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ROBUST IMAGE MATCHING METHOD FOR UAV AGRICULTURAL IMAGES USING SIFT
AND ORB

This study investigates robust keypoint detection and geometric image matching in high-resolution UAV imagery of
agricultural fields — an essential component for precision farming, crop monitoring, yield prediction, and automated field
boundary mapping. While unmanned aerial vehicle (UAV) systems provide high spatial resolution and flexibility, aligning
multiple images into coherent mosaics remains a technical challenge, particularly in agricultural settings where repetitive
structures, low texture, and illumination variations are prevalent. Feature-based approaches like ORB and SIFT have been
widely adopted in remote sensing and photogrammetry, yet their effectiveness in such field-specific conditions is still
insufficiently characterized. This paper aims to fill that gap by evaluating both methods under controlled scenarios using
UAYV images captured at two altitudes, employing Lowe’s ratio test and RANSAC-based homography estimation for
validation.

ORB, a lightweight algorithm based on FAST keypoints and BRIEF descriptors, was tested under three configurations
varying the number of features, pyramid levels, and scale factors. The results reveal that ORB struggles to extract reliable
features in low-contrast or repetitive farmland scenes, often yielding insufficient inliers despite parameter optimization.
SIFT, on the other hand, utilizes multi-octave scale-space analysis and gradient-based descriptors to detect stable, rotation-
and scale-invariant keypoints. A comprehensive grid search was conducted to fine-tune SIFT’s n_features, ratio_threshold,
and ransac_threshold, resulting in a configuration that achieved 100% inlier ratio and reduced false matches significantly.

The findings highlight SIFT’s superior robustness and reliability in complex agricultural image alignment tasks.
Despite its higher computational cost, its descriptive power ensures accurate registration, especially in structurally
repetitive or low-texture environments. This study contributes practical insights into algorithmic trade-offs between
efficiency and accuracy, and offers a validated SIFT+RANSAC pipeline with tuning guidelines for UAV-based
agricultural mosaicking. These results may support future hybrid solutions that integrate classical and deep learning-based

feature detectors for scalable, field-ready applications.
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Introduction

In recent years, agricultural imagery has emerged as a
critical resource for monitoring crop health, estimating
yields, and optimizing farm management practices. Sources
such as satellite data and unmanned aerial vehicle (UAV)
imagery allow farmers and researchers to capture high-
resolution views of large farmland areas, facilitating
precision agriculture techniques. By integrating these aerial
perspectives with ground-based observations, producers can
track crop growth, detect pest infestations, and identify water
stress zones more efficiently.

Moreover, reliably detecting and matching keypoints in
agricultural imagery is crucial when creating or restoring a
coherent map from multiple, partially overlapping pictures.
Image stitching — the process of merging numerous separate
views into a seamless larger mosaic — depends on identifying
robust feature correspondences across images. If keypoints
are poorly matched or altogether absent in repetitive or
uniform farmland regions, the final map can display visible
misalignments or gaps, reducing its utility in downstream

analyses. Thus, accurate keypoint extraction and matching
forms the backbone of stitching algorithms, enabling high-
quality mosaics that support more advanced agricultural
assessments.

A key challenge, however, lies in stitching or registering
multiple images acquired at different times, angles, or scales.
This task becomes particularly complex in agricultural
settings, where fields often exhibit repetitive textures (e.g.,
rows of crops, uniform planting patterns) and undergo
temporal changes such as shifting plant canopies or varying
soil conditions. These factors can significantly hinder
accurate image alignment, as traditional feature matching
algorithms may fail to distinguish between similar patterns or
adapt to structural changes. Robust, context-aware feature
matching strategies are therefore essential to improve image
registration reliability in such environments [1].

The research objectives are to test ORB and SIFT on
farmland images, compare their performance by accuracy
and efficiency, and define which approach is more robust for
creating agricultural mosaics.
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The object of this study is the process of detecting,
matching, and geometrically verifying keypoints in high-
resolution UAV imagery of farmland under varying scale and
viewpoint.

