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This paper proposes a novel hybrid framework, Q-IG, to solve the permutation flow shop
scheduling problem with sequence-dependent setup times (PFSP-SDST). Recent advance-
ments in learning-based methods demonstrate significant potential in addressing flow shop
scheduling, yet they often struggle with the enormous solution space and the design of
effective reward functions. To overcome these challenges, Q-IG integrates the iterated
greedy metaheuristic (IG) with Q-learning. It begins by applying the Nawaz–Enscore–
Ham (NEH) heuristic to generate high-quality initial solutions. During each IG iteration,
the schedules are partially destroyed and reconstructed, and Q-learning is used to guide
the selection of neighborhood moves that are expected to minimize makespan. We evalu-
ated both standalone IG and the Q-IG hybrid in the Taillard benchmark suite, measuring
performance through a relative percentage deviation from the best-known makespan. The
results demonstrate that Q-IG outperforms its competitors, confirming its effectiveness
for PFSP-SDST and highlighting the promise of incorporating Q-learning into traditional
metaheuristic approaches.
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1. Introduction

The flow shop scheduling problem (FSP) represents a fundamental challenge in production schedul-
ing, where a collection of jobs is required to follow a specific sequence through a set of machines.
The primary objective is often to minimize the total completion time, also known as the makespan.
Throughout the years, this model has undergone generalization, initially to flexible or hybrid flow
shops (HFSP), where each processing stage can include multiple parallel machines, and subsequently
to variations that specifically consider sequence-dependent setup times (SDST). In numerous practical
manufacturing settings, the duration needed for tooling changes, machine cleaning, work-in-process
repositioning, or process parameter adjustments is influenced by the specific job that has just been
completed. Instances range from modifying molds for various tire dimensions to fine-tuning baking
temperatures for breads with diverse dough formulations. When setup times are substantial, over-
looking them can utilize more than 20% of available capacity and severely impact the effectiveness
of any schedule [1]. The permutation flow shop with sequence-dependent setup times (PFSP-SDST),
represented in the standard three-field notation as Fm|permu, sijk|Cmax, is classified as NP-hard [2].
This problem involves a scenario where every job adheres to a consistent sequence of machines, with
the stipulation that jobs cannot surpass one another due to a permutation constraint. Furthermore,
prior to the processing of job j on machine k, a setup time sijk determined by the job i that was
the most recently processed on that machine must be observed. This model addresses the expenses
associated with transitioning between different families of components within group technology en-
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vironments, playing a crucial role in lot-sizing choices when changeovers are significant. Industrial
studies spanning the glass, metallurgical, paper, textile, chemical, and aerospace sectors indicate that
nearly 70% of schedulers are required to manage SDST in practice, and neglecting these tasks sig-
nificantly hinders shop performance [3]. Although it has significant practical relevance, studies on
PFSP-SDST are still limited compared to traditional FSP. Many current flow shop investigations typ-
ically either presume fixed setups or concentrate on total tardiness and other metrics related to due
dates. Several studies have established complexity results for both single and two-machine scenarios
involving sequence-dependent setup times, and have validated by simulation the impact of sequence-
dependent changeovers on throughput and lateness [4]. However, there remains a need for effective
metaheuristic or learning-based approaches specifically designed to address the combinatorial structure
of PFSP-SDST.

This paper presents a solution to the PFSP-SDST through the introduction of Q-IG, an innovative
hybrid algorithm that merges the intensification and diversification capabilities of an iterated greedy
(IG) metaheuristic with the adaptive decision-making features of Q-learning. We present the following
contributions:
1. The PFSP-SDST problem is formulated as Fm|permu, sijk|Cmax, integrating sequence-dependent

setup times within the flow shop framework.
2. A Q-learning module is developed to dynamically direct the destruction-reconstruction phases of

IG, acquiring knowledge of which jobs to eliminate and the best locations for their reinsertion.
3. We carry out comprehensive computational experiments on benchmark instances, showing that Q-

IG surpasses leading metaheuristics in makespan minimization within the PFSP-SDST framework.

