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Summary. Urban population growth is estimated to exceed 50 % by 2050 in today’s urban
spaces. Therefore, the mobility patterns of people and objects become a fundamental element for
planning, control, and decision-making in multimodal transportation. The use of an agnostic system that
allows us to obtain the best combination of technologies and cognitive predictive inference models
covering all areas of transportation (voad, maritime, and air) without programming language
limitations, supported by probability distribution functions on the entropic maximization theory of
complex stochastic systems as the core model that could be incorporated into a machine learning logical
architecture. It allows for selecting the most efficient, harmonious, and sustainable transportation
trajectory. The methodology employed is exploratory-descriptive and theoretical, based on experiences
implemented in other countries, and the incorporation from the coupling of Shannon theory with Gamma
distribution functions in multivariate stochastic systems for the transportation sector as an innovative
contribution of this work. A representative model of an intelligent agnostic logical architecture is
presented, where the integration of the multivariate system is shown, nourishing the argument in the
Justification of the use, and could be taken as a proposal to be developed and implemented to reduce
road congestion, reduce environmental pollution, and provide a sustainable alternative. The challenge is
the understanding of this intelligent agnostic system by legislators in the transport area for the
implementation of “loT” devices in each transport unit and routes for connectivity to a “brain” that
receives information from other areas of transport and walkers from their devices with high-speed
technology in data navigation.

Key words: multimodal transportation, intelligent architecture, agnostic system, entropic
maximization, Gamma function.

1. INTRODUCTION

Developing countries have the opportunity to generate significant and relevant structural changes
that will improve the quality of life and well-being of their populations and generate new, more efficient
exchange systems that strengthen their local economies. It has been estimated that by 2050, the urban
population will grow by more than 55 %. For cities [1], understanding urban mobility patterns is
fundamental for effective and efficient decision-making to achieve sustainable cities [2].

Considering that people and products are moved using some type of transportation service, whether
massive or not, within a given location, intra- and extra-urban transportation flows should be predictable
and optimizable by establishing smart transportation through a multimodal transportation model,
improving logistics efficiency by integrating different modes of transportation, reducing operational costs
by optimizing routes and minimizing cargo handling, as well as promoting sustainable development by
reducing traffic congestion and pollutant emissions (CO,, NO,, SO,). Transportation is responsible for
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more than 1/5 of global anthropogenic carbon and greenhouse gas emissions [3-5]. Scientists and
government policymakers have focused on goals to reduce these emissions by between 50 % and 80 % in
the coming years. Smart transportation based on efficient transportation use, parking, safety, comfort,
convenience, environmental emissions, public regulations, costs, and time has focused on considering the
implementation of deep neural networks [6, 7], integrating technological advances that enhance road
safety, reduce road congestion, improve personal mobility, reduce environmental pollution, use energy
more efficiently, satisfy end-user travel time, and represent a sustainable alternative for all [4, 8].

Transportation planning for decision-making should be supported by two fundamental pillars:
prediction based on prior data knowledge, where inferential statistical models play an important role, and
optimization as a key tool for finding an optimal solution from a mathematical model, abstracting a real-
life problem by providing minimum and maximum bounds for an objective function to satisfy a set of
conditions [9].

These cognitive predictive inference models are complex because they handle many variables in
different conditions with a large or limited amount of data, achieving a robust model that can absorb
variations and discrepancies in the system under study within an architecture defined as efficient modality
agnostic [10-14].

2. STATEMENT OF THE PROBLEM AND RELEVANCE OF THE STUDY

Population growth in urban areas is imminent, and with multiple options for routes and transportation,
intelligent planning for multimodal transportation is relevant and necessary for a sustainable system.

The objective of this work is to present a theoretical perspective that justifies the use of agnostic
architecture for developing efficient, harmonious, and sustainable multimodal transportation. It reduces
congestion and transit time while minimizing atmospheric emissions through the use of density distribution
models supported by the entropy maximization theory of complex stochastic systems, covering all areas of
transportation, as the smart agnostic systems developed in the last decade have focused on road
transportation with computational applications coded in a programming language. This work seeks to
justify the importance of generating an agnostic system that integrates the road, maritime, and air
transportation sectors without programming language limitations.

