integrated as a decision-
support tool to rank potential diagnoses based on the model’s outputs. By utilizing Top-K query
processing and ranked lists, this approach aims to assist healthcare providers in prioritizing cases and
efficiently allocating resources. The design also emphasizes interoperability [21,22], ensuring seamless
integration into existing clinical workflows. While initially developed for COVID-19 detection [11], the
model can be extended to other respiratory diseases, further enhancing clinical decision-making across
diverse healthcare settings.

By combining Top-K algorithms with CNNs, our study brings a powerful new tool to the table to
improve medical diagnostics. CNNs are incredibly good at detecting subtle patterns in chesradiographs
such as those linked to COVID diseases, but they can produce so many difficult for physicians to focus
on the most critical cases. That is where Top-K algorithms come in. They assist in making sure
that critical cases receive attention by going through the projections and emphasizing the most crucial
ones. Furthermore, this decreases the possibility of overlooking serious illnesses while also expediting
the diagnostic process, as shown in earlier research by [23] and Chen et al. [24]. In addition, Top-K
algorithms make model decisions easier to understand, giving doctors more precise information on
why certain predictions are made, as highlighted by Zheng et al. [8,25,26] in their work on medical
image analysis, additional work that relies on traditional Topk combined with the DL models is in [27]
and [26]. Therefore, compared to the state-of-the-art, our key contribution is bringing these two
technologies together: CNNs for detecting patterns and Top-K algorithms for prioritizing decisions to
create a more intelligent and reliable diagnostic system. Based on the conceived algorithm, Topkws
and Sptopkws, we achieve a higher accuracy. This approach delivers fast and precise results and helps
healthcare professionals make better, more informed decisions. Ultimately, this innovation could ease
the load on healthcare systems and improve patient outcomes.

Algorithm 1 CNN-Based Image Processing and Top-K Recommendation.

Input: Dataset D = {I1, Is,...,I,}.
Output: Top-K recommendations Rrop k.
Step 1: Image Preprocessing and Feature Extraction
Initialize SparkSession.
for each image I; € D
Convert I; to grayscale and normalize: I}°™ =
Define CNN architecture C, P, F.
Train CNN using cross-entropy loss £ = — Z(Iil Yelog(ge).
Extract features F' = {f1, f2,..., fn} from CNN.
Step 2: Query Processing and Ranking
: Initialize User’s Query Processing Agent (UQPA).
: Apply Pre-Skyline Processing Agent (PSPA) to filter queries: Qfgiterea = PSPA(F).
: Apply ELECTRE IS Agent (EISA) to rank queries: Qranked = EISA(Qfitered)-
: Step 3: Top-K Query Optimization
: Apply Top-K Query Processing Agent (TopKQPA): Qrop-k = TopKQPA(Qrranked, K).
: Apply Weighted Sum Agent (WSA): Score(q) = D" wi - fi(q).
: Step 4: Recommendation Generation
: Predict ratings using SVD: Rpredicted = U - X - VT,
: Store results in Spark RDD.
: Return Ryopk if |Rrop-k| > 0; otherwise, return @.

Grayscale([;)
255 :

I e T s T e T S o S St
S © DU WN R~ O

We enhance previous work through a combination that starts by following a similar approach and
then adds CNN. In fact, the recommender system begins with user interaction data collection and
profile creation, followed by query processing and utility matrix extraction. A K-dominating query
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Fig. 7. Recommender System based on SPTopkws algorithm [10].

processing and prediction model, based on Singular Value Decomposition (SVD), was then employed
to predict user preferences. The system incorporated multiple agents, including the User’s Query
Processing Agent (UQPA), Research and Se-
‘Users Interaction Data and Prole Creation Stage ‘ lection Agents (RSAl and RSAQL the ELEC-

! TRE IS Agent (EISA), the TopK Query Pro-

‘Dominating Query Processing & Extraction Utility Matrix‘ cessing Agent (TOpKQPA), and the Weighted

I . .
‘ K Dominating QueryProcessing & PredictionModel (SVD) ‘ Sum Agent (WSA), all working collaboratively

to refine query selection and ranking. The in-

tegration of Spark RDD Database ensured ef-
ficient data handling, while a CNN-based im-

‘USGYS Query ProcessingAgent (UQPA) ‘ age processing and feature extraction module
I contributed to generating Top-K recommenda-

‘ResearCh and SelectionAgent 1 (RSAl)‘ tions. As demonstrated in our previous stud-

1 . . . S .
‘ELECTRE IS Agent (EISA) ‘ ies, this multiagent fr.amework significantly im-
proved recommendation accuracy and system

‘Query Selection Stage‘ efficiency [21]. Building upon this foundation,
) our current approach incorporates:
‘ Research and SelectionAgent 2 (RSA2) ‘
{ — Image preprocessing using histogram equal-
‘TOP K Query ProcessingAgent (TopKQPA) ‘ ization for better intensity distribution.