The subsequent sections of this paper are structured as outlined below. Section 2 offers an in-depth
examination of the pertinent literature. Section 3 provides a formal definition of PFSP-SDST. In
Section 4, the Q-IG algorithm is discussed in full detail. In Section 5, we present the details of our
experimental setup along with the results obtained. In conclusion, Section 6 summarizes the findings
and suggests potential directions for further investigation.

2. Review of the literature

Flow shop scheduling represents a well-established NP-hard problem where jobs are required to be
processed sequentially on a set of machines. Since Johnson’s [5] groundbreaking two-machine study,
a substantial body of literature has emerged concerning both exact and heuristic approaches to the
permutation flow shop problem (PFSP). Initial precise methodologies - dynamic programming for
two machines with sequence-dependent setup times (SDST) [6], lexicographic search [7], and mixed-
integer linear programming (MILP) models [8,9] are confined to very small instances. Branch-and-cut
and branch-and-bound algorithms [10, 11] demonstrate effectiveness in solving up to ten jobs on six
machines; however, they become impractical when addressing larger problems.

Due to the combinatorial explosion associated with the PFSP [12], there has been a shift in fo-
cus toward heuristics and metaheuristics in the field of study. The Nawaz, Enscore, and Ham (NEH)
heuristic [13] and the Campbell–Dudek–Smith (CDS) [14] method are prominent examples of construc-
tive rules that are frequently utilized. Szwarc and Gupta modified the multi-sort techniques derived
from the traveling salesman problem (TSP) [15]; Simons introduced the TOTAL and SETUP rules
based on TSP [16]; and Das et al. introduced a savings index heuristic [17]. Ruiz and Maroto present
an in-depth examination of these and additional PFSP heuristics [18].

Techniques such as simulated annealing (SA) [19], tabu search [20], and genetic algorithms (GA) [21]
have undergone adaptations and hybridizations to enhance the quality of solutions. For instance,
Lei [22] presented an effective decoding method for genetic algorithms applied to flexible job shops
with fuzzy time parameters; Engin et al. [23] created innovative mutation operators; Mirsanei et
al. [24] and Defersha et al. [25] improved simulated annealing by introducing new search moves for
flexible job shop scheduling problems; and Qin et al. [26] and Han et al. [27] formulated iterated greedy
algorithms aimed at enhancing energy efficiency in distributed flow shop environments. Hybrid schemes
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that integrate genetic algorithms, simulated annealing, variable neighborhood search, estimation of
distribution, and domain descent heuristics [28–31] have gained significant traction. Knowledge-driven
approaches, such as iterated greedy rules that account for learning and forgetting effects [32] and
migratory bird optimization algorithms [33], enhance the metaheuristic toolkit significantly.

Although advancements have been made with respect to the PFSP, flow shops utilizing SDST
have not garnered the same level of focus. In addition to the two-machine exact methods and small-
scale MILP models, the main notable metaheuristic identified for SDST-PFSP is a greedy randomized
adaptive search procedure (GRASP) developed by Ríos–Mercado and Bard [34]. To the best of our
knowledge, no genetic algorithms have been published specifically designed for SDST flow shops, and
the availability of fair comparative evaluations is limited due to the use of different instance sets and
computing platforms.

Recently, machine learning techniques, especially reinforcement learning (RL) and deep reinforce-
ment learning (DRL), have been applied to scheduling. Q-learning and deep Q-networks (DQN) have
been applied in real-time scheduling [35], PFSP [36–38], as well as in hybrid approaches that integrate
DQN within estimation-of-distribution frameworks [39]. Graph neural networks (GNNs) have been
utilized [40–42] to acquire representations of job-machine graphs. Imitation learning and multi-expert
architectures have tackled the challenges of distributed heterogeneous flow shops with family setups.

However, purely end-to-end learning methods often encounter difficulties in generalizing across
different scales and still do not surpass the performance of the leading metaheuristics on established
PFSP benchmarks. This suggests an opportunity to integrate efficient metaheuristic components into
learning-based frameworks: expert heuristics can guide RL or DRL policies toward high-quality regions
of the search space, improving both solution quality and convergence speed.

Currently, existing networks based on end-to-end learning are difficult to generalize to PFSPs
of different scales, and the solving accuracy still needs to be further improved. Consequently, it is
important to explore the application of effective metaheuristics to enhance the quality of the solution
in learning-based approaches.

