
Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2 138

ІНФОРМАЦІЙНІ СИСТЕМИ ТА ТЕХНОЛОГІЇ

 http://science.lpnu.ua/uk/ujit

 https://doi.org/10.23939/ujit2025.02.138

 Article received 16.08.2025 р.

@ O.Y. Pitsun Article accepted 30.10.2025 р.

o.pitsun@wunu.edu.ua UDC 004.9

O. Y. Pitsun

West Ukrainian National University, Ternopil, Ukraine

ARCHITECTURE FOR HIGH-LOAD WEB RESOURCES OPTIMIZATION

The large amount of data used on web resources contributes to their slowdown, which negatively affects the loading

time and the overall impression of the work. Caching servers, which temporarily store frequently requested data closer to

the user, can significantly reduce the response time of servers, reduce the load on the primary computing resources, and

increase the stability of web applications. Their implementation becomes especially relevant in the case of highly loaded

web services. Modern web pages often take a long time to load due to a combination of technical factors, such as the

volume of data and server load. In this work, the architecture of the server part of the web resource for processing big data

with high load elements has been developed to speed up the work of web resources. A load balancer and caching servers

have been chosen to speed up the work. One of the key factors determining the speed of modern web resources is the

effective use of caching mechanisms. Caching servers allow you to store intermediate calculation results, static files, and

pre-generated pages, which significantly reduces the system’s response time to repeated requests. The lack of a cache

means that each request is processed “from scratch”, even if the data hasn’t changed. This increases the risk of overload,
especially during peak traffic or DDoS-like spikes in activity. Powerful computing nodes waste resources regenerating the

same responses, which increases infrastructure costs. Effective caching often requires separate servers or cloud services

like Redis, Varnish, CDN. This increases hardware costs or the need to rent additional resources from cloud providers.

The balancer prevents overloading of individual servers by distributing requests between them. This ensures stable

operation even during peak hours of user activity and reduces the risk of failures. In the event of a server failure, the

balancer can automatically redirect traffic to other working nodes. This reduces the likelihood of complete system

downtime and increases service availability. The proposed architecture is adapted to the development of web resources

with elements of Unet networks, which are characterized by the presence of a large amount of static content. Comparative

analysis demonstrates that web page loading time decreased by an average of 3 times using caching servers.

Keywords: web server, Unet, caching server, Varnish, Redis.

Introduction

Increasingly, when developing web applications,

developers and users pay attention to the speed and

performance of sites, as the number of mobile devices has

increased dramatically, and the emphasis should be on

adaptability and page loading speed on such devices. Modern

systems use servers not only to ensure the operation of

websites, but also to ensure the operation of mobile

applications and API nodes. This significantly increases the

load on the system and causes time delays in the server’s

response to the client. Another factor that affects the need to

improve site performance is the impact of response time on

SEO optimization and site conversion. Optimization of

website performance in such conditions becomes a key factor

of competitiveness, as it directly affects the user experience

and business results. Currently, website performance analysis

is being actively implemented based on metrics that relate to

both the server and client sides.

The object of the study is high-load web servers for

processing a large flow of data and requests.

The subject of the study is approaches to optimizing the

load on servers in the form of caching servers, which allows

reducing the load on the server part.

The purpose of the study is to analyze modern means of

optimizing the operation of websites at different levels,

which will allow identifying key aspects in the development

of web applications based on machine learning. Based on the

analysis, a proposed architecture for the server part of the

web resource for processing big data with elements of neural

networks aims to speed up web resource operations.

To achieve the stated purpose, the following main

research tasks were identified:

 Український журнал інформаційних технологій, 2025, т. 7, № 2 (12) 139

● Conduct a comparative analysis of tools for

optimizing the front-end part of websites.

● Conduct an analysis of tools for optimizing the back-

end part of websites, which will allow us to identify

the main elements that can improve the performance

of websites.

● Develop the architecture of a software module

consisting of a load balancer and caching servers,

which allows us to speed up the work of highly

loaded websites.

