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DYNAMIC MUTATION RATE CONTROL IN GENETIC ALGORITHMS USING CONVERGENCE
AND DIVERSITY METRICS

Developed a dynamic mutation rate control strategy using convergence and diversity metrics, which enables the
mutation probability to adapt automatically to the current convergence state. The strategy increases the mutation rate when
population convergence increases and diversity decreases, thereby promoting exploration and enhancing genetic diversity.
When diversity is maintained at a sufficient level, the mutation rate decreases, thereby preventing unnecessary disruption
of evolved solutions. Conducted experiments on benchmark functions with different fitness landscapes, including
unimodal, multimodal, and deceptive functions, to validate the effectiveness of the proposed approach. Established the
Composite Convergence Score (CCS) as a unified measure integrating the most informative metrics into a normalized
indicator of convergence dynamics. Correlation analysis and machine learning-based evaluation confirmed that the CCS
can reliably identify generations approaching stagnation, and the dynamic mutation rate strategy guided by the CCS
significantly improves optimization performance compared to approaches that use a static mutation rate.

Investigated results revealed that CCS-guided mutation control consistently prevents premature convergence,
maintains higher population diversity throughout the evolutionary process, accelerates convergence toward global optima,
and improves the overall success rate of reaching desired solutions. The approach reduces the need for manual tuning of
mutation parameters, as the CCS automatically balances exploration and exploitation. Also, the methodology allows GA
frameworks to automatically update evolutionary parameters.

The research demonstrates that the CCS framework can serve as a generalizable tool for adaptive control in
evolutionary computation. It provides a foundation for future development of self-adapting genetic algorithms and may be
extended to multi-objective, high-dimensional, or real-world optimization problems, including engineering design,
logistics, scheduling, and neural architecture search. The study confirms that integrating quantitative convergence
monitoring with dynamic parameter adjustment substantially improves GA reliability, robustness, and solution quality,

offering significant opportunities for advancing both theoretical and practical aspects of evolutionary optimization.
Keywords: premature convergence, convergence detection, population diversity, adaptive mutation, evolutionary

computation.

Introduction

The efficiency of GA is highly dependent on their
convergence dynamics and the ability
population diversity. While rapid convergence accelerates
the search for optimal solutions, it also increases the risk of
falling in local optima — a phenomenon known as
premature convergence, which remains one of the key
challenges in evolutionary computation.

Although numerous techniques have been proposed to
mitigate the effects of premature convergence — including
adaptive operator control, niching techniques etc. — it is
important to have a deeper, quantitative understanding of
convergence dynamics before introducing new algorithms.
Without such understanding, the field risks being
overwhelmed with heuristic methods that remain poorly
explained and difficult to generalize. A systematic analysis
of convergence can uncover early indicators of stagnation,
providing a foundation for adaptive strategies that balance

to maintain

exploration and exploitation throughout the optimization
process and are based on theoretical argumentation.

Object of the study — convergence dynamics during the
optimization process in genetic algorithms.

Subject of the study — statistical metrics of GA
populations and their use in mitigating the convergence
effects for dynamic mutation rate control.

Aim of the study — to develop and validate a Composite
Convergence Score (CCS) that quantitatively measures GA
convergence and population diversity, enabling dynamic
mutation rate strategies to mitigate premature convergence
and improve solution quality across different optimization
problems.

To achieve the set aim, the following tasks were
defined:

1. Investigate statistical metrics gathered during GA
runs and evaluate whether they can serve as reliable
predictors of convergence.

2. Identify the subset of metrics with the highest
predictive power for premature convergence detection.
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3. Design a composite convergence score (CCS) based
on the selected metrics and validate its ability to quantify
the degree of convergence.

4. Develop a dynamic mutation rate control strategy
based on CCS and evaluate its effectiveness in avoiding
premature convergence and improving solution quality.

Analysis of recent research and publications

The effectiveness of genetic algorithms (GAs) depends
crucially on the balance between exploration and exploitation.
Recent studies have emphasized that maintaining population
diversity and adaptively controlling genetic operators are key
to achieving robust and efficient search behavior.