3. Problem description

Table 1. Notation used in the PFSP-SDST.

Symbol Definition

n Number of jobs
m Number of machines

i ∈M Index of machines, where M = {1, 2, . . . ,m}
j, k ∈ J, j 6= k Indices of jobs, where J = {1, 2, . . . , n}

J Set of jobs {1, 2, . . . , n}
M Set of machines {1, 2, . . . ,m}

π = (π1, π2, . . . , πn) A permutation representing the processing order of jobs
pi,j Processing time of job j on machine i

si,j,k Sequence-dependent setup time on machine i from job j to job k

Ci,j Completion time of job j on machine i

Si,j Starting time of job j on machine i

Cmax Makespan: total time to complete all jobs

Table 1 provides a summary of the notation utilized in this section. The permutation sequence-
dependent setup times flow shop problem (PFSP-SDST) involves a collection J = {J1, J2, . . . , Jn}
of n jobs that need to be processed without interruption on a group M = {M1,M2, . . . ,Mm} of m
machines. Each machine processes the jobs in the same fixed order. Every job Jj is assigned a specific
processing duration pj,i on machine Mi, and when a machine transitions from job Jk to job Jℓ, it
incurs sequence-dependent setup times si,k,ℓ on machine Mi. A schedule is defined by a permutation
π = (π1, π2, . . . , πn) of jobs. The objective is to find the optimal sequence π∗ that minimizes the
makespan Cmax(π), which is the time at which the final job is completed on the last machine.
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Let Q denote the set of all n! permutations of J . The optimization goal is to find π ∈ Q such that:

Cmax(π) 6 Cmax(π
′), ∀π′ ∈ Q. (1)

For a given permutation π, let C(πj; i) represent the completion time of job πj on machine Mi.
The makespan is then:

Cmax(π) = C(πn;m). (2)

The completion times C(πj ; i) can be computed recursively once π is fixed:

— Initial job on the first machine:

C(π1; 1) = p(π1; 1). (3)

— Initial job on machines i = 2, . . . ,m (no setup required):

C(π1; i) = C(π1; i− 1) + p(π1; i). (4)

— Subsequent jobs on the first machine (j = 2, . . . , n):

C(πj ; 1) =

j−1
∑

q=1

[

p(πq; 1) + s1,πq,πq+1

]

+ p(πj; 1). (5)

— Remaining jobs on machines i = 2, . . . ,m and j = 2, . . . , n:

C(πj; i) = max
{

C(πj; i− 1), C(πj−1; i) + si,πj−1,πj

}

+ p(πj ; i). (6)

Equation (6) enforces that job πj can start on machine Mi only after its completion on machine
Mi−1, the previous job πj−1 has finished on Mi, and the setup time si,πj−1,πj

has elapsed. Once all
completion times C(πj; i) are calculated, the makespan is determined as C(πn;m).

4. Related approaches

4.1. Iterated greedy algorithm

The iterated greedy algorithm (IG) is a single-solution metaheuristic that was initially introduced by
Ruiz and Stützle [43], specifically designed to address the permutation flow shop scheduling problem
(PFSP). The pseudo-code can be found in Algorithm 1. The process begins with the creation of
an initial permutation of n jobs, which can be achieved randomly or, more frequently, through a
constructive heuristic that produces a high-quality starting solution. Following this initial sequence, it
subsequently engages in a cycle of perturbation, local optimization, acceptance testing, and termination
verification.

During the perturbation phase of each iteration, the algorithm randomly selects and removes d jobs
from the current permutation β, resulting in two subsets: βD, which includes the remaining n−d jobs,
and βR, the set of extracted jobs d. A local search may be applied to βD to enhance the partial
sequence prior to reconstruction. Subsequently, in the constructive (reinsertion) phase, each job in
βR is reinserted individually into the optimal position in βD, specifically, the position that minimizes
the makespan Cmax of the resulting partial permutation. In instances where multiple positions result
in identical Cmax, a secondary rule or random selection can be used to resolve ties, thus improving
diversification.

