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Abstract 

The gas produced from the well under high pressure is fed to a complex preparation unit, where solid impurities 

and water are removed. Purified natural gas contains valuable components such as condensate, as well as heavy 

hydrocarbons, butane and propane. To extract associated components from gas (condensate and heavy hydrocarbons) 

low-temperature separation is used. The temperature regime in the separator is maintained by the energy of the 

compressed gas. When the gas passes through the throttle, due to the Joule-Thomson effect, the pressure and 

temperature decrease. The technological regime in the separator is provided by the single-loop automatic control 

systems for pressure and condensate level control. As shown by the studies carried out by the authors of the paper, the 

low-temperature separation as a control object is characterized by internal cross-links. Their presence significantly 

reduces the efficiency of single-loop control systems. To improve the quality of the control process, an autonomous 

control system for the low-temperature separation process was synthesized. A cross-coupling compensator was 

included in the control circuit of such a system, resulting in two independent single-loop automatic control systems. 

Based on the developed mathematical model, the transfer function of the compensator is synthesized and a method for 

determining the parameters of PI controllers is developed. The essence of the method is that on the complex plane of 

the roots of the characteristic equation, the positions of the roots are determined, which should ensure the desired quality 

of the control process. The placement of the roots is selected from the condition of the minimum of the generalized 

quadratic criterion of the quality of the control process. 

Keywords: low-temperature separation; mathematical model; autonomous system; compensator; PI controller; 

quadratic criterion. 

1. Introduction 

In the case when the gas extracted from the well under high pressure enters the pre-treatment unit, then low-

temperature separation (LTS) is used to separate the condensate from the gas. The decrease in gas temperature, which 

is below the dew point, occurs due to adiabatic expansion of the gas (Thomson-Joule effect). The effectiveness of the 

LTS process depends on the degree of compliance with the technological regulations, which are implemented by means 

of automation. The main technological parameters that affect the technological process are the temperature in the 

separator, the condensate level and the gas pressure in the low-temperature separator. 

The analysis of the dynamic properties of the LTS process showed that there are cross-links between the input and 

output values. The presence of cross-links significantly complicates the automatic control process, since changing the 

task on the first control channel will cause an undesirable change in the output value on the second channel. A similar 

negative event will occur when changing the input value on the second input of the separator control system. 
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The quality of the low-temperature separator control process can be significantly improved by compensating for 

cross-coupling in some way. One possible way to eliminate the negative impact of cross-coupling is to use the 

autonomous control method. 

2. Analysis of literature sources 

The current state of automation of technological processes is characterized by the widespread introduction of 

microprocessor technology for the implementation of complex control algorithms that were inaccessible to traditional 

automation tools, with the help of which single-loop automatic control systems were implemented. In this regard, the 

interest of both scientists and practitioners in methods of automatic control of multidimensional objects, which are quite 

common in oil and gas production, petrochemical, metallurgical, chemical and other industries, has increased. 

The use of single-loop systems for automatic control of complex multidimensional objects did not provide the 

desired quality indicators of the control process [1]. With the advent of microprocessor control tools that can implement 

complex control algorithms, new methods for controlling multidimensional objects were developed. Such methods 

should be divided into two groups. The first of them is the synthesis of control systems in the state space; the second is 

the synthesis in the frequency domain. 

The first group consists of methods of analytical design of regulators (modal control [2], Riccati method [2], [4] – 

[6], 𝐻∞ optimization [2]). The second group includes analytical synthesis of automatic control systems and separation 

of control loops [9] (autonomous control). Systems synthesized using methods of analytical controller design, 

𝐻∞optimization and modal control are static systems in which control errors are nonzero. 

The method of analytical synthesis of automatic control systems assumes that the transfer function of the control 

device is the ratio of two polynomials. The synthesis of such a system is carried out under the condition that the specified 

location of the zeros and poles of the system is achieved and the necessary indicators of the quality of the control 

process are provided. The control device synthesized in this way can have a high order of the transfer function. In [4] 

an example of the synthesis of a control device for an object with a third-order transfer function is given. As a result, a 

control device is obtained, the transfer function of which is of the sixth order, which significantly complicates the 

structure of a controller suitable for implementing such a transfer function. 

Almost all methods of synthesis of control systems for multidimensional objects solve the problem of finding the 

so-called consistency matrix, the purpose of which is to compensate for cross-connections, which makes it possible to 

improve the qualitative and quantitative indicators of the control process. 

The aim of the work is to synthesize an autonomous control system for the LTS process to increase the efficiency 

of condensate separation from produced gas from the well. To achieve the goal, it was necessary to solve the following 

tasks: 

• synthesize a cross-coupling compensator and determine the parameters of its matrix transfer function. 