Subjects of this study are ORB and SIFT-based keypoint
detection methods, Lowe’s ratio-test matching method, and
RANSAC-based homography estimation method for
stitching high-resolution agricultural UAV pictures.

The purpose of the study is to identify a reliable pipeline
for aligning farmland images under challenging conditions.

To achieve the stated purpose, the following main
research tasks were identified:

1. Benchmark ORB and SIFT pipelines (with Lowe’s
ratio test and RANSAC) on a controlled UAV farmland
dataset at two altitudes, quantifying inlier ratio, false
matches, and runtime.

2. Select and validate the optimal configuration that
maximizes geometrically consistent correspondences and
stable homography estimation under low-texture, repetitive
field conditions.

The emphasis on RANSAC ensures a fair evaluation of
each method’s ability to reject outliers in scenes with
repetitive row structures or seasonal transformations. In
doing so, this research offers insights into which pipeline can
more reliably align images for downstream tasks such as
mosaic creation, change detection, or farm management
analyses.

Materials and methods. The study applied ORB, SIFT,
and RANSAC methods to UAV imagery to build an optimal
agricultural mosaic. SIFT is well-suited for aerial and
satellite images due to its invariance to scale, rotation, and
lighting, which ensures stable performance in environments
with repetitive patterns and varying viewpoints. It improves
keypoint localization and descriptor reliability in low-
contrast or periodic textures [2, 3].

However, SIFT’s high computational load limits its use
in real-time or low-power systems. As an efficient
alternative, ORB offers fast keypoint detection with binary
descriptors, making it suitable for constrained environments.
Though slightly less accurate in complex textures, ORB
performs effectively in structured scenes and excels where
speed is crucial [4].

The SIFT algorithm ensures robust keypoint detection
and matching under scale, rotation, and lighting changes by
following four key steps. It begins with detecting extrema in

scale-space using the Difference-of-Gaussians (DoG) method
[5]. Next, unstable or low-contrast points are filtered out to
retain only distinctive keypoints [6]. Orientation is then
assigned based on local gradients to achieve rotation
invariance [7]. Finally, each keypoint is described by a 128-
dimensional vector summarizing gradient patterns, enabling
reliable cross-image matching.
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Fig. 1. Scale-space construction and Difference of Gaussian (DoG)
generation in the SIFT algorithm

ORB builds on the FAST detector, which efficiently
finds corner-like keypoints. To achieve scale invariance,
FAST is applied across an image pyramid, while rotation
invariance is introduced by estimating keypoint orientation
via the intensity centroid method [8]. Since FAST may
produce unstable points, ORB filters and ranks them using
the Harris corner measure, retaining only the top N
keypoints for stability.

For description, ORB uses an improved version of
BRIEF, which generates compact binary descriptors
through intensity comparisons within image patches. These
descriptors are made rotation-invariant by aligning them
with each keypoint’s dominant orientation [8].

Robust feature matching is critical in image registration
tasks such as homography estimation, where a large number
of incorrect or noisy keypoint correspondences can severely
degrade transformation accuracy. The Random Sample
Consensus (RANSAC) algorithm is widely used to address
this issue by identifying and rejecting outliers in the set of
matched keypoints (Fig. 2).

Fig. 2. Core steps of the RANSAC algorithm (First step — observation data; Second step — model fitting; Third step — measure distance;

Fourth step — count inliers)
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RANSAC estimates transformation models (e. g,
homographies) by repeatedly sampling random subsets of
matched keypoints and evaluating each model by the number
of inliers — matches fitting the model within a set threshold.
The model with the most inliers is chosen, while outliers are
discarded, allowing accurate alignment even with many false
matches due to noise or repetitive textures [9].

This approach is particularly effective in UAV and
remote sensing imagery, where repeating patterns often
cause mismatches. RANSAC has proven reliable for tasks
like aerial mosaicking and terrain mapping, with recent
improvements enhancing its performance in high-outlier
conditions [10].