Analysis of Recent Research and Publications. The

dynamic and interactive behavior of users of modern web

applications, justified by the development of social networks,

e-commerce, and artificial intelligence, significantly

complicates the modeling of web loads. Experimental results

show that taking into account such a situation can increase

processor usage by up to 30 % and significantly worsen the

average response time of the system [1]. In the study [2], the

behavior of web servers under conditions of a large number

of users was analyzed with a focus on modeling the marginal

values of the response time. Based on the conclusions

obtained, the implementation of technical and organizational

measures (load balancing, monitoring, configuration settings)

to increase the reliability and stability of web servers was

recommended. In the work [3], an evaluation of the open

edge platform EdgeX for use in IoT services was conducted.

The results confirm the prospects of EdgeX for developing

solutions in the field of edge computing. In [4], a new

approach to analyzing web server log files by transforming

them into horizontal visibility graphs for further application

of complex network analysis methods was proposed. In

article [5], an empirical study of Apache web server

protection against DoS attacks was conducted by evaluating

two well-known connected modules. Experiments involving

both flooding and slow attacks showed that there is no

universal solution, although the existing modules can be

helpful in practice.

In [6], a variable feedback strategy for load balancing in a

web mapping services platform (WMSP) is proposed, which

takes into account the temporal patterns of user access

intensity. Experimental results confirmed that the approach

provides fast response, high throughput, and stable operation.

In [7], proposed a new method for load balancing in

cloud systems, which manages the dynamic distribution of

work flows among servers. The approach modifies the

existing balancing technique. In [8], an approach is presented

in which the algorithm parameter settings are achieved to

provide more accurate detection of high load, and the

proposed optimization reduces the number of page faults and

improves performance by 7.36 %. In [9], an automatic

strategy for optimizing the performance of front-end

frameworks based on the Bayesian optimization algorithm is

proposed. In [10], the authors investigate the problem of load

balancing in microservice architectures, which affects the

sestems efficiency and reliability . Based on Spring Cloud

and Alibaba components, a dynamic load balancing

algorithm is proposed that considers Redis for caching. To

improve the load balancing efficiency in conditions of

dynamic changes, the authors in [11] propose an algorithm

based on long-term forecasting using Informer, which

predicts the future use of CPU, memory, network, and I/O

and adjusts the weights of servers in advance. In [12], a

spatial version of the Power of Two method is proposed,

which assigns a task to the least loaded of the two

geographically closest servers. In [13, 14], approaches to

designing a microservice architecture are considered, in

particular for systems based on artificial intelligence

elements, which involve processing large data sets.

Analyzing the above data on the current state of research,

we can conclude that the topic is relevant and essential for

web resources with high load. The authors draw attention to

the importance of optimizing the server component when

processing large amounts of data and server requests.

Materials and Methods. This study uses an analytical

approach to analyze existing techniques and tools for

optimizing the server side of web applications, which allows

us to highlight relevant tools and their advantages and

disadvantages. Approaches to developing the architecture of

the server-side of web applications based on caching servers

are used, which allows us to optimize the load.

Research results and their discussion

Optimization of the client-side of web resources

A list of tools and resources that allow you to improve

performance at the frontend level is shown in Fig. 1.

Table 1. Comparative analysis of means

Optimization method Tools metrics

Responsive Design

Bootstrap, Tailwind

CSS, CSS

Grid/Flexbox

LCP, CLS, Bounce

Rate

Minimization

CSS/JS

UglifyJS, Terser,

CSSNano
TTFB, LCP, FCP

image formats

(WebP, AVIF)

Squoosh,

ImageMagick,

TinyPNG

LCP, Page Size

Lazy Loading
Intersection

Observer API
LCP, Speed Index

Therefore Client-side optimization techniques aim to

reduce page load time and improve user experience by

adapting content, minimizing resources, and efficiently

loading images and scripts.

Optimization of the server-side of web resources

Server-level optimization methods involve the use of

various approaches to improve the performance and

stability of websites. Table 2 provides a comparative

analysis of server-level optimization tools for web

resources.