• for the two obtained independent control loops, find the PI controller tuning parameters and evaluate the quality 

of the low-temperature separator control process. 

3. Synthesis of cross-link compensator 

The synthesis of an autonomous control system involves the inclusion of a cross-coupling compensator with the 

transmission circuit in the control loop 𝑊𝑒𝑞(𝑝) (Fig. 1). The matrix transfer function of the controller 𝑊𝑐𝑙(𝑝) is a 

diagonal matrix whose elements are the transfer functions of the controllers. The matrix transfer function of the system, 

which is depicted in Fig. 1, will be as follows: 

𝑊𝑦𝑢𝑑(𝑝) = (𝐼 +𝑊(𝑝))
−1
𝑊(𝑝),      (1) 

where 𝑊(𝑝) = 𝑊𝑦𝑢(𝑝)𝑊𝑒𝑞(𝑝)𝑊𝑐𝑙(𝑝) is the matrix transfer function of the open system; 𝑊𝑦𝑢(𝑝)is the matrix transfer 

function of the low-temperature separator. 
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Fig. 1. Block diagram of an autonomous control system. 

 

In [1] it is shown that the matrix transfer function for the low-temperature separator problem is as follows: 

𝑊𝑦𝑢 = (𝐼𝑝 − 𝐴)
−1𝐵, 

where 𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

]; 𝐵 = [
0 𝑏12
𝑏21 𝑏22

]. 

Since (𝐼𝑝 − 𝐴)−1 =
1

𝛥(𝑝)
[
𝑝 − 𝑎22 −𝑎12
−𝑎21 𝑝 − 𝑎11

], then 

𝑊𝑦𝑢(𝑝) =
1

𝛥(𝑝)
[
−𝑎12𝑏21 (𝑝 − 𝑎22)𝑏12 − 𝑎12𝑏22

(𝑝 − 𝑎11)𝑏21 (𝑝 − 𝑎11)𝑏22 − 𝑎21𝑏12
].    (2) 

The elements of the matrix transfer function (2) determine the dynamic properties of the transmission channels of 

the effects of input quantities on the outputs of the object. Therefore, 

𝑊𝑦𝑢(𝑝) = [
𝑤11(𝑝) 𝑤12(𝑝)

𝑤21(𝑝) 𝑤22(𝑝)
], 

where 𝑤11(𝑝) = −
𝑎12𝑏21

𝛥(𝑝)
; 𝑤12(𝑝) =

𝑏12𝑝−(𝑎22𝑏12+𝑎12𝑏22)

𝛥(𝑝)
; 𝑤21(𝑝) =

𝑏21𝑝−𝑎11𝑏21

𝛥(𝑝)
; 

𝑤22(𝑝) =
𝑏22𝑝−(𝑎11𝑏22+𝑎21𝑏12)

𝛥(𝑝)
; 𝛥(𝑝) = 𝑝2 − (𝑎11 + 𝑎22)𝑝 + 𝑎11𝑎22 − 𝑎12𝑎21. 

For the control system to be autonomous, it is necessary to have a diagonal transfer matrix of the open system. It 

is known that the sum and product of diagonal matrices also give a diagonal matrix, and the operation of inverting a 

diagonal matrix also generates a diagonal matrix. Indeed, if the matrix 𝑊(𝑝)is diagonal, then the matrix will also be 

diagonal 𝑊𝑦𝑢𝑑(𝑝). 

It was assumed that 𝑊𝑐𝑙(𝑝)is a diagonal matrix. For the matrix 𝑊(𝑝)to be also diagonal, the following condition 

must be met [2]: 

𝑊𝑦𝑢(𝑝)𝑊𝑒𝑞(𝑝) = diag𝑊𝑦𝑢(𝑝), 

where diag𝑊𝑦𝑢(𝑝)is the diagonal matrix obtained from the matrix 𝑊𝑦𝑢(𝑝)after zeroing off-diagonal elements. 

From the last equation we find 

 𝑊𝑒𝑞(𝑝) = 𝑊𝑦𝑢
−1(𝑝)diag𝑊𝑦𝑢(𝑝). (3) 

Formula (3) defines the matrix transfer function of the compensator and shows that the value 𝑊𝑒𝑞(𝑝) depends only 

on the matrix transfer function of the object. 

Let us calculate the matrix transfer function of the compensator. First, we find 

𝑊𝑦𝑢
−1(𝑝) =

1

𝛥𝑤(𝑝)
[
𝑤22(𝑝) −𝑤12(𝑝)

−𝑤21(𝑝) 𝑤11(𝑝)
], 
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where 𝛥𝑤(𝑝) = 𝑤11(𝑝)𝑤22(𝑝) − 𝑤12(𝑝)𝑤21(𝑝); 𝑑𝑖𝑎𝑔𝑊𝑦𝑢(𝑝) = [
𝑤11(𝑝) 0

0 𝑤22(𝑝)
].  