After all the jobs have been reinserted, the algorithm applies a local search to the reconstructed
sequence, guiding it towards a new local optimum. Subsequently, an acceptance mechanism evaluates
this candidate solution in relation to the current one employing criteria such as enhancement in Cmax

or a probabilistic rule to determine if the existing solution should be replaced. The procedure con-
tinues until a predetermined stopping criterion is satisfied, which may include a maximum iteration
count, a time constraint, or a defined number of iterations lacking improvement. Using a cycle of
selective destruction and strategic reconstruction, along with local search and acceptance tests, the
iterated greedy algorithm adeptly navigates the solution space and transcends local optima, ultimately
identifying high-quality schedules for PFSP.
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Algorithm 1 Iterated greedy (IG) algorithm.

Require: d ∈ N

Ensure: Π∗ ∈ S(N)
1: Π← initialSolution()

2: Π← localSearch(Π)
3: Π∗ ← Π
4: while terminationCriterion()

// — Perturbation Phase —
5: D ← destruction(Π, d)
6: Π \D ← Π \D
7: Π \D ← localSearch(Π \D)

// — Construction Phase —
8: Π′ ← construction(Π \D,D)
9: Π′ ← localSearch(Π′)

// — Acceptance —
10: if accept(Π′, Π) then

11: Π← Π′

12: if better(Π′, Π∗) then

13: Π∗ ← Π′

14: return Π∗

4.2. Q-learning algorithm

Reinforcement learning (RL) is a structured approach to decision making in which an agent engages
in trial-and-error interactions with its environment to determine the optimal actions to take in specific
states, with the aim of maximizing cumulative rewards [44]. At each time step t, the agent perceives the
current state st, chooses an action at from the available action set, and subsequently the environment
transitions to a new state st+1 while providing a scalar reward Rt+1. Through this iterative process
of observation, action, reward and transition, the agent progressively uncovers a policy π that maps
states to actions to maximize expected long-term return (see Figure 1).

Agent

State

Environment

Reward Action

Fig. 1. Model of Q-learning.

Traditional reinforcement learning methods rely on a
complete model of the environment, including the state
space, action space, transition probabilities, and reward
function, allowing for the derivation of optimal policies us-
ing dynamic programming. However, in many practical
situations-particularly combinatorial optimization problems-
such a model is not available [45]. Model-free approaches,
such as Monte Carlo and Temporal Difference (TD) learning,
overcome this limitation by estimating value functions from sampled experience [46].

Q-learning, introduced by Watkins [47], is an RL algorithm based on temporal-difference learning
and model-free value estimation. The objective is to learn the optimal action value function Q∗ : S ×
A → R, where Q∗(s, a) represents the maximum expected cumulative reward obtainable by taking
action a in state s and subsequently following the optimal policy. The agent maintains a Q-table with
all initial entries set to zero. When executing the action at in state st, receiving the reward Rt+1, and
transitioning to state st+1, the Q value is updated using the following rule:

Q(st, at)← (1− α) ·Q(st, at) + α ·

[

Rt+1 + γ ·max
a′

Q(st+1, a
′)

]

. (7)

Alternatively, the incremental form is often used:

Q(s, a)← Q(s, a) + α ·

[

r + γ ·max
a′

Q(s′, a′)−Q(s, a)

]

. (8)
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In this context, α ∈ (0, 1] is the learning rate, which determines how much new information is
overriding old estimates. The discount factor γ ∈ (0, 1] governs the importance of future rewards. The
term maxa′ Q(st+1, a

′) approximates the optimal expected return of the next state.
A key challenge in Q-learning is balancing exploration and exploitation. Exploration allows the

agent to try less visited actions to improve value estimates, while exploitation selects actions currently
believed to be optimal. The ε-greedy policy addresses this by choosing a random action with probability
ε, and with probability 1−ε, selecting argmax

a
Q(s, a). Under standard assumptions, such as decaying

α, bounded rewards, and sufficient exploration, Q-learning is guaranteed to converge to the optimal
action value function Q∗ with probability one [47]. Once Q∗ is obtained, the optimal policy is given
by:

π∗(s) = argmax
a

Q∗(s, a). (9)

The ε-greedy strategy [46] effectively balances exploration and exploitation by assigning a small
probability ε to the selection of random actions. With probability 1 − ε, the agent selects the action
that currently appears to be the best, while with probability ε, it explores other actions uniformly at
random. This policy can be formally defined as:

a =







argmax
a∈A

Q(s, a), with probability 1− ε,

randomly select a ∈ A, with probability ε.
(10)

This policy yields the highest expected cumulative reward over time.

