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JUSTIFICATION OF ARCHITECTURE FOR INTELLIGENT AGNOSTIC 
MULTIMODAL TRANSPORTATION 

 
Summary. Urban population growth is estimated to exceed 50 % by 2050 in today’s urban 

spaces. Therefore, the mobility patterns of people and objects become a fundamental element for 
planning, control, and decision-making in multimodal transportation. The use of an agnostic system that 
allows us to obtain the best combination of technologies and cognitive predictive inference models 
covering all areas of transportation (road, maritime, and air) without programming language 
limitations, supported by probability distribution functions on the entropic maximization theory of 
complex stochastic systems as the core model that could be incorporated into a machine learning logical 
architecture. It allows for selecting the most efficient, harmonious, and sustainable transportation 
trajectory. The methodology employed is exploratory-descriptive and theoretical, based on experiences 
implemented in other countries, and the incorporation from the coupling of Shannon theory with Gamma 
distribution functions in multivariate stochastic systems for the transportation sector as an innovative 
contribution of this work. A representative model of an intelligent agnostic logical architecture is 
presented, where the integration of the multivariate system is shown, nourishing the argument in the 
justification of the use, and could be taken as a proposal to be developed and implemented to reduce 
road congestion, reduce environmental pollution, and provide a sustainable alternative. The challenge is 
the understanding of this intelligent agnostic system by legislators in the transport area for the 
implementation of “IoT” devices in each transport unit and routes for connectivity to a “brain” that 
receives information from other areas of transport and walkers from their devices with high-speed 
technology in data navigation. 

Key words: multimodal transportation, intelligent architecture, agnostic system, entropic 
maximization, Gamma function. 

 

1. INTRODUCTION 
Developing countries have the opportunity to generate significant and relevant structural changes 

that will improve the quality of life and well-being of their populations and generate new, more efficient 
exchange systems that strengthen their local economies. It has been estimated that by 2050, the urban 
population will grow by more than 55 %. For cities [1], understanding urban mobility patterns is 
fundamental for effective and efficient decision-making to achieve sustainable cities [2]. 

Considering that people and products are moved using some type of transportation service, whether 
massive or not, within a given location, intra- and extra-urban transportation flows should be predictable 
and optimizable by establishing smart transportation through a multimodal transportation model, 
improving logistics efficiency by integrating different modes of transportation, reducing operational costs 
by optimizing routes and minimizing cargo handling, as well as promoting sustainable development by 
reducing traffic congestion and pollutant emissions (CO2, NOx, SOx). Transportation is responsible for 
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more than 1/5 of global anthropogenic carbon and greenhouse gas emissions [3–5]. Scientists and 

government policymakers have focused on goals to reduce these emissions by between 50 % and 80 % in 

the coming years. Smart transportation based on efficient transportation use, parking, safety, comfort, 

convenience, environmental emissions, public regulations, costs, and time has focused on considering the 

implementation of deep neural networks [6, 7], integrating technological advances that enhance road 

safety, reduce road congestion, improve personal mobility, reduce environmental pollution, use energy 

more efficiently, satisfy end-user travel time, and represent a sustainable alternative for all [4, 8]. 

Transportation planning for decision-making should be supported by two fundamental pillars: 

prediction based on prior data knowledge, where inferential statistical models play an important role, and 

optimization as a key tool for finding an optimal solution from a mathematical model, abstracting a real-

life problem by providing minimum and maximum bounds for an objective function to satisfy a set of 

conditions [9]. 

These cognitive predictive inference models are complex because they handle many variables in 

different conditions with a large or limited amount of data, achieving a robust model that can absorb 

variations and discrepancies in the system under study within an architecture defined as efficient modality 

agnostic [10–14]. 
 

2. STATEMENT OF THE PROBLEM AND RELEVANCE OF THE STUDY  

Population growth in urban areas is imminent, and with multiple options for routes and transportation, 

intelligent planning for multimodal transportation is relevant and necessary for a sustainable system. 

