IHOOPMALIIUHI CUCTEMMW TA TEXHONOTITI

(€0, @ ISSN 2707-1898 (print)
Q ISSN 2786-9172 (online)

© the authors

YKpaiHCbKUM XKypHan iHGopMaLinHUX TeXHONOTIN
Ukrainian Journal of Information Technology
http://science.lpnu.ua/uk/ujit

https://doi.org/10.23939/ujit2025.02.138

X Correspondence author

@ O.Y. Pitsun
o.pitsun@wunu.edu.ua

Article received 16.08.2025 p.
Article accepted 30.10.2025 p.
UDC 004.9

0.Y. Pitsun

West Ukrainian National University, Ternopil, Ukraine

ARCHITECTURE FOR HIGH-LOAD WEB RESOURCES OPTIMIZATION

The large amount of data used on web resources contributes to their slowdown, which negatively affects the loading

time and the overall impression of the work. Caching servers, which temporarily store frequently requested data closer to
the user, can significantly reduce the response time of servers, reduce the load on the primary computing resources, and
increase the stability of web applications. Their implementation becomes especially relevant in the case of highly loaded
web services. Modern web pages often take a long time to load due to a combination of technical factors, such as the
volume of data and server load. In this work, the architecture of the server part of the web resource for processing big data
with high load elements has been developed to speed up the work of web resources. A load balancer and caching servers
have been chosen to speed up the work. One of the key factors determining the speed of modern web resources is the
effective use of caching mechanisms. Caching servers allow you to store intermediate calculation results, static files, and
pre-generated pages, which significantly reduces the system’s response time to repeated requests. The lack of a cache
means that each request is processed “from scratch”, even if the data hasn’t changed. This increases the risk of overload,
especially during peak traffic or DDoS-like spikes in activity. Powerful computing nodes waste resources regenerating the
same responses, which increases infrastructure costs. Effective caching often requires separate servers or cloud services
like Redis, Varnish, CDN. This increases hardware costs or the need to rent additional resources from cloud providers.
The balancer prevents overloading of individual servers by distributing requests between them. This ensures stable
operation even during peak hours of user activity and reduces the risk of failures. In the event of a server failure, the
balancer can automatically redirect traffic to other working nodes. This reduces the likelihood of complete system
downtime and increases service availability. The proposed architecture is adapted to the development of web resources
with elements of Unet networks, which are characterized by the presence of a large amount of static content. Comparative

analysis demonstrates that web page loading time decreased by an average of 3 times using caching servers.
Keywords: web server, Unet, caching server, Varnish, Redis.

Introduction

Increasingly, when developing web applications,
developers and users pay attention to the speed and
performance of sites, as the number of mobile devices has
increased dramatically, and the emphasis should be on
adaptability and page loading speed on such devices. Modern
systems use servers not only to ensure the operation of
websites, but also to ensure the operation of mobile
applications and API nodes. This significantly increases the
load on the system and causes time delays in the server’s
response to the client. Another factor that affects the need to
improve site performance is the impact of response time on
SEO optimization and site conversion. Optimization of
website performance in such conditions becomes a key factor
of competitiveness, as it directly affects the user experience
and business results. Currently, website performance analysis

is being actively implemented based on metrics that relate to
both the server and client sides.

The object of the study is high-load web servers for
processing a large flow of data and requests.

The subject of the study is approaches to optimizing the
load on servers in the form of caching servers, which allows
reducing the load on the server part.

The purpose of the study is to analyze modern means of
optimizing the operation of websites at different levels,
which will allow identifying key aspects in the development
of web applications based on machine learning. Based on the
analysis, a proposed architecture for the server part of the
web resource for processing big data with elements of neural
networks aims to speed up web resource operations.

To achieve the stated purpose, the following main
research tasks were identified:

138

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2

e Conduct a comparative analysis of tools for
optimizing the front-end part of websites.

e Conduct an analysis of tools for optimizing the back-
end part of websites, which will allow us to identify
the main elements that can improve the performance
of websites.

e Develop the architecture of a software module
consisting of a load balancer and caching servers,
which allows us to speed up the work of highly
loaded websites.