This work is based on an exploratory, descriptive, and theoretical methodology. It allows for a deep
dive and critical analysis of existing information on intelligent multimodal transportation. It focuses on
bibliographical review, selection, analysis, and interpretation of existing documentation to build a robust
conceptual framework that contributes to a theoretical perspective for using an agnostic intelligent
multimodal transportation system with an unconventional comprehensive predictive model.

3. ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS

Based on the variables aforementioned for multimodal transportation, it is presented as a
multivariant stochastic system which must be continuous, positive, flexible in its asymmetric form with
systemic mobility, and easy to estimate in the involved parameters [15]. One of the functions that fits these
requirements is the probability distribution function [15-17] for which the Gamma-type function could be
an adequate option to model the variables in a multimodal agnostic system in the transportation sector
[2, 15, 18-24] and where there is an extensive explanation of its definition and mathematical development
in the literature.

One of the focal points in the inference model development for multimodal transportation
applications is to minimize traffic congestion, resulting in fewer emissions and shorter transit times. Two
levels of application are proposed to achieve this goal [4]. The first level, categorized as high, is suggested
for the development of state policies with direct responsibility for legislators. The second level, categorized
as low, focuses on adaptation and planning to address traffic flow on various routes (intra-urban and extra-
urban) and in locations such as rural, industrial, residential, commercial, agricultural, and other [28], where
determining the energy balance in a stochastic multivariate system is essential. Therefore, the incorporation
of the entropic maximization model is truly relevant from the thermodynamic conceptualization of this
system under study.
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The entropic maximization model, since its theorization by [29], has been used to predict situations
with a high probability of occurrence under a scenario of high uncertainty. Its mathematical model is
presented in equation (1):

n
H () ==Y pj In(p;) / In(n), (1)
i=1
where n is the study population; p — the probability of occurrence on the study variable x.
If each variable involved in the transportation system is represented by its density function, then the
equation (1) could be rewritten as:

n
H(f (x.a 8)=-> piIn(p;)/ In(n), 0
i=1
where o and B are parameters of the Gamma function distribution.

This model will be adjusted, depending on its variability, for non-linear regressions by [22] and
linear regression by [30, 31].

The mathematical model of predictive inference in this work focuses on a robust model that attempts to
capture data uncertainty. Therefore, to improve the model of effectiveness, precision, and accuracy, a
multidimensional stochastic optimization was made by incorporating decision vectors into a more
comprehensive continuous uniform probability distribution model [32-34], integrating with the entropic
maximization of the density distribution function of each variable of the system as presented in equation (3).

n
PLY. D CifH(f (%@ B)) <Copjl <, ®)
ij k=1
where C;; is the decision-making vector, C,;, is the objective vector, s the level of significance or risk
(0.05 as the accepted normal value), subscript i is for the points of origin and ; is for the destination points.

In this way, the behavior and interaction of the variables are intended to be evaluated, seeking the
minimum energy of the system to predict the most probable events that satisfy the requirements of
sustainable multimodal transportation.

Considering that a multimodal system represents a multivariate stochastic system, it is necessary to
construct an architecture that represents the logical flow of information to be processed and analyzed to
generate feasible options for decision-making. The following section provides a theoretical perspective for
this architecture.

4. ARCHITECTURE OF AN AGNOSTIC MULTIMODAL SYSTEM

The diversity of routes and locations plays a fundamental role, the connections between each event
and space must be considered as a multi-layered model [14, 35] that can orchestrate and harmonize all the
variables involved to truly meet all requirements (road safety, route decongestion, improved mobility of
people or goods, reduction of environmental pollution, more efficient use of energy, reduced travel time,
and a sustainable alternative for all) from the point of origin (i) to the point of destination (j) using any
mode of transportation and a combination of available IT technological advances. This last aspect underlies
the agnosticism of the work, which will allow for general and specific interpretations of the “black box”
models, providing inferences about the system's behavior and supporting decision-making [12].

A scheme of this interconnection is presented in Fig. 1. There, each layer, identified by a color,
represents a location with multiple route and means of transportation options (walking, manual or electric
bicycle, gasoline or electric motorcycle, gasoline, gas, diesel, electric, or hydroelectric vehicle, electric rail
or mineral fuel, river, lake, or sea vessels, airplanes, among others) to be selected to cover mobility from an
origin to a destination, ensuring less congestion, lower atmospheric emissions, greater traffic safety, and
shorter travel time.



