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Abstract

The paper investigates the influence of optimization methods on the efficiency of an extremal control system based
on acoustic anomaly detection. The proposed system can detect abnormal equipment operating modes by analyzing
sound characteristics and automatically adapting control parameters to new operating conditions. Using mathematical
modeling, the operation of the system with different optimization algorithms (gradient descent, Momentum, Nesterov
and RMSProp) was studied. The results show that RMSProp provides the fastest transition to steady state (103 s) with
minimal overshoot (3%), but there are significant oscillations in the control signal. Classic gradient descent
demonstrates an acceptable stabilization time (123 s) with moderate overshoot (23%). The Momentum and Nesterov
methods are characterized by the longest settling time (173 and 160 s, respectively). The study confirms the feasibility
of using extremal control systems with adaptive optimization to improve the reliability and efficiency of technological
equipment under variable operating conditions.
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1. Definition of the problem to be solved

Today, in the synthesis and operation of automatic control systems, it is extremely important to consider the
technical and operational condition of equipment, as its state directly affects the characteristics of technological processes
occurring in the equipment. An example of equipment condition change can be the wear of bearings in rotating
mechanisms, which causes additional load on the motor or other system components. Such changes cause alterations in
the equipment sound, which can be recorded using a microphone and subsequently used as a trigger for reconfiguring the
control system. The sound of equipment operation may not always directly depend on the equipment condition; it can
change during operation under incorrect or atypical operating conditions, for example, overloading of a transport conveyor
or feeding harder material into a crusher. Atypical operating conditions, in turn, affect the accuracy of the mathematical
description of the control object, on the basis of which the synthesis and study of control systems take place.

Currently, there are various methods for determining equipment condition, namely: acoustic, visual, vibration
analysis, and analysis using sensor arrays. The application of acoustic anomaly detection approaches allows for the
analysis of the current technical and operational state of equipment based on audio data. This approach has a number
of advantages, namely:

o relative affordability of sensors for data collection;
o possibility of use in hard-to-reach places and under difficult conditions.
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The application of the obtained technical and operational state of equipment allows for the identification of
anomalous operating modes, which may be new technological regimes, for example, when the load on a motor changes
and its characteristic operating sound changes, or potentially emergency situations. Therefore, when a new equipment
operating mode is detected, it is necessary to reconfigure the controller according to the system's capabilities to reduce
the risk of emergency situations or to return the equipment to a steady-state operating mode.

This work proposes a novel approach to building an extremal control system for solving the problem described
above. The fundamental novelty of the proposed system lies in the use of an acoustic sensor unit for detecting an
extremal point — the moment of entry into the control optimization algorithm. Unlike traditional approaches, where
optimization occurs continuously or on a fixed schedule, the proposed system autonomously makes decisions about the
need for reconfiguration based on acoustic data, which significantly reduces computational load and ensures rapid
adaptation to changes in the technological object. The practical value of this approach lies in the ability to detect
anomalies early and automatically trigger the control optimization procedure only when it is truly necessary, which is
critically important for industrial systems with limited computational resources and strict response time requirements.
However, for effective application of the proposed control system, it is necessary to conduct a series of studies, one of
which is the investigation of the influence of optimization methods on the effectiveness of the proposed approach.

2. Analysis of the recent publications and research works on the problem

The article by Haoqian Wang et al. [1] is devoted to the study of stochastic optimization acceleration for Deep
Neural Networks, with a special focus on the theoretical analysis of SGD-Momentum and Nesterov’s accelerated
gradient methods. The work consists of a mathematical investigation into the stability mechanisms of these algorithms
and an evaluation of their convergence properties. The key scientific contribution is the identification and formalization
of the "overshoot" phenomenon inherent in momentum-based approaches. The authors prove that because Momentum
and Nesterov methods rely on the accumulation of historical gradients to accelerate training, they inevitably suffer from
oscillatory behavior where parameters exceed their optimal target values. This discovery highlights a critical limitation
in these standard algorithms: the reliance on past error information, while beneficial for speed, can destabilize the
optimization path when the gradient direction changes rapidly. The authors further characterize Nesterov’s method as
a specific variation that applies a higher gain to the current gradient compared to classical Momentum, explaining its
distinct convergence behavior.