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2 140

Fig. 1. Tools for improving performance at the frontend level

Table 2. Comparative analysis of server-side optimization tools

for web resources

Optimization

method
Tools metrics

Load Balancing

Nginx, HAProxy,

AWS ELB, Kubernetes

Ingress

Response time,

Throughput, Server

utilization,

Downtime

Server-side

caching

Varnish

Redis

Memcached

TTFB, LCP, Server

load, Requests / sec

Data compression
Nginx

Apache modules

Page size, Time to

First Byte,

Bandwidth usage

Event-driven

servers

Node.js

Nginx,

LiteSpeed

Concurrency,

Response time,

Throughput

Database

replication and

sharding

MySQL Replicaion,

MongoDB Sharding

DB query latency,

Throughput,

Availability

Load balancing is the distribution of requests between

multiple servers, which allows for even resource utilization

and high system availability.

Server caching involves storing query processing results

or static content for reuse. This reduces server response

time and optimizes overall computing resource utilization.

Fig. 2 shows a classification of servers.

Caching servers can be classified by type of caching and

purpose. A Reverse Proxy stores ready-made HTTP

responses and serves client requests without contacting

backend servers. An example of such technology is Varnish.

In-memory caching stores data in memory for quick

access, reducing latency when working with databases.

Examples include Redis and Memcached.

Web server-level caching, such as Nginx FastCGI cache,

stores the processed results of application requests and allows

re-serving requests without re-generating content.

Proposed architecture.

Figure 3 shows an example of the proposed architecture

for a web resource processing system based on caching

services. The proposed system contains elements of both a

web resource and machine learning elements, in particular,

Unet segmentation.

The algorithm of the proposed module and architecture

is as follows:

1. System users load web pages written using Twitter

Bootstrap technology to ensure adaptability and Vue.js for

asynchrony.

2. After the site is loaded, a load balancer is activated,

which distributes tasks between several environments

combined by orchestration and the use of Docker.

3. At the next stage, traffic is redirected to the Varnish

server, which acts not only as a proxy server, but also as a

server caching static content.

4. At the next stage, the Apache web server is loaded.

5. The PHP programming language and the Laravel

framework are used as the backend part. Data is stored in

the MySQL database, and the Redis cache server is used.

6. A feature of the proposed architecture is the use of a

block for implementing semantic segmentation using Unet

networks using TensorFlow and Keras technologies.

7. An additional web interface has been developed for

engineers to work with, which works directly with the web

server and the backend part based on PHP, Laravel. This is

done so that engineers can implement automatic

segmentation without the risk of caching individual page

blocks.

 Український журнал інформаційних технологій, 2025, т. 7, № 2 (12) 141

Fig. 2. Classification of caching servers

Fig. 3. Proposed architecture

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2 142

The web interface of the developed module is shown in

Fig. 4.

The webpage consists of the following blocks:

1. User information block, with photo and contact

information.

2. Information about the latest site visitors.

3. Ability to choose Unet architecture.

4. Ability to choose hyperparameters.

5. New image loading block.

6. Image output block (original and segmented)

7. Table for viewing previous experiments.

The results of the experiments are shown in Fig. 5.

Fig. 4. Web interface of the developed module

Fig. 5. Results of page loading experiments with and without caching

Based on the result obtained, we can conclude that the

loading time of pages with cache is 3 times better.

Discussion of the Research Results. The authors of [8]

investigate the problem of high server memory load, which

leads to frequent page faults and reduced performance. The

paper proposes a performance detection and optimization

method for collecting detailed metrics from Linux and the

Isolation Forest algorithm for anomaly detection.

In [9], an automatic performance optimization strategy

for front-end frameworks based on the Bayesian optimization

algorithm is proposed. After optimization, the key indicators

are significantly reduced: LCP – up to 2052 ms, TTI – up to

2923 ms, CPU load – up to 65.9 %, memory consumption –

up to 324.4 MB. The research data are relevant, but they do

not sufficiently offer approaches to server optimization, the

use of caching servers, and proxy servers.

 Український журнал інформаційних технологій, 2025, т. 7, № 2 (12) 143

In [10], a dynamic load balancing algorithm is proposed

that takes into account the state of computing nodes and

uses Redis for caching. Thus, the researchers confirm the

relevance of using caching servers for load optimization.