A general overview of the development of GAs and their
application trends is presented in [1], which outlines how the
design of genetic operators, selection schemes, and mutation
control directly affects convergence behavior. The authors
highlight that maintaining diversity throughout evolution is
essential to avoid stagnation and local optima. Similarly, [2]
provides a comparative review of techniques that mitigate
premature convergence, categorizing them into diversity-
preserving, adaptive, and hybrid strategies. The review identifies
population diversity and selective pressure as primary factors of
algorithmic performance and explains the need for quantitative
convergence monitoring instead of purely heuristic adjustments.

The importance of diversity-preserving mechanisms for
global exploration is further demonstrated in [3]. Through both
theoretical and empirical analysis, it was shown that
algorithms without diversification behave similarly to simple
hill-climbers, rapidly converging to local optima. Mechanisms
such as fitness sharing and deterministic crowding, however,
enable populations to locate multiple global optima efficiently.
These findings confirm that explicit diversity maintenance is
necessary for preventing convergence collapse and sustaining
exploration across the search space.

Further insights into balancing exploration and exploitation
are provided in [4], which discusses recent advancements in
hybrid and self-adaptive GAs integrating diversity metrics into
parameter control. The authors emphasize that the future of GA
optimization lies in self-regulating control mechanisms guided
by convergence indicators derived from population statistics,
fitness entropy, and genotypic or phenotypic diversity.

The theoretical basis for analyzing convergence dynamics
was established in [5], where the degree of population
diversity was introduced as a measurable parameter within a
Markov chain framework. The study proved that, in the
absence of mutation, the population diversity inevitably
converges to zero. Furthermore, an explicit expression for the
probability of allele loss was derived, revealing how
population size, mutation rate, and selection intensity together
influence convergence. This analytical foundation provides a
rigorous context for adaptive mechanisms that modify
mutation and population parameters in response to measured
diversity indicators.

From an algorithmic design perspective, several modern
studies have proposed hybrid or adaptive operators that
explicitly integrate diversity information into evolutionary

processes. The Fitness and Diversity Ranking-Based
Differential Evolution (FDDE) algorithm [6] combines both
fitness and diversity rankings to assign each individual an
adaptive role in the mutation process. This approach improves
the balance between global exploration and local refinement,
outperforming established DE variants (e. g., SHADE, L-
SHADE, jDE) on standard CEC benchmark suites. Similarly,
the Two-Stage Differential Evolution (TDE) algorithm [7]
introduces historical-solution-based and inferior-solution-
based mutation phases, together with a fitness-independent
parameter control, enhancing adaptability under various fitness
landscape conditions.

Another contribution to adaptive selection is the Fitness-
Distance Balance (FDB) method [8], which introduces a new
criterion that simultaneously considers the fitness value of
individuals and their distance from the best-known solutions.
This method provides more stable guidance for search
direction and effectively mitigates premature convergence by
promoting candidates that contribute both quality and
diversity. Experimental validation across 90 benchmark
functions demonstrated the robustness of the FDB mechanism
across unimodal, multimodal, and composition functions.

Adaptive GA frameworks also continue to evolve. The
improved GA for the flexible job shop scheduling problem
(FISP) proposed in [9] combines adaptive mutation
probability, artificial pairing crossover, and weighted
neighborhood search to dynamically adjust exploration
strength based on population state and individual fitness. These
mechanisms significantly enhanced performance under
complex scheduling constraints, confirming that adaptive
operator control can generalize across domains.

In our previous work [10], speciation was studied as a
mechanism for maintaining diversity and improving the
robustness of optimization in problems with suboptimal
solutions. The results showed that speciation increased
population diversity, indicated by higher fitness variance, and
enhanced convergence toward global optima, confirming that
separating similar individuals promotes exploration and
prevents premature convergence.

Finally, [11] demonstrates through the Split-Based
Selection (SBS) mechanism that maintaining a balanced
selection pressure between high- and low-fitness individuals
improves global search capability. The SBS approach
distributes  selection weights dynamically across ranked
subsets of the population, thus maintaining population
heterogeneity and reducing the risk of premature convergence.