4.3. IG algorithm with Q-learning

This work introduces Q-IG, an innovative variant of the traditional Iterated Greedy (IG) algorithm
tailored for the Permutation Flow Shop Scheduling Problem (PFSP), which incorporates a RL-inspired
operator selection mechanism during its perturbation phase. In contrast to the original IG (refer to
Algorithm 1), which consistently removes and reinserts a predetermined number of jobs d at each
iteration, thus maintaining a steady exploration rate regardless of search progress, Q-IG dynamically
adjusts its level of disruption by employing Q-learning to select from a set of perturbation operators.

Reinforcement learning is a structured paradigm in which an agent interacts with its environment by
taking actions, receiving feedback, and updating its policy to maximize long-term cumulative rewards.
In Q-IG, each application of a perturbation operator is considered an action, the current solution
represents the state, and the resulting change in the objective function (typically the makespan) serves
as the reward. After each perturbation, the Q-table is updated accordingly, ensuring that future
operator selections balance between exploiting high-reward actions and exploring less frequently used
alternatives.

Figure 2 presents the overall Q-IG framework, which, similar to the canonical IG, is composed of
three primary phases: perturbation, local search, and acceptance. The key innovation (see Algorithm 2)
lies in the perturbation phase, where Q-learning is used to select from k different removal/reinsertion
operators. In more detail, a collection of varying values of d within the constructive heuristic is
interpreted as the set of actions A, defined as:

A = {1, 2, . . . , dmax}, (10)

where dmax represents the maximum number of jobs that can be removed during the destruction phase.
The motivation behind exploring different values of d is to establish a diverse set of perturbation
operators, each with varying degrees of exploration intensity. As the value of d increases, a larger
portion of the solution is disrupted by removing and reinserting more jobs, thereby enhancing the
algorithm’s ability to escape local optima through more aggressive search diversification. Following
the destruction step, a partial solution is re-optimized using the same insertion-based local search
method adopted in the standard IG.
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Algorithm 2 Q-IG: Q-learning-based Iterated Greedy Algorithm.

Require: ε ∈ R // Exploration rate

Require: β ∈ R // Epsilon decay factor

Require: α ∈ R // Learning rate

Require: γ ∈ R // Discount factor

Require: E ∈ N // Episode length

Require: η ∈ R // Improvement weight

Require: A // Set of possible actions (perturbation levels)
Ensure: Π∗ ∈ S(N) // Best solution found
1: Π← initialSolution()

2: Π← localSearch(Π)
3: Π∗ ← Π
4: Q← zero-initialized Q-table
5: s← 0
6: d← randomChoice(A)
7: while not terminationCriterion()
8: Cprev ← Cmax(Π)
9: C∗

prev
← Cmax(Π

∗)
10: C ← Cprev

11: C∗ ← C∗

prev

12: for e = 1 to E

13: D ← destruction(Π, d)
14: Π \D ← Π \D
15: Π \D ← localSearch(Π \D)
16: Π′ ← construction(Π \D,D)
17: Π′ ← localSearch(Π′)
18: if accept(Π′, Π) then

19: Π← Π′

20: C ← min(C,Cmax(Π))
21: if better(Π′, Π∗) then

22: Π∗ ← Π′

23: C∗ ← Cmax(Π
∗)

24: (Q, s, d)← Q-learning(Cprev, C
∗

prev
, C, C∗, ε, α, γ, β, η, A, s, d)

25: return Π∗

Fig. 2. The methodology of the suggested Q-IG algorithm.
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The Q-IG algorithm is initialized with a solution generated by the Nawaz–Enscore–Ham (NEH)
heuristic, a well-known and effective constructive method for PFSP. During both the reconstruction
and local search phases, tie-breaking is handled using the Fernandez–Viagas and Framinan rule, which
selects the job that minimizes cumulative idle time. By integrating Q-learning-based adaptive pertur-
bation and established construction strategies, Q-IG dynamically modulates its exploration intensity
and demonstrates increased capability in escaping local optima and improving scheduling performance.