In [11], a load balancing algorithm for microservice

systems is proposed, which uses Informer for long-term

forecasting of CPU, memory, network resources, and I/O

usage, enabling the adjustment of server weights in

advance.

In [12], the problem of static load distribution in

distributed systems is considered, taking into account the

implementation cost. sPOT is proposed, a spatial version of

the Power of Two method, which assigns a task to the least

loaded of the two geographically closest servers.

An analysis of previous studies demonstrates the

relevance of developing approaches to speeding up the

work of web resources, which are designed to process

modules with artificial intelligence elements. Unlike prior

studies, this work uses an approach that employs a load

balancer and caching servers.

Scientific novelty of the obtained research results – the

architecture of the server part of a web resource for

processing big data with elements of neural networks to

speed up the work of web resources has been developed.

Practical significance of the research results – lies in

the development of a software module for processing Unet

networks with caching elements to speed up the operation

of web resources.

Conclusions

This paper proposes an architecture of the server part of

a web resource for processing big data with elements of a

load balancer and caching servers.

1. Based on an analytical approach, an analysis of

means of optimizing the front-end part of web resources

was carried out.

2. Based on an analytical approach, an analysis of

modern techniques for optimizing web resources was

carried out, which allowed us to identify the main

technologies and types of caching servers.

3. An architecture of the server part of a web resource

with elements of caching servers was developed, which

allowed us to speed up the loading of web pages by an

average of 3 times.

References

1. Peña-Ortiz, R., Gil, J. A., Sahuquillo, J., & Pont, A. (2013).

Analyzing web server performance under dynamic user

workloads. Computer communications, 36(4), 386–395. https://

doi.org/10.1016/j.comcom.2012.11.005

2. Rafiu, H. A., Adesina, O. S., & Adekeye, K. S. (2024).

Modelling the response rate of the Apache web server using

extreme value theory. Scientific African, 23,

https://doi.org/10.1016/j.sciaf. 2024.e02086

3. Dhulfiqar, A., Abdala, M. A., Pataki, N., & Tejfel, M. (2024).

Deploying a web service application on the EdgeX open edge

server: An evaluation of its viability for IoT services. Procedia

Computer Science, 235, 852–862. https://doi.org/10.1016/

j.procs.2024.04.081

4. Sulaimany, S., & Mafakheri, A. (2023). Visibility graph

analysis of web server log files. Physica A: Statistical

Mechanics and its Applications, 611, https://doi.org/10.1016/

j.physa.2023.128448

5. Catillo, M., Pecchia, A., & Villano, U. (2022). No more DoS?

An empirical study on defense techniques for web server Denial

of Service mitigation. Journal of Network and Computer

Applications, 202, https://doi.org/10.1016/j.jnca.2022.103363

6. Li, R., Dong, G., Jiang, J., Wu, H., Yang, N., & Chen, W.

(2019). Self-adaptive load-balancing strategy based on a time

series pattern for concurrent user access on the Web map

service. Computers & Geosciences, 131, 60–69.

https://doi.org/10.1016/ j.cageo.2019.06.015

7. Kumar, V. D., Praveenchandar, J., Arif, M., Brezulianu, A.,

Geman, O., & Ikram, A. (2023). Efficient Cloud Resource

Scheduling with an Optimized Throttled Load Balancing

Approach. Computers, Materials & Continua, 77(2).

https://doi.org/10.32604/cmc.2023.034764

8. Xu, D., Gao, Y., & Chen, L. (2024). Research on Server Memory

High Load Performance Optimization Method Based on eBPF

and Isolation Forest Algorithm. In Proceedings of the 2024 7th

International Conference on Artificial Intelligence and Pattern

Recognition, 792–797. https://doi.org/10.1145/3703935.3704086

9. Xu, H. (2024). In-memory database load balancing optimization

for massive information processing of the Internet of Things.