Then 

𝑊𝑒𝑞(𝑝) =
1

𝛥𝑤(𝑝)
[
𝑤22(𝑝) −𝑤12(𝑝)

−𝑤21(𝑝) 𝑤11(𝑝)
] ⋅ [

𝑤11(𝑝) 0

0 𝑤22(𝑝)
]. 

After multiplying the matrices, we get 

 𝑊𝑒𝑞(𝑝) =
1

𝛥𝑤(𝑝)
[
𝑤11(𝑝)𝑤22(𝑝) −𝑤12(𝑝)𝑤22(𝑝)

−𝑤11(𝑝)𝑤21(𝑝) 𝑤11(𝑝)𝑤22(𝑝)
]. (4) 

From the matrix equation (4) we find the transfer functions of individual signal transmission channels from the 

compensator input to its output, i.e. 

𝑤11
(𝑒𝑞)(𝑝) =

𝑤11(𝑝)𝑤22(𝑝)

𝛥𝑤(𝑝)
; 𝑤12

(𝑒𝑞)(𝑝) = −
𝑤12(𝑝)𝑤22(𝑝)

𝛥𝑤(𝑝)
; 

 

𝑤21
(𝑒𝑞)(𝑝) = −

𝑤21(𝑝)𝑤11(𝑝)

𝛥𝑤(𝑝)
; 𝑤22

(𝑒𝑞)(𝑝) = 𝑤11
(𝑒𝑞)(𝑝). 

Let's find the order of the compensator's transfer functions. To do this, we write the object's transfer functions in 

the following form: 𝑤𝑖𝑗(𝑝) =
𝑟𝑖𝑗(𝑝)

𝛥(𝑝)
, 𝑖, 𝑗 = 1,2. Then 𝑤11

(𝑒𝑞)(𝑝) = 𝑤22
(𝑒𝑞)(𝑝) =

1

𝛥𝑤(𝑝)
⋅
𝑟11(𝑝)𝑟22(𝑝)

𝛥2(𝑝)
;  

𝑤12
(𝑒𝑞)(𝑝) = −

1

𝛥𝑤(𝑝)
⋅
𝑟12(𝑝)𝑟22(𝑝)

𝛥2(𝑝)
; 𝑤21

(𝑒𝑞)(𝑝) = −
1

𝛥𝑤(𝑝)
⋅
𝑟21(𝑝)𝑟11(𝑝)

𝛥2(𝑝)
. 

Since 𝛥𝑤(𝑝) =
1

𝛥2(𝑝)
(𝑟11(𝑝)𝑟22(𝑝) − 𝑟12(𝑝)𝑟21(𝑝)), then 

𝑤11
(𝑒𝑞)(𝑝) = 𝑤22

(𝑒𝑞)(𝑝) =
𝑟11(𝑝)𝑟22(𝑝)

𝐷(𝑝)
; 𝑤12

(𝑒𝑞)(𝑝) = −
𝑟12(𝑝)𝑟22(𝑝)

𝐷(𝑝)
; 𝑤21

(𝑒𝑞)(𝑝) = −
𝑟21(𝑝)𝑟11(𝑝)

𝐷(𝑝)
,  (5) 

where 𝐷(𝑝) = 𝑟11(𝑝)𝑟22(𝑝) − 𝑟12(𝑝)𝑟21(𝑝). 

Thus, the order of the transfer functions of the compensator is determined by the order of the products of the 

polynomials 𝑟𝑖𝑗(𝑝)𝑟𝑘𝑙(𝑝), 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1,2}. Since the order of each of the polynomials 𝑟𝑖𝑗(𝑝) is not more than one, the 

order of the product of two polynomials 𝑟𝑖𝑗(𝑝)𝑟𝑘𝑙(𝑝) does not exceed number two. The analysis allows us to state that 

for each transfer function 𝑤𝑖𝑗
(𝑒𝑞)(𝑝), 𝑖, 𝑗 = 1,2 the condition 𝑀 ≤ 𝑁 is satisfied. Here 𝑀 is the order of the polynomial 

of the numerator and 𝑁 is the order of the polynomial of the denominator of the corresponding transfer function. Then 

the condition of the physical implementation of the cross-coupling compensator is satisfied. 