Analysis of Recent Research and Publications. The
dynamic and interactive behavior of users of modern web
applications, justified by the development of social networks,
e-commerce, and artificial intelligence, significantly
complicates the modeling of web loads. Experimental results
show that taking into account such a situation can increase
processor usage by up to 30 % and significantly worsen the
average response time of the system [1]. In the study [2], the
behavior of web servers under conditions of a large number
of users was analyzed with a focus on modeling the marginal
values of the response time. Based on the conclusions
obtained, the implementation of technical and organizational
measures (load balancing, monitoring, configuration settings)
to increase the reliability and stability of web servers was
recommended. In the work [3], an evaluation of the open
edge platform EdgeX for use in IoT services was conducted.
The results confirm the prospects of EdgeX for developing
solutions in the field of edge computing. In [4], a new
approach to analyzing web server log files by transforming
them into horizontal visibility graphs for further application
of complex network analysis methods was proposed. In
article [5], an empirical study of Apache web server
protection against DoS attacks was conducted by evaluating
two well-known connected modules. Experiments involving
both flooding and slow attacks showed that there is no
universal solution, although the existing modules can be
helpful in practice.

In [6], a variable feedback strategy for load balancing in a
web mapping services platform (WMSP) is proposed, which
takes into account the temporal patterns of user access
intensity. Experimental results confirmed that the approach
provides fast response, high throughput, and stable operation.

In [7], proposed a new method for load balancing in
cloud systems, which manages the dynamic distribution of
work flows among servers. The approach modifies the
existing balancing technique. In [8], an approach is presented
in which the algorithm parameter settings are achieved to
provide more accurate detection of high load, and the
proposed optimization reduces the number of page faults and
improves performance by 7.36 %. In [9], an automatic
strategy for optimizing the performance of front-end
frameworks based on the Bayesian optimization algorithm is
proposed. In [10], the authors investigate the problem of load
balancing in microservice architectures, which affects the
sestems efficiency and reliability . Based on Spring Cloud

and Alibaba components, a dynamic load balancing
algorithm is proposed that considers Redis for caching. To
improve the load balancing efficiency in conditions of
dynamic changes, the authors in [11] propose an algorithm
based on long-term forecasting using Informer, which
predicts the future use of CPU, memory, network, and I/O
and adjusts the weights of servers in advance. In [12], a
spatial version of the Power of Two method is proposed,
which assigns a task to the least loaded of the two
geographically closest servers. In [13, 14], approaches to
designing a microservice architecture are considered, in
particular for systems based on artificial intelligence
elements, which involve processing large data sets.

Analyzing the above data on the current state of research,
we can conclude that the topic is relevant and essential for
web resources with high load. The authors draw attention to
the importance of optimizing the server component when
processing large amounts of data and server requests.

Materials and Methods. This study uses an analytical
approach to analyze existing techniques and tools for
optimizing the server side of web applications, which allows
us to highlight relevant tools and their advantages and
disadvantages. Approaches to developing the architecture of
the server-side of web applications based on caching servers
are used, which allows us to optimize the load.

Research results and their discussion

Optimization of the client-side of web resources
A list of tools and resources that allow you to improve
performance at the frontend level is shown in Fig. 1.

Table 1. Comparative analysis of means

Optimization method Tools metrics
Bootstrap, Tailwind
. . LCP, CLS, B
Responsive Design CSS, CSS Rate ounce
Grid/Flexbox
Minimization UglifyJS, Terser,
TTFB, LCP, FCP
CSS/JS CSSNano » LCP, FC
image formats Squoosh,
(We%)P AVIF) ImageMagick, LCP, Page Size
’ TinyPNG
. Intersection
Lazy Loading Observer API LCP, Speed Index

Therefore Client-side optimization techniques aim to
reduce page load time and improve user experience by
adapting content, minimizing resources, and efficiently
loading images and scripts.

Optimization of the server-side of web resources

Server-level optimization methods involve the use of
various approaches to improve the performance and
stability of websites. Table 2 provides a comparative
analysis of server-level optimization tools for web
resources.