The objective of this work is to present a theoretical perspective that justifies the use of agnostic 

architecture for developing efficient, harmonious, and sustainable multimodal transportation. It reduces 

congestion and transit time while minimizing atmospheric emissions through the use of density distribution 

models supported by the entropy maximization theory of complex stochastic systems, covering all areas of 

transportation, as the smart agnostic systems developed in the last decade have focused on road 

transportation with computational applications coded in a programming language. This work seeks to 

justify the importance of generating an agnostic system that integrates the road, maritime, and air 

transportation sectors without programming language limitations. 

This work is based on an exploratory, descriptive, and theoretical methodology. It allows for a deep 

dive and critical analysis of existing information on intelligent multimodal transportation. It focuses on 

bibliographical review, selection, analysis, and interpretation of existing documentation to build a robust 

conceptual framework that contributes to a theoretical perspective for using an agnostic intelligent 

multimodal transportation system with an unconventional comprehensive predictive model. 
 

3. ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS 

Based on the variables aforementioned for multimodal transportation, it is presented as a 

multivariant stochastic system which must be continuous, positive, flexible in its asymmetric form with 

systemic mobility, and easy to estimate in the involved parameters [15]. One of the functions that fits these 

requirements is the probability distribution function [15–17] for which the Gamma-type function could be 

an adequate option to model the variables in a multimodal agnostic system in the transportation sector  

[2, 15, 18–24] and where there is an extensive explanation of its definition and mathematical development 

in the literature. 

One of the focal points in the inference model development for multimodal transportation 

applications is to minimize traffic congestion, resulting in fewer emissions and shorter transit times. Two 

levels of application are proposed to achieve this goal [4]. The first level, categorized as high, is suggested 

for the development of state policies with direct responsibility for legislators. The second level, categorized 

as low, focuses on adaptation and planning to address traffic flow on various routes (intra-urban and extra-

urban) and in locations such as rural, industrial, residential, commercial, agricultural, and other [28], where 

determining the energy balance in a stochastic multivariate system is essential. Therefore, the incorporation 

of the entropic maximization model is truly relevant from the thermodynamic conceptualization of this 

system under study. 
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The entropic maximization model, since its theorization by [29], has been used to predict situations 

with a high probability of occurrence under a scenario of high uncertainty. Its mathematical model is 

presented in equation (1): 

1

( ) ln( ) / ln( ),

n

i i i

i

H x p p n  (1) 

where  is the study population;  – the probability of occurrence on the study variable . 

If each variable involved in the transportation system is represented by its density function, then the 

equation (1) could be rewritten as:  
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where  and  are parameters of the Gamma function distribution.  

This model will be adjusted, depending on its variability, for non-linear regressions by [22] and 

linear regression by [30, 31]. 

The mathematical model of predictive inference in this work focuses on a robust model that attempts to 

capture data uncertainty. Therefore, to improve the model of effectiveness, precision, and accuracy, a 

multidimensional stochastic optimization was made by incorporating decision vectors into a more 

comprehensive continuous uniform probability distribution model [32–34], integrating with the entropic 

maximization of the density distribution function of each variable of the system as presented in equation (3). 
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where  is the decision-making vector,  is the objective vector,  the level of significance or risk  

(0.05 as the accepted normal value), subscript  is for the points of origin and  is for the destination points. 

In this way, the behavior and interaction of the variables are intended to be evaluated, seeking the 

minimum energy of the system to predict the most probable events that satisfy the requirements of 

sustainable multimodal transportation. 

Considering that a multimodal system represents a multivariate stochastic system, it is necessary to 

construct an architecture that represents the logical flow of information to be processed and analyzed to 

generate feasible options for decision-making. The following section provides a theoretical perspective for 

this architecture. 
 