The dissertation by Olle Trollberg and Elling W. Jacobsen [2] is devoted to the study of extremal control methods
with a special focus on the problem of multiple solutions and convergence speed. The work consists of two main parts
and contains both theoretical research and practical applications. The key scientific contribution is the identification
and investigation of the problem of multiple stationary solutions. The authors prove that even with a convex objective
function, the classical ESC method can have multiple stationary points. This discovery refutes previous assumptions
about the uniqueness of the solution when the conditions of existence and stability are met. Stationary solutions are
characterized by a condition for local phase shift of the process, which can be satisfied at points not related to optimality.
The authors show that the observed multiplicity of solutions is related to a certain type of bifurcation and provide
conditions for their existence. Using the example of the CANON biochemical reactor process, it is demonstrated that
the conditions for phase shift can be satisfied at operating points that are completely unrelated to optimal ones, which
can lead to suboptimal system performance. Greedy ESC, a modification of the method for systems with multiscale
dynamics, is considered separately. By optimizing only the fast dynamics of the system, significant performance
improvements can be achieved while reducing computational complexity.

In the article Vytautas Kaminskas, Kestutis Sidlauskas and Ceslovas Tallat-Kelp$a [3] examined a class of
dynamic systems in which linear dynamic elements are combined with nonlinear static characteristics, and the output
is distorted by random disturbances. Typical examples are fuel combustion and steam condensation processes at thermal
power plants. The problem addressed in the article was the constant change in extreme characteristics due to equipment
aging, surface contamination and uncontrollable factors. Therefore, a mechanism for automatic adaptation to changes
in the system is needed. To solve this problem, the concept of self-tuning control was applied, which combines
continuous parameter identification and control synthesis based on current estimates. The implementation includes an
optimal predictor that forecasts the future output several steps ahead by decomposing the transfer function of
disturbances using the Wiener-Hopf method into future (unpredictable) and past (known) components. The synthesis
of the controller is based on the equality of the predicted and desired values, which gives a nonlinear equation with a
square root. Periodic sign change before the root provides excitation of the system to improve identification. Constraints
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are taken into account by projecting the control to the admissible region. Identification uses a recursive least squares
method in a component-by-component version. Prediction error updates parameter estimates through a covariance
matrix without storing data history. A forgetting factor allows slow parameter changes to be tracked, giving more weight
to fresh data.

An analysis of existing approaches shows that gradient-based optimization methods are most often used to solve
extremal control problems due to their relative simplicity of implementation, low computational requirements, and
ability to operate in real time. However, the literature presents various modifications of gradient methods—from
classical gradient descent to adaptive algorithms with inertia (Momentum, Nesterov) and methods with adaptive
learning rates (RMSProp, Adam). Each of these methods has specific features of convergence, noise resistance, and
speed, which critically affect the efficiency of the control system in the context of anomaly detection. Therefore, it is
advisable to investigate the possibility of using gradient-like optimization methods in control systems based on acoustic
anomaly detection.

3. Formulation of the goal of the paper

The purpose of this work is to study the influence of optimization methods on the efficiency of an extremal control
system based on acoustic anomaly detection. To achieve this goal, an experiment using mathematical modeling methods
is proposed. The work will involve mathematical modeling of the operation of an extremal control system under
identical conditions, using various optimization methods, namely: gradient-like, momentum, Nesterov, RMSProp.

4. Presentation and discussion of the research results
4.1. Description of the conditions for conducting the experiment

The experiment was conducted using mathematical modeling methods, which are described by a first-order
differential equation:

—=-a-y+b-u, (1)

where y is the output variable of the system; u is the control input; b is the amplification coefficient of the control input.