5. Experimental evaluation

The implementation of all algorithms was carried out using MATLAB R2024b, and executed on a
personal computer equipped with an Intel Core i7-10700 @ 2.90 GHz CPU and 16 GB of RAM. To
guarantee an equitable and consistent assessment, each instance was assigned a maximum computa-
tional duration of 3 600 s. The quality of the solutions was evaluated using the percentage deviation
(PD) metric, which is defined as:

PD = Cmax−LB
LB

× 100, (11)

where Cmax represents the makespan obtained by the algorithm, and LB denotes the best-known
lower bound. This standardized scale-independent metric allows for performance comparison between
problem instances of different sizes and complexities.

Reinforcement learning-guided metaheuristic was tested on four well-established Taillard-based flow
shop datasets that incorporate sequence-dependent setup times (SDST). These datasets are publicly
available at: http://soa.iti.es/problem-instances. Each dataset is defined by the maximum ratio
between the setup time and the processing time, as follows:
— SDST10: Setup times limited to 10% of the original maximum processing time;
— SDST50: Setup times limited to 50%;
— SDST100: Setup configurations limited to 100%;
— SDST125: Setup configurations limited to 125%.

The algorithm applies an ε-greedy policy to select among a set of perturbation operators: with a
probability of ε, the agent performs exploratory actions, whereas with a probability of 1−ε, it exploits
the currently most effective operator. A preliminary parameter tuning procedure was performed using
grid search, yielding the following configuration:
— Exploration rate: ε = 0.80;
— Decay factor of exploration: β = 0.996;
— Learning rate for Q-value updates: α = 0.60;
— Discount factor for future rewards: γ = 0.80;
— Episode length: E = 6 perturbation steps;
— Balance weight for local/global improvement: η = 0.30.

This configuration was consistently applied in all experimental runs. The computational results
for instances with fewer than 100 jobs are presented in Table 2, which reports both the absolute
makespan values (Cmax) and the corresponding PD values. In addition, the average standard deviations
are included to assess the robustness and stability of the algorithm in multiple trials. These results
provide a comprehensive perspective on the effectiveness of the proposed approach in varying instance
complexities and SDST intensities.

The comparative performance of the iterated greedy (IG) algorithm and the proposed Q-learning-
enhanced iterated greedy (Q-IG) algorithm is presented in Table 2, which encompasses 40 bench-
mark instances of the permutation flow shop scheduling problem with sequence-dependent setup times
(PFSP-SDST). The instances are grouped into four categories SDST10, SDST50, SDST100, and
SDST125 based on the relative dominance of setup times with respect to processing times.

Across all instance categories, Q-IG consistently outperforms the classical IG in terms of percent-
age deviation (PD) from the known lower bounds. This improvement highlights the effectiveness of
reinforcement learning in adaptively controlling the strength of the disturbance, thus enhancing both
the exploratory and exploitative capabilities of the search process.
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Table 2. Results of IG and Q-IG on 40 benchmark instances of the PFSP-SDST.