4 K. Serny

Destination (j)

Variables:

Multiple modes of transportation
Costs

Safety

Time

Health

Congestion
Regulations

Routes

Emissions

Mode of transportation
Weather conditions

VVVVVYVYVVYVYVYYVY

Core model:

P D CijH(f (%, 5) < Copj]<'s

ij k=L

Artificial Intelligence Algorithms:
» Supervised
» Unsupervised
» Reinforcement

Origin (i)
Fig. 1. Interconnection scheme for multimodal transportation

To achieve the connections in each layer with all the variables involved, the coupling between the
layers to transit from point (i) to point (j) and establish an effective intelligent agnostic system within a
logical architecture that considers the mathematical model presented in equation (3) as core model, and
algorithms already used in artificial intelligence, such as supervised, unsupervised, and reinforcement,
where translation modules are available for the data input and output interfaces to handle any computing
technology available within the system under study.

A logical architecture for intelligent, agnostic multimodal transportation is presented schematically
in Fig. 2, providing a visual understanding of its connections and interconnections. The description of each
layer of the architecture is given below:

— Layer 1 — Data Collection: collects real-world information from multiple sources, such as:

o Infrastructure sensors (safety and traffic cameras, air quality sensors).

o Connected vehicles (GPS data, telemetry, vehicle status, and behavior).

o Walkers (GPS data from mobile phones).

o Others (weather information, special events, traffic news, public transportation schedules).

— Layer 2 — Processing and Analysis: information from Layer 1 is transformed into useful data. It
uses big data techniques (real-time data ingestion and processing), machine learning using the
proposed predictive mathematical model in equation 3 (predicting traffic patterns, transportation
demand, congestion, delays, and transportation availability), and artificial intelligence
(managing special events in real time, such as road closures, incidents, and accidents). It
generates a virtual “Digital Twin”-type representation of the transportation network, simulating
the system’s behavior in real time, allowing for testing possible scenarios and optimizing
operations according to the indicated objective vectors.

— Layer 3 — Business Logic and Optimization: this is the “brain” of the system, where decisions
are made and actions are executed. It uses the information processed from Layer 2 to coordinate
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and optimize transportation from routing, fleets, fares, and payments to present optimal
transportation management planning and multimodal payment to the end user’s satisfaction and
in line with the concept of sustainability.

— Layer 4 — Interface and Services: this layer interacts directly with the end user, operators, and
system administrators through mobile applications, dashboards, and other tools, control, and
information systems at stations, such as real-time interactive screens at stops that display
schedules, delays, transportation alternatives, routes, among others.

Security and traffic
Cameras, air quality

Meteorol ogy, traffic
news, transport
schedule

Infrastructure Connected Connected Other
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Fig. 2. Logical architecture for multi-layered multimodal transportation with intelligent systems

The application of this agnostic and intelligent logical architecture for a multimodal transportation
system has its challenge in the understanding of sustainable multimodal transportation in decision makers
and legislators in the transport area for the implementation of “IoT” devices (Internet of things) in each
transport unit (bicycles, motorcycles, cars, buses, among others), as well as on the routes, presenting itself
as a possible, and feasible alternative for connectivity to a “brain” that receives information from other
areas of transport (maritime, rail, air), and walkers from their devices in the company of the use of high-
speed technology in data navigation.
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In this way, real-time information could be available to feed the logic of the architecture that, under
agnostic programming in communication interfaces, allows the development of the most appropriate
alternative in a given situation.

5. CONCLUSIONS AND PERSPECTIVES FOR FURTHER RESEARCH

This work presented a robust predictive mathematical model to optimize the decision-making on a
multidimensional stochastic system, as it is the multimodal transportation, incorporating probability
density distribution, integrating within the entropic maximization function.

A justification on the use of logical architecture for an intelligent agnostic system is presented and
could be used within machine learning algorithms with the core mathematical model proposed in this work
that harmonizes and orchestrates with the objective decision-vectors the most appropriate decision-making
in the selection of routes and fleets that allow safety, decongestion, reduction of environmental emissions,
more efficient use of energy and a transit time that satisfies the end-user in accordance with the cost
associated with the selected transportation service.