YKpaiHCbKMUI }KypHan iHbopmaLiiHux TexHonoriin, 2025, 1. 7, Ne 2 (12)

139

\

B ot Minimzation CSSJS D

Fig. 1. Tools for improving performance at the frontend level

Table 2. Comparative analysis of server-side optimization tools
for web resources

Optimization Tools metrics
method
. Response time,
Nginx, HAProxy, Throughput, Server
Load Balancing |AWS ELB, Kubernetes g.p)y
Ineress utilization,
& Downtime
Server-side Varnl.sh TTFB, LCP, Server
cachin, Redis load, Requests / sec
& Memcached - 1ol
. Page size, Time to
. Nginx .
Data compression Apache modules First Byte,
p Bandwidth usage
Event-driven NO(.le.Js Concurren.cy,
Servers Nginx, Response time,
LiteSpeed Throughput
Dat . DB lat
@ apase MySQL Replicaion, query atency,
replication and MoneoDB Shardin Throughput,
sharding B 8 Availability

Load balancing is the distribution of requests between
multiple servers, which allows for even resource utilization
and high system availability.

Server caching involves storing query processing results
or static content for reuse. This reduces server response
time and optimizes overall computing resource utilization.
Fig. 2 shows a classification of servers.

Caching servers can be classified by type of caching and
purpose. A Reverse Proxy stores ready-made HTTP
responses and serves client requests without contacting
backend servers. An example of such technology is Varnish.

In-memory caching stores data in memory for quick
access, reducing latency when working with databases.
Examples include Redis and Memcached.

technologies

Frontend
optimization

_—

Web server-level caching, such as Nginx FastCGI cache,
stores the processed results of application requests and allows
re-serving requests without re-generating content.

Proposed architecture.

Figure 3 shows an example of the proposed architecture
for a web resource processing system based on caching
services. The proposed system contains elements of both a
web resource and machine learning elements, in particular,
Unet segmentation.

The algorithm of the proposed module and architecture
is as follows:

1. System users load web pages written using Twitter
Bootstrap technology to ensure adaptability and Vue.js for
asynchrony.

2. After the site is loaded, a load balancer is activated,
which distributes tasks between several environments
combined by orchestration and the use of Docker.

3. At the next stage, traffic is redirected to the Varnish
server, which acts not only as a proxy server, but also as a
server caching static content.

4. At the next stage, the Apache web server is loaded.

5. The PHP programming language and the Laravel
framework are used as the backend part. Data is stored in
the MySQL database, and the Redis cache server is used.

6. A feature of the proposed architecture is the use of a
block for implementing semantic segmentation using Unet
networks using TensorFlow and Keras technologies.

7. An additional web interface has been developed for
engineers to work with, which works directly with the web
server and the backend part based on PHP, Laravel. This is
done so that engineers can implement automatic
segmentation without the risk of caching individual page
blocks.

140

Ukrainian Journal of Informati

on Technology, 2025, vol. 7, No. 2

Fig. 2. Classification of caching servers

Nginx FastCGI cache
— allows you o cache
script execution
resullts and serve

repeated requests
without regenerating
content

Client

html, css, twitter

bootstrap. vue.js

Client
html, css, twitter
bootstrap. vue.js

h

4

Client

>

Integrated caching
that stores processed
resuits of appication
requests, such as
PHP seripts

html, css, twitter

bootstrap. vue.js

A

Load balancer

-

=
php php

Laravel

Laravel

Redis

Mysql
DB

%

|

Docker

oy
RS

image, masks

)

tensorflow.
keras

] [Unet mode!

‘s]

unet

Y
N

#

Fig. 3. Proposed architecture

v

architectures,
metadata

Client
developer mode

YKpaiHCbKMUI }KypHan iHbopmaLiiHux TexHonoriin, 2025, 1. 7, Ne 2 (12)

141

The web interface of the developed module is shown in
Fig. 4.

The webpage consists of the following blocks:

1. User information block, with photo and contact
information.

2. Information about the latest site visitors.

UNet Image Segmentation

Home About the Project Contacts

User Information Recent Visits
i Test Test
Name: Olen Pitsun 2
Emall: oleh@example.com @ TestTest
a: Test Test
UNet Architecture Selection Hyperparameters
Leaming Rate: 0,001
UNet (classic) v
BachSze: 16
Epochs: 50

Upload Image and Mask

3. Ability to choose Unet architecture.

4. Ability to choose hyperparameters.

5. New image loading block.

6. Image output block (original and segmented)

7. Table for viewing previous experiments.

The results of the experiments are shown in Fig. 5.