This model is typical for a wide class of technical systems, including thermal processes, hydraulic systems, and
electrical circuits with capacitive loads.

Anomaly generation model

To simulate the occurrence of defects in the system, a stochastic model based on a normal (Gaussian) distribution
was used:

§(t) ~ N(u, 0%, 2)

where u is the mathematical expectation; g2 is the variance of the random variable.

The choice of the normal distribution is justified by its ability to adequately describe the accumulation of small
independent random effects, which corresponds to the nature of most technical malfunctions.

Experiment parameters

The parameters that were used for simulation are presented in Table 1. It includes simulation time, expected system
output value and control value.

Table 1. Parameters of the experiment.

Parameter Value
Simulation duration t€[0;200] s
Number of discretization points 1000
Anomaly occurrence time 100 s
Target output value (y_target) 1.0
Initial control value (u_init) 0.5
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The experimental study was conducted in five stages:

Stage 1. Simulation. The system functioned with nominal parameters (a = 0.5, b = 0.5). The adaptive controller
learning rate was 1pormar = 0.01. This allowed for obtaining the reference characteristics of the transient process and
achieving a steady state.

Stage 2. Activation of the anomaly generator. At a defined moment in time, an additive disturbance was
introduced into the system to model the occurrence of a defect. The intensity and nature of the disturbance were
determined by the parameters of a Gaussian distribution

Stage 3. Anomaly detection. Monitoring of the output variable y(t) was performed, and the deviation from the
target value Y.qrger = 1.0 was recorded. An anomaly was considered detected when the error exceeded the limits of

the allowable band +2%.

Stage 4. Transition to a new steady state. The adaptive controller automatically adjusted the control input u(t)
to compensate for the changes in system parameters and return the output to the target value.

Stage 5. Analysis of the obtained results. For each optimization algorithm, the transient process quality indicators
were calculated:

e settling time;
e overshoot;
o steady-state error.

The modeling time was 200 seconds. During the specified modeling period, an anomaly event was simulated,
after which the control optimization procedure was launched. An extremal control system based on control
optimization, using a gradient-like adaptation law [4], is considered as the basic control system solution:

u(t+1) =u(t) + n(ytarget —y(). 3)

The error, i.e. deviation from the current setpoint (Yiqrger — ¥(t)) was used as the optimization criterion. The
paper investigates the operation of the proposed control system based on the following optimization methods: the
gradient-like optimization algorithm, the Momentum method, Nesterov (Nesterov Accelerated Gradient) method and
RMSProp.

A gradient-like optimization algorithm, in particular gradient descent, is a first-order iterative method for finding
the local minimum of a function. The principle of operation is that at each iteration, the gradient of the function at the
current point is calculated, after which a step is taken in the direction opposite to the gradient, which contributes to a
decrease in the value of the function.

The Momentum method [5] adds inertia to gradient descent. It considers not only the current gradient, but also the
accumulated previous direction of movement (velocity). This allows you to speed up movement in stable directions and
reduce fluctuations during optimization, especially in narrow “valleys” of the loss function.

Nesterov (Nesterov Accelerated Gradient) [6] is an improvement on Momentum and estimates the future position
in advance to make more “far-sighted” steps. The key idea is to first move by inertia (as in Momentum) and then adjust
the step based on the new gradient value at the point where inertia “leads.” This provides faster and more stable
convergence, especially in convex optimization:

RMSProp (Root Mean Squared Propagation) [7] is an adaptive optimization method that applies different learning
rates for each parameter. It uses a moving average of past gradients, which avoids overly small or large steps and
stabilizes learning even in tasks with “noisy” or sparse gradients.

4.2. Results of the basic solution

Figure 1 shows the results of the acoustic anomaly detection system. In the figure, during the first 100 seconds,
the probability of an anomaly in the equipment's operating mode does not exceed 0.2 (20%). After 100 seconds, the
flaw detection system detected an anomaly. Since the anomaly is not peak, it is decided that this is a new operating
mode, and the control optimization procedure for the new mode is started. After adaptation is complete, the current
operating mode is accepted as the new nominal mode, which is why after 110 seconds, the probability of an anomaly
is again below the threshold value.
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Fig. 1. Graph showing the probability of an audio-based defect.