The use of an agnostic system that allows us to obtain the best combination of technologies and
cognitive predictive inference models supported by the entropic maximization theory of stochastic systems
within of machine learning logical architecture, allowing an interactive artificial intelligence to more
closely understand the end-user needs in advance in sustainable transportation systems.

For future research, alliances with government and private entities are planned to create a big
database and generate a functional test within a selected locality.
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OBIPYHTYBAHHS APXITEKTYPH 1JISI IHTEJTEKTYAJIBHOT'O
ATHOCTHYHOI'O MYJIBbTUMOJAJBHOI'O TPAHCIIOPTY

Anomauia. 3a oyinkamu, do 2050 p. npupicm MiCbK020 HACENEHHA 8 CYYACHUX MICOKUX
npocmopax nepesuwums 50 %. Tomy modeni nepemiugenus arooel i mosapie cmaoms QYHOAMeH-
MANbHUM  eIeMEHMOM NIAHYBAHHS, KOHMPONIO MA NPULHAMMS DIWeHb V  MYTbIMUMOOATbHUX
nepegesennaAx. Buxopucmanna aenocmuunoi cucmemu, wjo Oac 3moey 3abe3neyumu HauKpauje
NOEOHAHHA MEXHONIORI Ma KOSHIMUGHUX MoOeneli NpoeHO3V6AHHS, AKi OXOnuolomv yci cghepu
mpancnopmy (a6momooiibHO20, MOPCLKO20 Ma NOGIMPAHO20) be3 0OMedlcenb MOBU NPOSPAMYEAHHS,
niokpiniene QYHKYsIMU po3nooiny UMOGIPHOCHEN HA OCHOBL MeOopil eHMpPORitiHOI Maxkcumizayii
CKNIAOHUX CIMOXACMUYHUX CUCTHEM SIK OCHOBHOI MOO@, SKY MOJICHA 86ecmu 00 NO2TUHOI apXimeKkmypu
MawiunHo20 Hasuanus. Bowa dae 3mocy eubpamu uatbinowt eghexmueny, 2apMOHIUHYy ma CMIlKy
Mpaekmopito  nepesesenus.  Buxopucmana — memooonozii €  OOCTOHUYbKO-ORUCOB0I0  MA
MeoOpemuyHoI0, IPYHMYEMbCS HA 00CBI0I, OMPUMAHOMY 6 [HWUX KpaiHax, ma NOCOHAHMI meopii
Llennona 3 ¢yuxkyiamu eamma-posnodiny 6 0azamosuMIpHUX CMOXACMUYHUX cucmemax OJs
MPAHCIOPIMHO20 CEKMOpY, Wo € IHHOSayiiHuM eHeckom yiei pobomu. Ilodano penpezenmamusHy
MoOenb IHMeNeKmyanvoi aeHOCMUYHOI 102iUHOI apximexkmypu, i3 inmezpayicio Oa2amosuMipHoi
cucmemu, wo niOKpinIIoc apaymenmu Ha Kopucmb ii eukopucmanns. i mojcna posensoamu sax
NPono3uyito, wo nidaeae pospooieHHI0 MA 6NPOBAOICEHHIO 3 MEMOI0 3MEHUIeHH 3amopié Ha
00p02ax, 3HUdICEHHsI PIGHA 3A0PYOHEHMSI HABKOMUWHBO2O Cepedosuuja ma 3a0e3nevenHs CMmitlkux
anvmepramus. Buknukom € po3yminna yici inmenekmyanbHoi azHOCMUYHOI cucmemu 3aKOHO00A8YAMU
vy cghepi mpancnopmy 0na enposadcerns npucmpoie ‘10T y KoowcHitl mpancnopmuiu oouHuyi ma
mapwipymax Oasi NIOKIOYeHHA 00 ‘“MO3Ky”, sakutl ompumye iHpopmayiro 3 iHwuUx eanysetl
MPAHCNOpmy ma 6i0 Niuoxo0dig i3 IXHIX NpUcCmpois 3a 0ONOMOZOH BUCOKOWBUOKICHOI mexHono02ii
Hasieayii Oanux.

Kniouosi cnosa: mynomumooansuutl mpancnopm, iHmeiekmyansha apximexmypa, adeHOCMUYHA
cucmema, eHmponituHa MAKCUMI3ayis, 2amMma-QyHKYis.