Segmentation Results

Original Segmented

hiojtd

o4 4

Experiments

Experiment Name Folder Path

UNet Baseline experiments/unet/baseiine

netpp/augmented

Attention UNet Test expe ttention-unet/test1

Fig. 4. Web interface of the developed module

2500

2000

1500

1000

Time.ms

500 —,————* —

-

1 2 3

Experiment

4 5 6

=@=N0 Cache ==8=Cache

Fig. 5. Results of page loading experiments with and without caching

Based on the result obtained, we can conclude that the
loading time of pages with cache is 3 times better.

Discussion of the Research Results. The authors of [8]
investigate the problem of high server memory load, which
leads to frequent page faults and reduced performance. The
paper proposes a performance detection and optimization
method for collecting detailed metrics from Linux and the
Isolation Forest algorithm for anomaly detection.

In [9], an automatic performance optimization strategy
for front-end frameworks based on the Bayesian optimization
algorithm is proposed. After optimization, the key indicators
are significantly reduced: LCP — up to 2052 ms, TTI — up to
2923 ms, CPU load — up to 65.9 %, memory consumption —
up to 324.4 MB. The research data are relevant, but they do
not sufficiently offer approaches to server optimization, the
use of caching servers, and proxy servers.

142 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2

In [10], a dynamic load balancing algorithm is proposed
that takes into account the state of computing nodes and
uses Redis for caching. Thus, the researchers confirm the
relevance of using caching servers for load optimization.

In [11], a load balancing algorithm for microservice
systems is proposed, which uses Informer for long-term
forecasting of CPU, memory, network resources, and I/O
usage, enabling the adjustment of server weights in
advance.

In [12], the problem of static load distribution in
distributed systems is considered, taking into account the
implementation cost. sSPOT is proposed, a spatial version of
the Power of Two method, which assigns a task to the least
loaded of the two geographically closest servers.

An analysis of previous studies demonstrates the
relevance of developing approaches to speeding up the
work of web resources, which are designed to process
modules with artificial intelligence elements. Unlike prior
studies, this work uses an approach that employs a load
balancer and caching servers.

Scientific novelty of the obtained research results — the
architecture of the server part of a web resource for
processing big data with elements of neural networks to
speed up the work of web resources has been developed.

Practical significance of the research results — lies in
the development of a software module for processing Unet
networks with caching elements to speed up the operation
of web resources.

Conclusions

This paper proposes an architecture of the server part of
a web resource for processing big data with elements of a
load balancer and caching servers.

1. Based on an analytical approach, an analysis of
means of optimizing the front-end part of web resources
was carried out.

2. Based on an analytical approach, an analysis of
modern techniques for optimizing web resources was
carried out, which allowed us to identify the main
technologies and types of caching servers.

3. An architecture of the server part of a web resource
with elements of caching servers was developed, which
allowed us to speed up the loading of web pages by an
average of 3 times.

References

1. Peda-Ortiz, R., Gil, J. A., Sahuquillo, J., & Pont, A. (2013).
Analyzing web server performance under dynamic user

10.

11.

12.

workloads. Computer communications, 36(4), 386-395. https://
doi.org/10.1016/j.comcom.2012.11.005

Rafiu, H. A., Adesina, O. S., & Adekeye, K. S. (2024).
Modelling the response rate of the Apache web server using
extreme value theory. Scientific Afiican, 23,
https://doi.org/10.1016/j.sciaf. 2024.¢02086

Dhulfigar, A., Abdala, M. A., Pataki, N., & Tejfel, M. (2024).
Deploying a web service application on the EdgeX open edge
server: An evaluation of its viability for IoT services. Procedia
Computer Science, 235, 852-862. https://doi.org/10.1016/
j.procs.2024.04.081

Sulaimany, S., & Mafakheri, A. (2023). Visibility graph
analysis of web server log files. Physica A: Statistical
Mechanics and its Applications, 611, https://doi.org/10.1016/
j-physa.2023.128448