When applying SIFT or ORB to land-surface imagery,
such as farmland scenes with repetitive row patterns or
uniform fields, fine-tuning key algorithmic parameters
becomes crucial. In particular, three parameters: n_features,
n_levels, and scale factor. They play a dominant role in
determining how effectively keypoints are detected and
matched.

n_features parameter sets an upper limit on the number
of keypoints each detector will retain. In environments like
farmland, where large uniform areas can yield fewer
distinct corners or edges, raising n_features allows the

n_features = 500

n_features = 1500

algorithm to detect less obvious points of interest (Fig. 3).
However, excessively high values can increase runtime
without guaranteeing better matches, especially if the scene
is inherently uniform.

Both SIFT and ORB create a scale pyramid or multi-
level representation of the image. n_levels parameter
controls how many times the image is downscaled, thereby
dictating how thoroughly each algorithm explores different
scales. A higher n levels can detect smaller or larger
features more consistently, which is helpful if images
exhibit large-scale differences (e. g., photos taken at
different altitudes). In farmland scenarios, however, too
many levels might lead to detecting repetitive features
multiple times, increasing false matches [6, 11].

Scale factor parameter defines the downscale ratio
between consecutive pyramid levels. A smaller scale factor
(closer to 1.0) creates more finely spaced levels, aiding
detection of small scale changes but also increasing
runtime. A larger value (e. g., 1.2 or 1.3) coarsens the scale
steps, potentially skipping key subtle details in the land
surface. Striking the right balance here is especially
important when farmland images feature both large uniform
areas and smaller-scale structures, such as irrigation lines or
distinct crop row edges [2].

n_features = 3000
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Fig. 3. ORB keypoints with different features

For this study, we collected aerial photographs of
agricultural lands from the EOS Crop Monitoring Platfotrm
(https://crop—monitoring.eos.com) [12]. Overall, our
collection includes photos captured from altitudes of
approximately 500 meters and 50 meters above the land,
near the villages of Novoselivka and Cherniakiv. All
images were captured under similar lighting conditions to
minimize the impact of illumination variability on keypoint
detection and matching performance. Figs 4 and 5 present
examples of the collected images.

To improve the robustness of matching and reduce false
positives, Lowe’s ratio test is applied. This test compares
the distance of the closest match (d; ) with that of the
second-closest match (d, ). A match is considered reliable
only if the ratio d; /d, is below a certain threshold. This
helps eliminate ambiguous matches caused by repetitive
patterns or noise [5].

Analysis of recent research and publications. Core
studies in the field show that SIFT is a robust baseline for
keypoint detection and description in challenging scenes

800 1000 1200 0 200 400 600 800 1000 1200

due to its scale / rotation invariance and gradient-based
descriptors [5], with numerous photogrammetric and UAV
studies confirming its reliability for registration and
mosaicking tasks [6], [7], [11]. ORB was proposed as a
faster, binary alternative to SIFT / SURF, trading descriptor
richness for real-time performance via FAST corners and
BRIEF-like descriptors [2], [8], and has underpinned
efficient SLAM and mapping pipelines in resource-
constrained settings [13]. However, in low-texture,
repetitive agricultural patterns, SIFT typically yields higher
inlier ratios and more stable homographies, while ORB
requires careful tuning of feature counts and pyramid
parameters to avoid spurious matches or under-matching
[6], [11]. Extensions of SIFT (e. g., RI-SIFT) report
improved repeatability under geometric/photometric
changes [3], [14], and alternative detectors such as AKAZE
and BRISK offer additional speed-accuracy trade-offs in
nonlinear or binary spaces [15], [16]. Across studies,
Lowe’s ratio test combined with RANSAC remains the de
facto mechanism for suppressing false correspondences and
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enforcing geometric consistency during homography
estimation and registration [5], [9], [10]. Finally, emerging
learnable interest-point methods (e. g., SuperPoint) aim to
reconcile SIFT-like robustness with ORB-level efficiency,

suggesting hybrid or staged pipelines for near-real-time
UAV mosaicking in agriculture [17], while random search
provides a practical strategy for hyperparameter tuning
across detectors and matchers [18].