4. ARCHITECTURE OF AN AGNOSTIC MULTIMODAL SYSTEM 

The diversity of routes and locations plays a fundamental role, the connections between each event 

and space must be considered as a multi-layered model [14, 35] that can orchestrate and harmonize all the 

variables involved to truly meet all requirements (road safety, route decongestion, improved mobility of 

people or goods, reduction of environmental pollution, more efficient use of energy, reduced travel time, 

and a sustainable alternative for all) from the point of origin (i) to the point of destination (j) using any 

mode of transportation and a combination of available IT technological advances. This last aspect underlies 

the agnosticism of the work, which will allow for general and specific interpretations of the “black box” 

models, providing inferences about the system's behavior and supporting decision-making [12]. 

A scheme of this interconnection is presented in Fig. 1. There, each layer, identified by a color, 

represents a location with multiple route and means of transportation options (walking, manual or electric 

bicycle, gasoline or electric motorcycle, gasoline, gas, diesel, electric, or hydroelectric vehicle, electric rail 

or mineral fuel, river, lake, or sea vessels, airplanes, among others) to be selected to cover mobility from an 

origin to a destination, ensuring less congestion, lower atmospheric emissions, greater traffic safety, and 

shorter travel time. 
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Variables: 

 Multiple modes of transportation 

 Costs 

 Safety 

 Time 

 Health 

 Congestion 

 Regulations 

 Routes 

 Emissions 

 Mode of transportation 

 Weather conditions 

 

Core model: 

1

[ ( ( , , )) ]

n

ij k obj

ij k

C H f x C s  

 

Artificial Intelligence Algorithms: 

 Supervised 

 Unsupervised 

 Reinforcement 

 

Fig. 1. Interconnection scheme for multimodal transportation 

 

To achieve the connections in each layer with all the variables involved, the coupling between the 

layers to transit from point (i) to point (j) and establish an effective intelligent agnostic system within a 

logical architecture that considers the mathematical model presented in equation (3) as core model, and 

algorithms already used in artificial intelligence, such as supervised, unsupervised, and reinforcement, 

where translation modules are available for the data input and output interfaces to handle any computing 

technology available within the system under study. 

A logical architecture for intelligent, agnostic multimodal transportation is presented schematically 

in Fig. 2, providing a visual understanding of its connections and interconnections. The description of each 

layer of the architecture is given below: 

– Layer 1 – Data Collection: collects real-world information from multiple sources, such as:  

o Infrastructure sensors (safety and traffic cameras, air quality sensors).  

o Connected vehicles (GPS data, telemetry, vehicle status, and behavior).  

o Walkers (GPS data from mobile phones).  

o Others (weather information, special events, traffic news, public transportation schedules). 

– Layer 2 – Processing and Analysis: information from Layer 1 is transformed into useful data. It 

uses big data techniques (real-time data ingestion and processing), machine learning using the 

proposed predictive mathematical model in equation 3 (predicting traffic patterns, transportation 

demand, congestion, delays, and transportation availability), and artificial intelligence 

(managing special events in real time, such as road closures, incidents, and accidents). It 

generates a virtual “Digital Twin”-type representation of the transportation network, simulating 

the system‟s behavior in real time, allowing for testing possible scenarios and optimizing 

operations according to the indicated objective vectors. 

– Layer 3 – Business Logic and Optimization: this is the “brain” of the system, where decisions 

are made and actions are executed. It uses the information processed from Layer 2 to coordinate 

Destination (j)

Origin (i)
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and optimize transportation from routing, fleets, fares, and payments to present optimal 

transportation management planning and multimodal payment to the end user‟s satisfaction and 

in line with the concept of sustainability. 

– Layer 4 – Interface and Services: this layer interacts directly with the end user, operators, and 

system administrators through mobile applications, dashboards, and other tools, control, and 

information systems at stations, such as real-time interactive screens at stops that display 

schedules, delays, transportation alternatives, routes, among others. 