‘ — A lightweight CNN architecture for fast and

‘Welghted Sum Agent (WSA) accurate COVID-19 detection.

‘ Spark RD[l) Databas e‘ — FEvaluation through the confusion matrix
) and the ROC curve, yielding a 98.45% ac-

‘ Image Processing & CNN Feature Extraction ‘ curacy rate.
‘Provide TopK Recommendations‘ As shown in Figure 8, the Al-enhanced

query processing system integrates Top-K algo-
rithms and CNN-based feature extraction to im-
prove recommendation accuracy, also presented
in Figure 7.

Fig. 8. Al-Enhanced Query Processing
and Recommendation System.
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7. Conclusion and prospects

This study presents a novel method for detecting COVID-19 Virus using chest X-rays. The key con-
tributions of this study include a combination of CNN and Topkws algorithms. Further improvements
include using a more extensive image database and Big Data infrastructure using GPUs and additional
Spark library as in our previous work, Algorithm 1 show the combination of the studied method with
our previous approach based on the Recommender system showing in the Figure 7 [10]. To further
improve accuracy and resilience, we aim to use more advanced X-rays image segmentation techniques
will be integrated to further enhance accuracy and robustness. Furthermore, depending on the model’s
output, a TopK algorithm more precisely, the SPTopkws [10] mechanism may be used to rank the
most likely diagnoses, potentially acting as a useful decision-support tool. Finally, this would enable
healthcare providers to prioritize cases and allocate resources more effectively.
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Bussnenns COVID-19 Ta 3axBoptoBaHb fiereHb 3a J0MNOMOroto
LUTY4HOrO IHTENEeKTY Ta PEHTIeHIBCbKMX 3HIMKIB FPyAHOI KNITKN!

nigsuuieHHs To4HocTi 3a gonomoroto CNN Tta anroputmis Top-K

Eab Xamapi K.123, Byym A4, Xaman O.°

L Med6iomeznonoziuna aabopamopis, Meduunuti ma dapmayesmumnuti daryavmem (FMPR),
Vuisepcumem Moxammeda V y Pabami, Mapoxko
2 [IIxona wmywhozo inmesexmy ma daHux 0aa Gisnecy ma cycniavemea Atisancimi, Dparyis

3 Jla6opamopis IPSS daryrvmemy npupodnuvur nayk, Yuisepcumem Mozammeda V y Pabami, Mapokko

4 Jla6opamopis I.M.A.G.E., Ynieepcumem Myaas Icmaina 6 Mexneci, Mapoxko
5 Hauionaavna wxona aprimexmypu Mappaxewa (ENAM), Mappaxew, Mapoxko

Enigemiss COVID-19 BucsiTiauna norpeby B mpocrimiii Ta TouHimiil giarsocruri. Tpasiu-
mittai meromm, Taki sik [LJTP-Tectn, kopucHi, ajsie MOXKyTb OyTH TPYJIOMICTKUMHU Ta TPY-
poMicTkumu. JIJIs MOMAJIBIIOTO MOKPAIEHHS SKOCTI 300parKeHb y IThOMY JOCJIiIZKEHH]
npejcrasieHo HoBuii Meroy Busijaerrs COVID-19 Ta iHIMuUX 3aXBOPIOBaHb JIET€Hb 3 BU-
KOPHUCTaHHSIM peHTreHorpadil rpyaHol KiaiTkn, 3roprkosux Hefiporanx mepexk (CNN) Ta
BUPIBHIOBaHH: ricrorpaM. 1 823 peHTreHiBChbKi 3HIMKM B KOJIEKIIil Oy/Iu po3ijeHi Ha TpH
kareropii: 3puuaitii, COVID-19-mosutuBHi Ta 104aTKOBI iHdeKIl Jeretb. 3aBasaKn MOEI-
nannaio aaropurmis CNN ta Topk, sanpononosanunii Hamm miaxis gocar Toanocti 98.45%.
IIi 6araToobirsrodi pe3yabraT CBiM4aTh PO TE, IO 3aIPOIOHOBAHUN METOJ, MOXKE IIPH-
mBumnnTy inearudikamnito COVID-19, 3sMenniyoun Horo HACAiIKU JIjis CHCTEMU OXOPOHH
3nopoB’s. Habip qanux 6yjie po3mupeHo B MaitOy THLOMY pa30M i3 BJOCKOHAJEHUMU METO-
JIAMU Ta BUKOPUCTAHHSAM CTBOPEHUX HaMu ayropuTMiB Top-k 1j1st moKpaleHHs IpuitHATTS
pilleHsb.

Kntouosi cnosa: COVID-19; aezenesi 3ax60p106anms; 320pMK06a HEUPOHHA MEPEICA;
Mmampuya naymanuny; aszopummu Topk; diaenocmurka.

Mathematical Modeling and Computing, Vol.12, No. 4, pp. 1295-1304 (2025)