Catillo, M., Pecchia, A., & Villano, U. (2022). No more DoS?
An empirical study on defense techniques for web server Denial
of Service mitigation. Journal of Network and Computer
Applications, 202, https://doi.org/10.1016/j.jnca.2022.103363
Li, R, Dong, G., Jiang, J., Wu, H., Yang, N., & Chen, W.
(2019). Self-adaptive load-balancing strategy based on a time
series pattern for concurrent user access on the Web map
service. Computers & Geosciences, 131, 60-69.
https://doi.org/10.1016/ j.cageo.2019.06.015

Kumar, V. D., Praveenchandar, J., Arif, M., Brezulianu, A.,
Geman, O., & Ikram, A. (2023). Efficient Cloud Resource
Scheduling with an Optimized Throttled Load Balancing
Approach. Computers, Materials & Continua, 77(2).
https://doi.org/10.32604/cmc.2023.034764

Xu, D., Gao, Y., & Chen, L. (2024). Research on Server Memory
High Load Performance Optimization Method Based on eBPF
and Isolation Forest Algorithm. In Proceedings of the 2024 7th
International Conference on Artificial Intelligence and Pattern
Recognition, 792—797. https://doi.org/10.1145/3703935.3704086
Xu, H. (2024). In-memory database load balancing optimization
for massive information processing of the Internet of Things.
ACM Transactions on Asian and Low-Resource Language
Information Processing. https://doi.org/10.1145/3670996

Chen, J., Fan, R., Shao, C., Hu, Z., Zhu, S,, Li, X., ... & Zhang,
J. (2024). Optimisation Strategies for Load Balancing
Algorithms Based on Spring Cloud Alibaba. In Proceedings of
the 2024 3rd Asia Conference on Algorithms, Computing and
Machine Learning, — 207-211. https://doi.org/10.1145/
3654823.3654861

Wu, Y., & Chen, S. (2024). Optimization of load balancing
algorithm based on Informer long time series prediction. In
Proceedings of the 2024 8th International Conference on
Electronic Information Technology and Computer Engineering,
985-991. https://doi.org/10.1145/3711129.3711297

iy, O., Hpunusik, K., Kaninoewkuii, P., & [ToBoposnuk, B.
(2023). MikpocepBicHa apXiTEKTypa CHCTEMH OIPAIFOBAHHS
imyHoricroximiyaux 300pakenb. Herald of Khmelnytskyi
National University. Technical sciences, 321(3), 166—174.
https://www.doi.org/10.31891/2307-5732-2023-321-3-166-174

YKpaiHCbKMUI }KypHan iHbopmaLiiHux TexHonoriin, 2025, 1. 7, Ne 2 (12)