Set Ins n×m LB
IG Q-IG

Set Ins n×m LB
IG Q-IG

Cmax PD Cmax PD Cmax PD Cmax PD

SDST10

ta001 20×5 1330 1369 2.93 1360 2.26

SDST50

ta011 20×10 2009 2065 2.79 2045 1.79

ta002 20×5 1401 1424 1.64 1413 0.86 ta012 20×10 2065 2112 2.28 2089 1.16

ta003 20×5 1161 1206 3.88 1205 3.79 ta013 20×10 1897 1948 2.69 1936 2.06

ta004 20×5 1370 1421 3.72 1381 0.80 ta014 20×10 1794 1844 2.79 1832 2.12

ta005 20×5 1303 1329 2.00 1316 1.00 ta015 20×10 1842 1889 2.55 1877 1.90

ta006 20×5 1269 1311 3.31 1278 0.71 ta016 20×10 1816 1868 2.86 1851 1.93

ta007 20×5 1294 1328 2.63 1301 0.54 ta017 20×10 1858 1918 3.23 1896 2.05

ta008 20×5 1282 1301 1.48 1292 0.78 ta018 20×10 1962 2022 3.06 2005 2.19

ta009 20×5 1313 1360 3.58 1315 0.15 ta019 20×10 1985 2045 3.02 2016 1.56

ta010 20×5 1178 1198 1.70 1182 0.34 ta020 20×10 2013 2067 2.68 2047 1.69

Average 3.21 2.69 Average 3.67 2.74

SDST100

ta031 50×5 3893 4028 3.47 3973 2.05

SDST125

ta041 50×10 5275 5532 4.87 5530 4.83

ta032 50×5 4056 4239 4.51 4205 3.67 ta042 50×10 5177 5397 4.25 5328 2.92

ta033 50×5 3900 4217 8.13 4192 7.49 ta043 50×10 5193 5431 4.58 5401 4.01

ta034 50×5 4020 4302 7.01 4278 6.42 ta044 50×10 5286 5463 3.35 5410 2.35

ta035 50×5 4014 4296 7.03 4184 4.24 ta045 50×10 5236 5456 4.20 5406 3.25

ta036 50×5 4073 4319 6.04 4204 3.22 ta046 50×10 5262 5479 4.12 5402 2.66

ta037 50×5 3999 4214 5.38 4195 4.90 ta047 50×10 5340 5537 3.69 5509 3.16

ta038 50×5 3966 4187 5.57 4063 2.45 ta048 50×10 5317 5508 3.59 5498 3.40

ta039 50×5 3808 4102 7.72 4005 5.17 ta049 50×10 5194 5359 3.18 5318 2.39

ta040 50×5 4022 4322 7.46 4222 4.97 ta050 50×10 5334 5524 3.56 5456 2.29

Average 6.23 4.46 Average 3.94 3.13
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SDST10 and SDST50 (20-job instances). For the moderately complex SDST10 and SDST50
sets, Q-IG achieves notable gains over IG. Specifically:
— The average PD for SDST10 is reduced from 3.21% (IG) to 2.69% (Q-IG).
— In SDST50, the PD decreases from 3.67% to 2.74%, representing an average improvement of ap-

proximately one percentage point.

These gains can be primarily attributed to the reinforcement learning mechanism, which dynam-
ically selects perturbation operators based on their historical impact on the quality of the solution.
Since these smaller instances allow for more iteration cycles within the 3 600-second time limit, the
algorithm has more opportunities to refine its policies and converge toward high-quality solutions.

SDST100 and SDST125 (50-job instances). The performance gap between IG and Q-IG
becomes more pronounced as the size of the instance and the complexity of the setup times increase:
— In SDST100, the average PD decreases from 6.23% (IG) to 4.46% (Q-IG), resulting in an improve-

ment of nearly 1.8 percentage points.
— In SDST125, the average PD is reduced from 3.94% to 3.13%, suggesting that Q-IG offers more

stable and efficient convergence even with greater dominance of setup time.

6.23

4.46

3.94

3.13

2.74

3.67

2.69

3.21

0

1

2

3

4

5

6

SDST10 SDST50 SDST100 SDST125

Benchmark Set

A
v
e
ra

g
e
 P

D
 (

%
)

Algorithm
IG_PD

OIG_PD

Fig. 3. Average PD comparison of IG vs Q-IG
on benchmark sets.

These results confirm that Q-IG is capa-
ble of maintaining high-quality solutions across
a broad range of problem complexities. The
learned operator-selection policy enables the al-
gorithm to adapt its behavior based on the cur-
rent state of the search and the effectiveness of
previous perturbations, thus enhancing its ro-
bustness and scalability.

Figure 3 illustrates that the Q-IG algorithm
consistently attains lower average percentage
deviation (PD) values compared to the clas-
sical IG in all PFSP-SDST benchmark sets.
The improvements are modest for SDST10 and

SDST50, whereas they become significant in more complex cases like SDST100 (from 6.23% to 4.46%)
and SDST125. The findings indicate that Q-IG delivers superior solution quality, especially in complex
scheduling scenarios characterized by significant setup-time variability.