Research results and their discussion

Investigation of Statistical Metrics

A classical genetic algorithm was applied to a series of
benchmark functions representing different fitness
landscapes, including unimodal, multimodal, and deceptive
functions.

Each function was optimized under the following GA
configuration:

e Population size: 50.
e Generations: 30.
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Selection: Tournament selection (size = 3).
Crossover: Uniform crossover (crossover rate = 0.5).
Mutation: Bit-flip mutation (mutation rate = 0.05).
Encoding: Gray code.

Each experiment was repeated 20 times per function.
For every generation, the following metrics were
recorded:

Standard deviation of fitness values.

e Fitness variance.

e Fitness entropy (Shannon entropy):

N
H== 2 v jox(») ()

where p; is the normalized frequency of the i-th fitness
value.

® Average Pairwise Distance:
-1 N

2 N
p=—""% D dp,r)

N(N=-1) =15+
where d(pi, pj)

is the Hamming distance between
chromosomes.

e Number of individuals with unique fitness values
(phenotypic diversity).

e Number of individuals with unique chromosomes
(genotypic diversity);

Additionally, the generation of the last improvement in
best fitness was recorded for each run. Correlation analysis and
a Random Forest classifier were used to identify metrics with
the strongest predictive capacity for convergence detection.
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Fig. 1. Correlation heatmap for Gaussian benchmark function

The results reveal strong negative correlations between
convergence generation and the metrics of fitness entropy,
unique fitness values, unique chromosomes, and average
pairwise distance (Fig. 1). In other words, as these diversity-
related measures decline, the algorithm approaches stagnation.
The random forest model confirmed their high predictive
power, achieving approximately 90 % accuracy in classifying
converged vs. non-converged generations across all test
functions (Table 1).

Design and Evaluation of the Composite Convergence
Score (CCS)

The most important metrics were integrated into a
Composite Convergence Score (CCS), designed as a
normalized weighted sum of the selected metrics:

k k
CCS=Z ® ., 2“’,':1 3)

i=1 i=1
where j;  denotes the normalized value of the i-th metric and
1
W, its respective weight.

The CCS ranges from 0 (maximal diversity) to 1 (complete
convergence).

Repeated GA simulations revealed consistent CCS
dynamics across different test functions. Fig. 2 illustrates the
dynamics of convergence metrics for one of the benchmark
functions.

As optimization progresses, the CCS steadily increases,
reaching a critical threshold (= 0.38) at which the last
improvement in best fitness occurs. Beyond this point, the
CCS plateaus between 0.5-0.6, marking the onset of
population stagnation.
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Table 1. Accuracy and importance of convergence-predictive metrics. FE — fitness entropy, APD — average pairwise distance,
UF — number of individuals with unique fitness values, UC — number of individuals with unique chromosomes

Function f (x) Accuracy Most important features
o 096 FE (0.24), UF (0.2),
APD (0.19), UC (0.14)
2 095 APD (0.23), FE (0.19),
e ' UF (0.15), UC (0.13)
o APD (0.23), FE (0.2),
sin( x) 0-95 UC (0.14), UF (0.14)
: sin(3x)  sin(5x) FE (0.23), APD (0.19),
MY 0.94 UF (0.14), UC (0.14)
APD (0.23), FE (0.21),
— [x2= 10cos( 27x) + 10] 0.93 UF (0.15), UC (0.11)
e - APD (0.21), FE (0.19),
— - sin( v Ix |) 0.87 UF (0.1), UC (0.09)
~ APD (0.25), FE (0.2),
Il 0.93 UF (0.18), UC (0.11)
x, {0£x<0.3}
UF (0.19), FE (0.17),
3—(x—0.3), {0.3<x<0. .
0.3-(x-0.3), {0.3<x<0.6} 0.96 APD (0.15), UC (0.1)
0.1-x, (0.6<x< 1)

Convergence metrics

Value

041

024

004

—— Unigue Fitness Count
Unigue Chromesome Count
—— Pairwise Distance
- Fitness Entropy
— Convergence Score
== Last Best Fitness Observed

. . . sin( 3x
Fig. 2. Convergence metrics dynamics for function sin( x) + fa)

with unique chromosome count

Table 2 summarizes CCS thresholds and plateau values
across benchmark functions. Convergence consistently
began within 0.29-0.41, confirming CCS as a robust early
indicator of convergence.