Fig. 4. Example of an image from an altitude of 500 meters

Fig. 5. Example of an image from an altitude of 50 meters

Research results and their discussion

Below are the Table 1 of hyperparameters of three
different versions of ORB models and their results, while
Fig. 7 shows an example of the agricultural land used:

In Fig. 6, the left side displays the full farmland scene,
while the right shows a cropped section of the same image. In
the first two ORB configurations, no valid inliers were found
due to the uniform fields and repetitive row patterns. The
limited number of keypoints, caused by fewer features and

coarse scale steps, led to ambiguous matches. A lenient ratio
threshold in the first model failed to improve results, while a
stricter one in the second removed too many candidates.

In contrast, the third model found correct matches by
allowing more keypoints (5,500), using a smaller scale
factor, and increasing pyramid levels. This finer multi-scale
setup captures subtle structural cues even in uniform textures.
A stricter 0.65 ratio threshold helped retain only confident
matches, enabling RANSAC to find consistent inliers and
achieve successful alignment despite field repetition

Table 1. Hyperparameters of three different versions of ORB models and their results

Version n_features scale_factor n_levels ratio_threshold
\%! 1000 1.2 8 0.75
V2 1000 1.2 8 0.65
V3 5500 1.1 20 0.65
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Fig. 6. Results of 3 versions of ORB models (V1 on the top, V2 in the middle, V3 in the bottom)

However, all three ORB configurations proved unable to
match the small, circled area in the farmland image (Fig. 7).

Our initial SIFT + RANSAC model used 1,000 features
and a 0.65 ratio threshold. Unlike ORB, SIFT doesn’t
require scaleFactor or n_levels, as it processes features
across multiple octaves. This makes it better suited for
detecting subtle structures in complex farmland imagery. In
the circled region, SIFT identified several low-contrast
keypoints missed by ORB, which passed RANSAC
validation. Despite their small number, these matches show
SIFT’s strength in low-texture, repetitive scenes. Fig. 8
presents the model’s result.

Although SIFT found four keypoints in the target
region, it missed some potential matches. To improve
detection of finer details, we performed a grid search over
SIFT’s hyperparameters. This method systematically tests

combinations of predefined values to find the most
effective configuration [18].

Below is the Table 2 of hyperparameter values that were
determined using Grid search.

Table 2. Table of hyperparameters and their values during grid

search for SIFT model
Parameter Possible values
n_features 500, 1000, 2000, 5000, 8000

ratio_threshold 0.55, 0.6, 0.65, 0.70, 0.75

ransac_threshold 2.0,3.0,5.0,10.0, 15.0

Grid search determined the best model with the
following parameters: n_features = 500, ratio_treshhold =
= (.55, ransac_threshold = 2.0. This model showed the
following results (Fig. 9, Fig. 10).
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Fig. 7. Result of ORB model with another pair of images

Fig. 8. Result of the first version of SIFT model

Fig. 9. Result of the best version of SIFT model (500 meters photo)
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Fig. 10. Result of the best version of SIFT model (50 meters photo)

In the 500-meter image, SIFT detected some valid
matches in low-contrast areas but missed others in uniform
patches. In the 50-meter image, it found multiple candidates,
yet RANSAC rejected them as outliers. This highlights
difficulties in matching small-scale features under strict
geometric models — valid points may be excluded if they
don’t align with the global homography. While SIFT reveals
matches missed by ORB, uniform textures and perspective
shifts still complicate final inlier selection.

Discussion of the research results. The experimental
results highlight distinct strengths and weaknesses of the
ORB and SIFT algorithms in processing UAV imagery of
agricultural fields. Three ORB configurations were tested by
varying key hyperparameters such as n_features,
scale factor, and n_levels. The first two models failed to
yield valid inliers due to the dominance of uniform textures
and repetitive structures in farmland imagery. The third
model, with increased feature count and finer scale
representation, achieved more reliable matches. However,
even this improved setup struggled to detect keypoints in
low-contrast, small-scale areas, demonstrating ORB’s
limitations in challenging rural scenes.