ACM Transactions on Asian and Low-Resource Language

Information Processing. https://doi.org/10.1145/3670996

10. Chen, J., Fan, R., Shao, C., Hu, Z., Zhu, S., Li, X., ... & Zhang,

J. (2024). Optimisation Strategies for Load Balancing

Algorithms Based on Spring Cloud Alibaba. In Proceedings of

the 2024 3rd Asia Conference on Algorithms, Computing and

Machine Learning, 207–211. https://doi.org/10.1145/

3654823.3654861

11. Wu, Y., & Chen, S. (2024). Optimization of load balancing

algorithm based on Informer long time series prediction. In

Proceedings of the 2024 8th International Conference on

Electronic Information Technology and Computer Engineering,

985–991. https://doi.org/10.1145/3711129.3711297

12. Піцун, О., Пришляк, К., Каліновський, Р., & Поворозник, В.
(2023). Мікросервісна архітектура системи опрацювання
імуногістохімічних зображенЬ. Herald of Khmelnytskyi

National University. Technical sciences, 321(3), 166–174.

https://www.doi.org/10.31891/2307-5732-2023-321-3-166-174

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 2 144

О. Й. Піцун

Західноукраїнський національний університет, м. Тернопіль, Україна

АРХІТЕКТУРА ДЛЯ ОПТИМІЗАЦІЇ ВЕБРЕСУРСІВ ВИСОКИХ НАВАНТАЖЕНЬ

Великий об’єм даних, використовуваних на вебресурсах, сприяє уповільненню їх роботи, що негативно
впливає на тривалість завантаження та загальне враження від роботи. Одним із найефективніших підходів до
оптимізації продуктивності є застосування кешувальних серверів, які дають можливість тимчасово зберігати
часто запитувані дані ближче до кінцевого користувача. Це дає змогу істотно скоротити час відповіді сервера,
знизити навантаження на центральну інфраструктуру та забезпечити стабільність і безперервність роботи
вебресурсу. Крім того, використання систем балансування навантаження дозволяє рівномірно розподіляти запити
між кількома серверами, що додатково підвищує відмовостійкість та масштабованість системи. Кешувальні
сервери, що тимчасово зберігають часто запитувані дані ближче до користувача, дають змогу істотно зменшити
час відгуку серверів, знизити навантаження на основні обчислювальні ресурси та підвищити стабільність роботи
вебдодатків. Їхнє впровадження стає особливо актуальним у випадку високонавантажених вебсервісів. Сучасні
вебсторінки часто довго завантажуються через комплекс технічних факторів, таких як об’єм даних,
завантаженість серверів. Одним із ключових факторів, що визначають швидкодію сучасних вебресурсів, є
ефективне використання механізмів кешування. Кешувальні сервери дають змогу зберігати проміжні результати
обчислень, статичні файли та попередньо сформовані сторінки, що істотно зменшує тривалість відповіді системи
на повторні запити. У статті розроблено архітектуру серверної частини вебресурсу опрацювання великих даних з
елементами високих навантажень для пришвидшення роботи вебресурсів. Як засоби пришвидшення роботи
вибрано балансувальник навантажень та кешувальні сервери. Запропонована архітектура адаптована до
розроблення вебресурсів з елементами Unet мереж, які характеризуються наявністю великої кількості статичного
контенту. Порівняльний аналіз показав, що час завантаження вебсторінки зменшився в середньому утричі з
використанням кешувальних серверів.

Ключові слова: вебсервер, Unet, кешуючий сервер, varnish, redis.

Інформація про авторів:

Піцун Олег Йосипович, канд. техн. наук, доцент, кафедра комп’ютерної інженерії.

Email: o.pitsun@wunu.edu.ua; https://orcid.org/0000-0000-0000-0000

Цитування за ДСТУ: Піцун О. Й. Архітектура для оптимізації вебресурсів високих навантажень. Український журнал

інформаційних технологій. 2025, т. 7, № 2. С. 138–144.

Citation APA: Pitsun, O. Y. (2025). Architecture for high-load web resources optimization. Ukrainian Journal of Information Technology,

7(2), 138–144. https://doi.org/10.23939/ujit2025.02.138