Figure 2 shows a graph of the deviation from the set value. The time to reach a steady state is approximately 50—
60 seconds. After 100 seconds, there is a short-term jump in the error, indicating the presence of an anomaly that
requires optimization of the object control under new conditions. In this case, optimization is performed using the
gradient descent method. The error after 150 seconds is almost zero, which indicates effective optimization and the
ability of the system to adapt.

4. Optimization: error from target y=1
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Fig. 2. Graph of deviation from the set value.

The results of the proposed system are shown in Figure 3. The adaptive system quickly reaches the target level
y=1 and maintains it with high accuracy. When an anomaly occurs, there is a short-term overshoot with an amplitude
of about 0.2 and damped oscillations. Thanks to its adaptive properties, the output stabilizes and returns to the set value.
This indicates the stability of the system and its ability to compensate for disturbances.
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2. System output
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Fig. 3. Transition process of the proposed control system.

4.3. Study of the impact of quality criteria on the efficiency

Figure 4 shows a comparison of the performance of different optimizers in this system. All methods quickly reduce
the absolute error to a level close to the target but differ in their response dynamics. RMSProp demonstrates the fastest
error reduction and the smallest fluctuations after an anomaly, while Momentum and Nesterov have more pronounced
overshoots. Conventional gradient descent (GD) stabilizes more slowly but provides relatively smooth dynamics. In
general, all algorithms can return the system within the stabilization threshold (£2%), which, in our case, is reaching a
steady state, but the effectiveness of their response to perturbations varies significantly.

Absolute error |y - y_target|: comparison of optimizers

T
1.0 i — GD
: Momentum
: —— Nesterov
| —— RMSProp
0.8 : —=- Anomaly

! ~—- Stabilization threshold (+2%)
|
|
|
|

é 0.6 1 :

o |

1] |

=} |

S |

w |

2 |
|
!
|
|
|
|
]
|
|
]
|

]
0 25 50 75 100 125 150 175 200
time, ¢

Fig. 4. Transition process of the proposed control system

Figure 5 shows a comparison of control signals obtained using different optimizers. In the initial phase, all methods
gradually increase the control influence, but RMSProp forms more pronounced fluctuations even before the anomaly
occurs. After the disturbance (t=100 s), GD, Momentum, and Nesterov provide a smoother response with gradual
attenuation of fluctuations, while RMSProp exhibits significant high-frequency fluctuations, indicating its less stable
behavior. In conclusion, it can be noted that classical methods (GD, Momentum, Nesterov) provide more stable and
predictable control, while RMSProp is fast but unstable in its response to external influences. Figure 6 shows the system
output when using different optimization methods. All optimizers achieve the target level, but the dynamics differ.
RMSProp reaches steady state faster than other methods, but its response is accompanied by slight fluctuations.
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Fig. 5. Control signal. Fig. 6. Comparison of system output.

A comparative description is provided in Table 2. This table shows the time that system needs to reach steady
state, the overshoot and the system error across different optimization methods.

Table 2. Optimization methods comparison.

Method Time, s Overshoot, % Steady state error
GD 122.7 22.7 2.05e-05
Momentum 172.7 27.2 0.0069
Nesterov 160.3 26.7 0.0043
RMSProp 103.5 2.9 1.908e-05

5. Conclusion

The extremal control systems using optimization methods have shown high efficiency in achieving and
maintaining target values. Despite the presence of disturbances and anomalies, the system stably restores the steady
state and keeps the output within the acceptable error threshold. This confirms the feasibility of applying such
approaches in real technical objects, where it is important to ensure stability and quick response to changing conditions.