In contrast, the SIFT algorithm showed greater robustness
in handling complex and repetitive textures. The initial SIFT
+ RANSAC configuration successfully identified subtle
features in the same difficult image regions where ORB had
failed. Although only a few matches were found, they passed
RANSAC validation, indicating reliable keypoint detection
in uniform farmland environments. To further optimize
performance, a grid search was conducted across SIFT’s
n_features, ratio_threshold, and ransac_threshold, improving
its ability to detect finer details.

Even with optimization, SIFT faced challenges. In the
500-meter image, it detected some valid correspondences,
but missed others. At 50 meters, while more candidates were

found, RANSAC rejected many due to geometric
inconsistency. This underscores the trade-off between
descriptor sensitivity and model constraints in repetitive,
scale-variable environments. Despite these issues, SIFT
outperformed ORB overall in accuracy and reliability,
particularly in low-texture and structured farmland scenes.

To further validate the effectiveness of our optimized
pipelines, we compared their performance with results from
previous studies involving UAV-based image matching in
agricultural settings. For example, Dibs et al. (2016) [14]
reported an inlier ratio of approximately 81.3 % using their
refined RI-SIFT method on farmland UAV images. In
contrast, our optimized SIFT+RANSAC model achieved an
inlier ratio of 100.0 % while simultaneously reducing the
false match rate through a more conservative ratio threshold
(0.55) and refined RANSAC thresholding (2.0 pixels).

Scientific novelty of the obtained research results is that
the practical methodology for agricultural UAV mosaicking
was improved by codifying a validated SIFT+RANSAC
configuration and concise tuning rules.

The practical significance of the research results is that
the obtained results allow to build a structure for the
description and processing of images in the grayscale and
color images.

Conclusions

An optimized approach was proposed that integrates
two classical feature detection methods, ORB and SIFT,
with the geometric verification technique RANSAC. A
series of comparative experiments with different
hyperparameter settings were conducted to evaluate the
trade-offs between computational efficiency and matching
accuracy.

The analysis showed that ORB provides high speed and
efficiency, but its accuracy significantly decreases in scenes
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with uniform textures or repetitive crop patterns. Even
when adjusting parameters such as the number of detected
keypoints or scale factors, ORB struggled to maintain
robustness under farmland-specific conditions. In contrast,
SIFT demonstrated stronger performance in detecting fine-
grained, low-contrast features and proved more stable in
complex or repetitive agricultural scenes. Its scale and
rotation invariance, along with richer descriptors, allowed
more consistent alignment, although the computational cost
was higher.

The integration of RANSAC played a decisive role in
filtering spurious correspondences and ensuring geometric
consistency between images. However, the experiments also
highlighted the
particularly in cases of extreme uniformity or perspective
distortions. These results suggest that improvements may
hybrid  algorithms, = domain-specific
preprocessing, or incorporating modern, learning-based
descriptors such as SuperPoint.
the research confirmed that SIFT
more robust results than ORB for
agricultural image stitching, while RANSAC enhances
matching reliability. At the same time, future work should
focus on

limitations of existing approaches,

come from

In conclusion,
currently provides

lightweight, deep-learning-based keypoint
detectors that can achieve both efficiency and accuracy,

offering scalable solutions for precision agriculture.
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Kuiscoxuii nayionanvuuil ynieepcumem imeni Tapaca [llesuenxa, m. Kuig, Ykpaina

HAJIMHUN METO/1 3ICTABJIEHHA 30B5PAXKEHD /I CLJIbCHKOT'OCIIOJJAPCBKHUX
3HIMKIB 3 BIIJIA I3 BUKOPUCTAHHAM SIFT TA ORB

JlociipkeHO HaJiiiHe BHSBICHHS KJIFOYOBHUX TOYOK I TEOMETPUYHE 3iCTABJICHHS Y BHCOKOPO3IUIBHUX 300pakeHHSIX

CLIBCBKOTOCTIONAPCHKUX YTifb, oTpuManux 3 BITJIA. Lli naHi KpUTHYHO BaXKJIMBI JIJIsl MOHITOPHUHTY TOCIBIB, OI[IHFOBAHHS
BPOKAMHOCTI, KapTyBaHHS MEX IOJIB 1 HiATPUMAHHS pilleHb y TouHOMY 3emiiepoOctBi. ITonpu te, mo ORB i SIFT e