6. Conclusion and future work

This study presents a Q-learning-enhanced variant of the iterated greedy algorithm (IG), referred to
as Q-IG, for solving the permutation flow shop scheduling problem with sequence-dependent setup
times (PFSP-SDST). By integrating a reinforcement learning mechanism into the perturbation phase,
the proposed Q-IG algorithm dynamically adapts the perturbation size based on previous search per-
formance, thereby enabling a more effective exploration–exploitation trade-off. Extensive experiments
conducted on 40 benchmark instances demonstrate that Q-IG consistently outperforms the classical
IG in terms of percentage deviation (PD) from the best-known lower bounds. The performance gains
are particularly pronounced for larger and more complex instances, such as those in the SDST100 and
SDST125 categories, highlighting the robustness and scalability of the proposed approach. Overall,
the results confirm that the use of Q-learning to guide perturbation operator selection constitutes an
effective enhancement for adaptive metaheuristic design in complex scheduling environments.

Future research may explore several promising directions:
— Extending the Q-IG framework to multi-objective or stochastic variants of the PFSP.
— Investigating alternative reinforcement learning paradigms, such as deep Q-networks or policy gra-

dient methods.
— Applying the proposed Q-IG approach to other combinatorial optimization problems, including

job-shop, open-shop, or vehicle routing problems.
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— Enhancing the learning mechanism by incorporating state representations based on solution features
or search history to improve generalization and learning efficiency.

In summary, this work provides strong evidence that hybridizing metaheuristics with learning-
based decision-making mechanisms is a promising strategy for tackling large-scale and highly complex
scheduling problems.
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Iтерацiйний жадiбний алгоритм, що використовує механiзм
Q-навчання, для розв’язання задачi планування потокового

виробництва з фiксованим порядком завдань та часом
налаштування, залежним вiд послiдовностi

Месмар К.1, Леббар М.1, Аллалi К.2

1Дослiдницька група ROSDM, LMAID – Лабораторiя прикладної математики
та бiзнес-аналiтики, ENSMR Рабат, Марокко

2Лабораторiя математики, iнформатики та застосувань,
FST Мохаммедiя, Унiверситет Хасана II, Марокко

Ця стаття пропонує новий гiбридний фреймворк, Q-IG, для розв’язання задачi пла-
нування потокового виробництва з фiксованим порядком завдань та часом налашту-
вання, залежним вiд послiдовностi (PFSP-SDST). Нещодавнi досягнення у методах,
заснованих на навчаннi, демонструють значний потенцiал у вирiшеннi задач плану-
вання потокового виробництва, однак вони часто стикаються з проблемою величез-
ного простору розв’язкiв та складнiстю розробки ефективних функцiй винагороди.
Щоб подолати цi виклики, Q-IG iнтегрує iтерацiйну жадiбну метаевристику (IG) iз
Q-навчанням. Алгоритм розпочинає свою роботу iз застосування евристики Наваза–
Енскора–Гама (NEH) для генерацiї високоякiсних початкових рiшень. Протягом кож-
ної iтерацiї IG розклади частково руйнуються та реконструюються, а Q-навчання ви-
користовується для спрямування вибору сусiднiх крокiв пошуку, якi, як очiкується,
мiнiмiзують загальну тривалiсть виконання. Оцiнено як автономний IG, так i гiбрид
Q-IG на еталонному наборi задач Таїлларда, вимiрюючи продуктивнiсть через вiдно-
сне вiдхилення у вiдсотках вiд найкращої вiдомої тривалостi виконання. Результати
демонструють, що Q-IG перевершує своїх конкурентiв, пiдтверджуючи його ефектив-
нiсть для PFSP-SDST та пiдкреслюючи перспективнiсть включення Q-навчання до
традицiйних метаевристичних пiдходiв.

Ключовi слова: iтерацiйний жадiбний метод; Q-навчання; задача планування по-
токового виробництва з фiксованим порядком завдань (PFSP); час налаштування,
залежний вiд послiдовностi (SDST); тривалiсть виконання.
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