RMSProp demonstrated the best results: minimum time to reach the stabilization threshold (~103 s), very low
overshoot percentage (~3%), and virtually no error in steady state. This indicates its high stability and suitability for
use in systems of this type. However, this optimization method leads to significant oscillatory processes, which can
result in excessive load on the actuator. Gradient Descent (GD) showed acceptable stabilization time (~123 s) and
insignificant steady state error, but has a significant overshoot (~23%). It provides relatively smooth dynamics, but is
inferior to RMSProp in terms of speed and stability. Momentum and Nesterov are characterized by the longest settling
times (173 and 160 seconds) and higher overshoot percentages (~27%), making them less effective for high-speed
systems. They also guarantee low steady-state error, so they can be useful in conditions where a longer transition process
is acceptable.
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JocigkeHHsI BILIMBY METOAIB ONTUMI3allil HA eeKTHBHICTH €KCTPEeMAJIbHOL
CHCTEMH KepPyBaHHS HA OCHOBI ayaianbHOI 1edeKToCKOomil

Amnnpiit CaByna, AuToH KopoTHHCHKUI

Hayionanvnuii mexniunuil ynigepcumem Yrpainu «Kuigcoxuti nonimexuiunuii incmumym imeni leopsa Cikopcbkozo»,
bBepecmeticoxuti npocnexm, 37, Kuis, 03056, Ykpaina

AHoOTaNis

VY po0oTi AOCTIIKY€EThCS BIUIMB METOMIB ONTUMI3allii Ha e(peKTUBHICTh EKCTPEMANIbHOI CHCTEMH KepyBaHHS Ha
OCHOBI ayZiambHOI Je(eKTOCKOMmii. 3ampormoHOBaHAa CHCTEMa 3/JaTHa BHABISTH aHOMANBHI PEXUMH poOOTH
o0JiaiHaHHS IUIIXOM aHaJi3y 3BYKOBHX XapaKTEPHUCTHK Ta aBTOMATHYHO aJlalTyBaTH MapaMeTpH KepyBaHHS ITiJ] HOBI
YMOBHM eKcIutyaraiii. MeTo1oM MaTeMaTHYHOTO MOJICITIOBAHHSI IOCII/PKEHO POOOTY CHCTEMH 3 PI3HUMU arOPUTMaMHU
omnTUMI3allii: TpamieHTHUM cmyckoMm, Momentum, Nesterov Ta RMSProp. Pesynpratin mokasyiors, mo RMSProp
3a0e3nedye HaHIIBUAIINH BUXi Ha ycTaneHud pexnM (103 cexyHnu) 3 MiHIMaIbHIM nepeperymoBaHHasaM (3%), mpote
CYNPOBO/IKYETHCSI 3HAYHUMHU KOJIMBAHHSIMHU KEpyluoro curhainy. KiacuuHuil rpaJi€eHTHHIl CIIyCK JE€MOHCTpYE
NpUIHATHAHN Yac cTabinizanii (123 cexynan) 3 noMipHUM niepeperyiioBantsam (23%). Meronu Momentum ta Nesterov
XapaKTepU3yIOThCS HAWIOBIINM YacoM BcTaHoBIeHHA (173 Ta 160 cekyHn BinmoBimHO). JOoCHiKeHHS TATBEPIKYE
JIOLIbHICTh 3aCTOCYBaHHS E€KCTPEMAbHUX CHUCTEM KEepyBaHHs 3 aJalTHBHOK ONTHUMI3ALI€l0 Ul IiJABHIICHHS
HaJiitHOCTI Ta e(heKTHBHOCTI pOOOTH TEXHOJIOTTYHOTO 00JIaJIHAHHS B yMOBAaX 3MIHHHX PEKHUMIB €KCILTyaTallii.

Kuro4uoBi ciioBa: iHTeNeKTyalbHA CHCTeMa KepyBaHHS, ONTHMI3allis, MaTeMaTHYHEe MOICIIOBAHHS;, TICpeXiTHIH
mpoIiec.
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