143

0. 1. ITiyyn

3axionoykpaincoruil Hayionanvruil yHisepcumem, m. Tepnonine, Ykpaina

APXITEKTYPA A1 ONTUMI3AILIIl BESPECYPCIB BACOKMX HABAHTAYKEHb

Bemukuit 00’eM TaHUX, BUKOPHCTOBYBAaHHMX Ha BeOpecypcax, CIPHsE YIOBUIBHEHHIO 1X pPOOOTH, IO HETaTHBHO
BIUIMBA€E HA TPUBAIICTh 3aBAaHTAXKCHHS Ta 3arajbHE BpaXCHHsS Bix poOotu. OpHMM i3 Hale(EKTHBHILIMX ITiXOJIB 10
onTUMi3alii MPOJYyKTUBHOCTI € 3aCTOCYBAHHS KEIIYBaJbHUX CEPBEPIB, sIKi JTAFOTh MOXKIHUBICTH THMYacOBO 30epiratu
YacTo 3alUTyBaHI JaHi OJIMKYe J0 KIiHIEBOro KOpucTyBaua. Lle ae 3MOry iCTOTHO CKOPOTHTH Yac BiJIOBIiJi cepBepa,
3HHU3UTH HABAaHTAXXCHHS Ha LEHTPAIbHY IHPPACTPYKTYpy Ta 3a0e3NeuuTH CTaOUIbHICTH 1 Oe3nepepBHICTh poOOTH
BeOpecypcy. KpiM Toro, BUKOPHCTaHHS CUCTeM OajlaHCYBaHHS HaBaHTa)KEHHS JI03BOJISIE PIBHOMIPHO PO3MOIUISTH 3aIATH
MiX KITbKOMa CepBepaMH, IO JOJAaTKOBO IIiJIBHUIIYE BiIMOBOCTIHKICTh Ta MaciiTaboBaHiCTh cucTeMH. KerryBaibHi
cepBepH, 10 THMYACOBO 30epiraroTh 4acTo 3alMTyBaHi JaHi OJFKYe O KOPUCTyBaya, JAIOTh 3MOTY iCTOTHO 3MEHIIUTH
Yac BIAT'YKY CepBepiB, 3HM3UTH HABAHTA)KCHHS HA OCHOBHI OOYMCIIIOBAJIbHI PECYPCH Ta IiIBUIIUTH CTa0UIBHICTE poOOTH
Be6/I0/IATKIB. IXHE BMPOBAIKEHHS CTAa€ OCOOIMBO aKTYaJbHUM Y BHIAJIKy BHCOKOHABAaHTaKeHHX BeGcepsiciB. CydacHi
BEOCTOPIHKM 4YacTO JOBIO 3aBaHTAXYKOThCS YEpe3 KOMIUIEKC TEXHIYHUX (PAKTOpiB, TakMX SK 00’€M JaHuX,
3aBaHTAXKCHICTh cepBepiB. OMHUM 13 KIHOYOBUX (DaKkTOpiB, 10 BH3HAYAKOTH IIBHJIKOJIK CydacHHX BeOpecypciB, €
e(eKTHBHE BUKOPHCTAHHS MEXaHI3MIB KellyBaHHs. KellyBaibHi cepBepH Jar0Th 3MOTY 30epiraTtu MpOMiKHI pe3ylbTaTu
00YHCIIeHb, CTAaTHYHI (aliu Ta MonepeHbo ¢(hOPMOBaHI CTOPIHKH, IO ICTOTHO 3MEHIIIYE TPUBAIICTh BiIOBIAI CHCTEMHU
Ha TIOBTOPHI 3anUTH. Y CTATTi pO3pOOJICHO apXiTEKTYpy CEpBEPHOI YaCTHHU BeOpECypCy ONpalfOBaHHS BEJIMKUX JaHHX 3
eJIEMEHTaMH BUCOKHX HABAHTAXCHb JUIS NPHIIBUALICHHS PoOOTH BeOpecypciB. SIk 3aco0M MPUIIBHIMLICHHS POOOTH
BUOpaHO OajaHCYBaJbHUK HaBaHTQ)KEHb Ta KEIIyBalbHI CepBepH. 3alpolOHOBAHA apXiTEeKTypa ajanToBaHa 0
po3podieHHs BeOpecypciB 3 eneMeHTamu Unet Mepex, sIKi XapaKTepH3YIOThCS HAasSBHICTIO BEIHKOT KUTBKOCTI CTaATHYHOTO
KOHTeHTY. [lopiBHSIIBHUIT aHANI3 MOKa3aB, IO Yac 3aBAHTAXKCHHS BEOCTOPIHKM 3MEHIIMBCS B CEpeIHbOMY YTpHUYi 3
BUKOPHUCTaHHSM KEUIYBaJbHUX CEPBEPIB.

Knruosi cnosa: Bebeepsep, Unet, keuryrounii cepsep, varnish, redis.

IHpopmauia npo aBTopiB:
MiuyH Oner Mocunosuy, KaHa, TeXH. HayK, AOLLEHT, Kadeapa KOMM I0TePHOI iHKeHepii.
Email: o.pitsun@wunu.edu.ua; https://orcid.org/0000-0000-0000-0000

UutysanHa 3a ACTY: Miuyn O. W. ApxiTekTypa ans onTumisauii Bebpecypcis BUCOKMX HaBaHTaXeHb. YKPaiHCbKUl cypHan
iHpopmayiliHux mexHonoeil. 2025, 1. 7, Ne 2. C. 138-144.

Citation APA: Pitsun, O. Y. (2025). Architecture for high-load web resources optimization. Ukrainian Journal of Information Technology,
7(2), 138-144. https://doi.org/10.23939/ujit2025.02.138

144 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2