 

 

Fig. 2. Logical architecture for multi-layered multimodal transportation with intelligent systems 
 

The application of this agnostic and intelligent logical architecture for a multimodal transportation 

system has its challenge in the understanding of sustainable multimodal transportation in decision makers 

and legislators in the transport area for the implementation of “IoT” devices (Internet of things) in each 

transport unit (bicycles, motorcycles, cars, buses, among others), as well as on the routes, presenting itself 

as a possible, and feasible alternative for connectivity to a “brain” that receives information from other 

areas of transport (maritime, rail, air), and walkers from their devices in the company of the use of high-

speed technology in data navigation.  
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In this way, real-time information could be available to feed the logic of the architecture that, under 

agnostic programming in communication interfaces, allows the development of the most appropriate 

alternative in a given situation. 

 

5. CONCLUSIONS AND PERSPECTIVES FOR FURTHER RESEARCH 

This work presented a robust predictive mathematical model to optimize the decision-making on a 

multidimensional stochastic system, as it is the multimodal transportation, incorporating probability 

density distribution, integrating within the entropic maximization function. 

A justification on the use of logical architecture for an intelligent agnostic system is presented and 

could be used within machine learning algorithms with the core mathematical model proposed in this work 

that harmonizes and orchestrates with the objective decision-vectors the most appropriate decision-making 

in the selection of routes and fleets that allow safety, decongestion, reduction of environmental emissions, 

more efficient use of energy and a transit time that satisfies the end-user in accordance with the cost 

associated with the selected transportation service.  

The use of an agnostic system that allows us to obtain the best combination of technologies and 

cognitive predictive inference models supported by the entropic maximization theory of stochastic systems 

within of machine learning logical architecture, allowing an interactive artificial intelligence to more 

closely understand the end-user needs in advance in sustainable transportation systems.  

For future research, alliances with government and private entities are planned to create a big 

database and generate a functional test within a selected locality. 
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ОБҐРУНТУВАННЯ АРХІТЕКТУРИ ДЛЯ ІНТЕЛЕКТУАЛЬНОГО 

АГНОСТИЧНОГО МУЛЬТИМОДАЛЬНОГО ТРАНСПОРТУ 
 

Анотація. За оцінками, до 2050 р. приріст міського населення в сучасних міських 

просторах перевищить 50 %. Тому моделі переміщення людей і товарів стають фундамен-

тальним елементом планування, контролю та прийняття рішень у мультимодальних 

перевезеннях. Використання агностичної системи, що дає змогу забезпечити найкраще 

поєднання технологій та когнітивних моделей прогнозування, які охоплюють усі сфери 

транспорту (автомобільного, морського та повітряного) без обмежень мови програмування, 

підкріплене функціями розподілу ймовірностей на основі теорії ентропійної максимізації 

складних стохастичних систем як основної моделі, яку можна ввести до логічної архітектури 

машинного навчання. Вона дає змогу вибрати найбільш ефективну, гармонійну та стійку 

траєкторію перевезення. Використана методологія є дослідницько-описовою та 

теоретичною, ґрунтується на досвіді, отриманому в інших країнах, та поєднанні теорії 

Шеннона з функціями гамма-розподілу в багатовимірних стохастичних системах для 

транспортного сектору, що є інноваційним внеском цієї роботи. Подано репрезентативну 

модель інтелектуальної агностичної логічної архітектури, із інтеграцією багатовимірної 

системи, що підкріплює аргументи на користь її використання. Її можна розглядати як 

пропозицію, що підлягає розробленню та впровадженню з метою зменшення заторів на 

дорогах, зниження рівня забруднення навколишнього середовища та забезпечення стійких 

альтернатив. Викликом є розуміння цієї інтелектуальної агностичної системи законодавцями 

у сфері транспорту для впровадження пристроїв “IoT” у кожній транспортній одиниці та 

маршрутах для підключення до “мозку”, який отримує інформацію з інших галузей 

транспорту та від пішоходів із їхніх пристроїв за допомогою високошвидкісної технології 

навігації даних. 

Ключові слова: мультимодальний транспорт, інтелектуальна архітектура, агностична 

система, ентропійна максимізація, гамма-функція.  