We also need to note, that received scores of gathered
metrics will differ drastically if different configuration is
used: with higher mutation rates the diversity is maintained
longer, although doesn’t allow to achieve desired solution.
The population size and crossover also can interfere with
the results. Here we aimed to show the overall dynamics of
metrics that indicate population diversity and convergence.

Dynamic mutation rate control

Based on the CCS, a dynamic mutation rate control
strategy was formulated:

sin( 5
+ sin( 5x) . All metrics normalized. Unique fitness count matches
5
= - . 4
Mt /'lmm+(/'lmax #mm) CCSI )

where g is a mutation rate at generation ¢, y . — base
1 min

(minimum) mutation rate, — maximum allowable

HIax
mutation rate, CCS ,~ CCS at generation .

This mechanism adaptively increases mutation when the
population exhibits high convergence (high CCS), and
reduces it when diversity is sufficient (low CCS).

Experiments were conducted on the Schwefel function
(2 variables) with the initial population centered at (0, 0).
We compared our strategy with a classical algorithm
without any strategy applied.

1. No mutation control: fixed mutation rate resulted
either in premature convergence (for low rates) or instability
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(for high rates). For low rates: for a significant amount of
experiments the solutions stuck and local optimum and lost
diversity quickly. For high rates: the solution was able to get
close to the global optimum, but wasn’t able to achieve the
desired precision. Although, the right picked mutation rate
helped to achieve a higher score of successful results.

2. CCS-based dynamic mutation: mutation adjusted
automatically based on CCS, enabling adaptive balance
between exploration and exploitation. This approach

achieved global optimum in 95 % of runs, outperforming
both other strategies in convergence speed and precision. It
should also be noted that tuning the mutation rate becomes
easier, as only the minimum and maximum allowable
ranges need to be specified, while the actual rate is adjusted
automatically according to the CCS. This strategy helps
maintain diversity, keeping the CCS at lower values and
UF, UC, and APD at higher levels compared to using a
static low mutation rate.

Table 2. Convergence scores for example functions

Function f ( x) Com./ergence score on laSt. fitmess Max convergence score value
improvement generation
—x2 0.36 0.5
e—*? 0.37 0.54
sin( x) 0.35 0.45
. sin( 3x) sin( 5x)
sin( x) + + T 0.38 0.53
—[x2= 10cos( 22x) + 10] 0.41 0.54
—x-sin(+/|x]) 0.29 034
— |x] 0.34 0.48
x, {0<x<0.3}
0.3-(x-0.3), {0.35x<0.6} 0.37 0.61
0.1-x, [0.6<x< 1)

Table 3. Comparison of mutation control strategies on the Schwefel function

. . . Percent of succeeded attempts,
Applied mutation strategy Configuration o P
0
Static low mutation rate Static mutation rate y=0.002 15
Static moderate mutation rate Static mutation rate i =0.035 75
Static high mutation rate Static mutation rate y =0.2 0
. . Min mutation rate s, =0.0001
Dynamic mutation rate based on fitness CCS . " _ 95
Max mutation rate # = 0.5

Discussion of the research results. The conducted
experiments demonstrated that convergence in genetic
algorithms can be detected and quantified through a
combination of diversity and entropy-based metrics. The
Composite Convergence Score (CCS), introduced in this
work, provided an indicator of convergence dynamics across
various benchmark functions. A consistent pattern was
observed — as population diversity decreased, CCS increased,
marking the transition to stagnation. The application of CCS
for dynamic mutation rate control allowed the mutation rate
to adjust automatically in response to the convergence state.
This strategy achieved better optimization stability and
precision compared to the fixed-rate approach. The results
confirmed that using convergence and diversity metrics in
mutation control can significantly improve the balance
between exploration and exploitation in evolutionary search
processes. These findings provide a data-driven basis for
designing self-adapting genetic algorithms with minimal
manual tuning of parameters.