CTaHJapTOM AJs MacIITaOHOro Mo3aikyBaHHA Ta peecTpauii 300pakeHb, IXHIO MHOBEIIHKY B HU3bKOTEKCTYPHUX,

IIOBTOPIOBAHUX CIHEHAX BCC MI€ HCAOCTATHHBO OXapaKTCPU30BaHO IS Hﬁ,Z[ifIHOFO IMPaKTUIHOI'0 3aCTOCYBAaHHA.

ChopMOBaHO KOHTPOJHOBAHY EKCIEPHUMEHTAILHY MOJICNb 13 BUKOPUCTAHHSIM BHCOKOPO3AUILHHX aepo(OTO3HIMKIB Ha

JBOX BHUcoTaxX. KoxKHY mapy “IeTeKTop — AECKPUNTOp” MOEJHAHO i3 TeCTOM BigHoueHHs Lowe Ta nepeBipkoro romorpadii
Ha ocHOBI RANSAC, 11100 OLiHIOBaTH T€OMETPUYHO Y3TO/KCHI Bi/IIIOBIIHOCTI.
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Crouatky mnpoanaiizoano rineprapamerpu ORB (n_features, scale factor, n_levels, ratio thresholds). Ha arpapanx
300paxkeHHssx ORB BusiBIsie Bpa3muBOCTI: 0OMEKeHA PO3PI3HIOBaJIbHA 3IATHICTH B OJHOPIMHHX TEKCTYpax CIPUYHHSIE
HEO/IHO3HAYHI BIANOBIZIHOCTI; HU3bKI 3HaueHHs ratio thresholds mpomyckatore xuOHI 30iru, ski RANSAC Binkunae;
BHCOKI 3HaueHHs ratio thresholds HacTinbkM 3MEHIIYIOTH MHOXHHY KaHIUIATiB, L0 30iriB 3aJMINAETHCS 3aMajo AL
crifikoi Mogeni. Jocrimreno takoxk SIFT. Horo mpexcraneHus y mpoctopi MacIITabiB Kpalie BiITBOPIOE TOHK, HI3BKO-
KOHTpacTHi cTpykTypu mojsi. [lepeOupaHHs MO CIiTIII HaJ KUIBKICTIO O3HakK, ratio thresholds ta momyckamu RANSAC
BU3HAUYWIO e(PEeKTHBHY KOH(QIrypariito, 0 MOCIiJOBHO BiJHOBIIOBaJa IeOMETPUYHO BaTiJHI BiIMOBiZHOCTI Ha 000X
Bucorax. Ha pisnux Bucorax SIFT BusBisie TOHKI, BiITBOpIoBaHi 03Haky, ski ORB mpomyckae, popmyroun 4ucTi Habopu
36iriB, Toai sk RANSAC Bijicit0€ 3aJIMIIKOBI HEBIIMOBIIHOCTI 3 OISy HAa BiJIMIHHOCTI B MEPCIEKTHBI Ta JIOKAIbHE
reOMEeTPHYHE 3MILIeHHS TOYOK 300paKeHHI.

OnrumizoBana 3B’s3ka SIFTHRANSAC nocsrna yactku 36iriB 100 % 1 3MeHIIMIA KiIbKICTh XMOHHUX CHPalIOBaHb.
ORB 3anummaBcsi Bpa3aMBUM Ha HU3BKOTEKCTYPHHX IUITHKAaX. METOMONOTIYHO IOCIHIKEHHS IOKa3ye, SK KITBKICTh
03HaK, OararoMacitadHe ONpaIfoBaHHs Ta OPOTH NEPEBIPKH BILTUBAIOTH Ha PE3YIbTAaTH B arpapHUX 300pasKeHHSIX.

Knruosi cnosa: Busisnenns kiodoBux To4ok, ORB, SIFT, RANSAC, 3icraBieHHs 300paKeHb.
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