Scientific Novelty of the Obtained Research Results —
for the first time, a Composite Convergence Score (CCS)
has been developed as a unified, normalized indicator that
integrates several statistical metrics — including fitness
entropy, average pairwise distance, and counts of unique
chromosomes and fitness values — to quantify the dynamics
of convergence and population diversity in genetic
algorithms. A new dynamic mutation rate control strategy
based on CCS was proposed, which adaptively modifies
mutation probability based on the current convergence state
of the population. This approach provides a quantitative
grounded mechanism for maintaining diversity and
preventing premature convergence.

Practical Significance of the Research Results — the
proposed CCS-based framework enables real-time
monitoring of convergence and allows for automatic update
of evolutionary parameters during optimization. This reduces
the need for manual parameter tuning and improves
algorithm performance in problems with complex,
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multimodal fitness landscapes. The developed method can be
applied in a wide range of domains where genetic algorithms
are used — including engineering design, logistics,
scheduling, and neural architecture search — providing robust
and reliable convergence toward global optima.

Conclusions

This study introduces the Composite Convergence Score
(CCS) — a unified, normalized metric for real-time
monitoring of convergence in genetic algorithms. By
combining entropy-based and diversity-based measures,
CCS provides a quantitative, interpretable indicator of
convergence dynamics.

Key findings:

® At certain thresholds of CCS can indicate the onset of
convergence across diverse benchmark functions and
loss of population diversity, thus meaning that fitness
improvements can no longer be achieved.

e (CC(CS-based mutation rate control effectively mitigates
premature convergence and improves global search
efficiency compared to methods with a static mutation
rate.

® The CCS framework offers a generalizable tool for
adaptive control of evolutionary parameters, enabling
principled interventions such as population restarts,
diversity injections, and adaptive operator tuning.

e Future work will focus on:

Refining metric weighting schemes to enhance
predictive accuracy.

e Evaluating CCS across
deceptive fitness landscapes.

e Extending the approach to multi-objective and
coevolutionary algorithms.

e Applying CCS-guided adaptation in real-world
optimization problems in engineering design,
logistics, and neural architecture search.

high-dimensional and

Overall, the proposed CCS provides a data-driven
foundation for understanding and controlling convergence
in evolutionary computation, bridging theoretical insights
with practical algorithmic advancements.

B. 0. Ilpeyens, P. 4. lllysap
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KEPYBAHHSA IMUHAMIYHOK HMOBIPHICTIO MYTAIIM Y TEHETUYHUX AJITOPUTMAX
HA OCHOBI IOKA3HHKIB 3rOPTAHHS TA PI3BHOMAHITTA MOIYJIALII

Po3pobiieHo cTpaTeriro KepyBaHHS TUHAMIYHOK HMOBIPHICTIO MyTaliii y reHetnunux anroputmax (I'A) Ha ocHOBI
MOKA3HHUKIB 3rOpTaHHS Ta PI3HOMAHITHOCTI momyisiii. MexaHi3M 30iblye HMOBIpHICT MyTallii 3i 3pOCTaHHIM
30KHOCTI MOMYJISIIIii Ta 3HMKCHHSAM T1 pi3HOMAHITHOCTI, CTHMYJIFOIOUM TIONIYK Ha HIMPIIIH 00JIacTi MOIIYKY, TOII SIK
3MEHIIEHHS MOBIPHOCTI MyTallii 3aCTOCOBYETbCS Y Pa3i AOCTAaTHbOI BapiaTHUBHOCTI, 3aro0irarou 3aiiBOMy MOPYIIECHHIO
€BOJIOLIIHO Bxke chopMOBaHUX pillicHb. BUKOHAHO €KCIEPUMEHTH Ha NPUKIAAHUX (GYHKLIAX 13 pi3HUMHU (QYHKIISIMU
[IPUCTOCOBAHOCTI, YPaxXOBYIOUM YHIMOJAJIbHI, MYJbTUMOAAIbHI Ta OMAHJIUBI (YHKII, AT HEPEeBIpKH €(PEKTUBHOCTI
3aIpOIIOHOBAHOrO MifX0Ay. BBeneHO y3aranbHEHUH MOKa3HUK — KOMIIO3UTHUH MOoKa3HUK 30DbkHOCTI (CCS), mo 06’eanye
HaliH(QOPMATUBHIIII METPUKU B HOPMAJIi30BaHUM 1HAMKATOp AUHAMiKU 30DkHOCTI. Kopemsuiiinuil anaii3 Ta OLiHIOBaHHS
Ha OCHOBI MALIMHHOTO HaB4YaHHS miaTBepauiy, 1o CCS HajiiiHO BU3HAYA€E MOKOJIHHSA, SKI HAOIMKAIOTHCS A0 CTarHaiii,

a cTpaTeris AuHaMiuHoi MyTanii, kepoBaHa CCS, iCTOTHO MiABHUIYE MPOIYKTUBHICTb ONTUMI3alii HOPIBHIHO 3 MifX0JaMu

31 CTATUYHOKO WMOBIPHICTIO MyTaIlild.
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3’s1coBaHoO, 1110 KOHTPOJb MyTalii Ha ocHOBI CCS mocmiioBHO 3amofirae nepeayacHii 301KHOCTI, MiATPUMY€E BHILU
PiBeHb PI3HOMAHITHOCTI HOMYJIALI{ IPOTATOM BCHOTO €BOJIIOLIMHOIO MpOLecy, NPUIIBUALIYE 301KHICTh 10 II00aIbHUX
ONTHMYMIB Ta MiABUINY€ 3arajJbHUM BiJICOTOK YCHILIHOTO NOCATHEHHs Oa’kaHuX pimeHs. Iligxin 3MeHIIye HeoOXinHICTh
PYYHOTO HaJlalITyBaHHs MapaMeTpiB MyTauii, ockimbkun CCS aBroMaTnyHO OajlaHCye MOLIYK Ha LIMPLIIH Ta BYXKYil
obnacTsax nouryky. Kpim toro, Mmetonosoris gae 3Mory ¢ppeiiMBopKaM reHeTHYHUX aJIrOPUTMiB aBTOMATUYHO OHOBIIIOBATH
€BOJIIOLIHHI MapameTpu.

Jocnimxenus neMoHcTpye, mo CCS Moske cIyryBaTH yHiBEepCaIbHUM IHCTPYMEHTOM JUISl aIallTUBHOTO YIPABIIHHS B
CBOJIIOLIIITHMX OOYHCIICHHSIX. BOHO CTBOPIOE OCHOBY IUIsl IOJAJBLIOTO PO3BHTKY CAMOHAJAIITOBYBAHMX T[CHETHYHHX
AITOPUTMIB Ta MOXe OyTH pO3IIMpeHe Ha OaraToKpuTepiayibHi, OaraToBUMIpHI a00 MPUKIAJHI 3a7a4i ONTHMI3allii,
30KpeMa IHKeHepHHUI JU3aiiH, JOTICTHKY, IUIAaHYBaHHS Ta MOIIYK HEHPOHHUX apXiTeKTyp. BcTaHOBIEHO, MIO iHTErpamis
KUTBKICHOTO MOHITOPUHTY 30DKHOCTI 13 JUHAMIYHMM PETYJIOBAaHHSIM [ApaMeTpiB 1CTOTHO IiJBUINYE HaAIWHICTD,
CTaOUIBHICTD Ta SIKICTh pilieHb ['A, BiIKpHBaIOYH BEJIUKI MOXKJIMBOCTI JIJISI PO3BUTKY SIK TEOPETUYHUX, TAK 1 MPAKTHUHHX
aCIIEKTIB €BOJIIOIIMHOT ONTUMI3aLi].

Kniwouosi cnoea: mepenvacHe 3ropTaHHs, BUSBICHHS 3TOPTaHHS, PI3HOMAHITTS IOMYJISALii, aJalTHBHA MyTallis,
€BOJTIOII{HI OOYHCIICHHSI.
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