For the transfer functions of the cross-coupling compensator, we have the following values: 𝑀 = 1 for 𝑤11
(𝑒𝑞)(𝑝), 

𝑤22
(𝑒𝑞)(𝑝) and 𝑤21

(𝑒𝑞)(𝑝); 𝑀 = 2 for 𝑤12
(𝑒𝑞)(𝑝); 𝑁 = 2 for all transfer functions 𝑤𝑖𝑗

(𝑒𝑞)(𝑝), 𝑖, 𝑗 = 1,2. 

Conducted research [1] on modeling the NTS process as an automatic control object made it possible to obtain the 

following transfer functions: 

𝑤11(𝑝) =
0.1106

𝑝2+49.42𝑝+0.8282
; 𝑤12(𝑝) =

0.2484𝑝+12.27

𝑝2+49.42𝑝+0.8282
; 

         

𝑤21(𝑝) =
1994𝑝+36.05

𝑝2+49.42𝑝+0.8282
; 𝑤22(𝑝) =

4.396𝑝+289.9

𝑝2+49.42𝑝+0.8282
.   

So, we have: 𝑟11(𝑝) = 0.1106; 𝑟12(𝑝) = 0.2484𝑝 + 12.27; 𝑟21(𝑝) = 1994𝑝 + 36.05;  

𝑟22(𝑝) = 4.396𝑝 + 289.9. 
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Using software developed in the Matlab environment, the transfer functions of the cross-coupling compensator 

were obtained, i.e. 

𝑤11
(𝑒𝑞)(𝑝) = 𝑤22

(𝑒𝑞)(𝑝) = −
0.9812⋅10−3𝑝+0.064711

𝑝2+49.42𝑝+0.8282
; 𝑤12

(𝑒𝑞)(𝑝) =
0.2204⋅10−2𝑝2+0.2543𝑝+7.1811

𝑝2+49.42𝑝+0.8282
; 𝑤21

(𝑒𝑞)(𝑝) =
0.4451𝑝+0.0080462

𝑝2+49.42𝑝+0.8282
. 

Let us now find the transfer function of the closed-loop automatic control system of the LTS process, considering 

the transfer function of the compensator (3). To do this, first we find the transfer function of the open-loop system 

𝑊(𝑝) = diag𝑊𝑦𝑢(𝑝)𝑊𝑐𝑙(𝑝). 

We substitute 𝑊(𝑝) into formula (1). As a result, we obtain 

𝑊𝑦𝑢𝑑(𝑝) = (𝐼 + diag𝑊𝑦𝑢(𝑝)𝑊𝑐𝑙(𝑝))
−1

diag𝑊𝑦𝑢(𝑝)𝑊𝑐𝑙(𝑝). 

The resulting matrix equation in expanded form will be as follows: 

𝑊𝑦𝑢𝑑(𝑝) = [
1 + 𝑤11(𝑝)𝑤11

(𝑐𝑙)(𝑝) 0

0 1 + 𝑤22(𝑝)𝑤22
(𝑐𝑙)(𝑝)

]

−1

[
𝑤11(𝑝)𝑤11

(𝑐𝑙)(𝑝) 0

0 𝑤22(𝑝)𝑤22
(𝑐𝑙)(𝑝)

]. 

After performing the operations of rotating the diagonal matrix and multiplying the matrices, we obtain 

𝑊𝑦𝑢𝑑(𝑝) =

[
 
 
 
𝑤11(𝑝)𝑤11

(𝑐𝑙)(𝑝)

1+𝑤11(𝑝)𝑤11
(𝑐𝑙)(𝑝)

0

0
𝑤22(𝑝)𝑤22

(𝑐𝑙)(𝑝)

1+𝑤22(𝑝)𝑤22
(𝑐𝑙)(𝑝)]

 
 
 

. 

Thus, we obtained the matrix transfer function of the closed-loop system, which is diagonal, which means that the 

two-dimensional system can be considered as two independent systems with the following transfer functions: 

𝑤11
(𝑦𝑢)

(𝑝) =
𝑤11(𝑝)𝑤11

(𝑑)
(𝑝)

1+𝑤11(𝑝)𝑤11
(𝑑)
(𝑝)

;      (6) 

𝑤22
(𝑝𝑢)

(𝑝) =
𝑤22(𝑝)𝑤22

(𝑐)
(𝑝)

1+𝑤22(𝑝)𝑤22
(𝑐𝑙)

(𝑝)
.      (7) 

Since the transfer functions w11(p) and w22(p) of the object (separator) are known, the synthesis of an autonomous 

control system is reduced to determining the transfer function of the compensator, choosing the control law (PI or PID 

law) and determining the tuning parameters for the regulators. 

4. Calculation of the tuning parameters for the regulators of the autonomous control system 

For the first and second control loops, we will choose PI control laws 

𝑤11
(𝑐𝑙)
(𝑝) =

𝐶0
(1)
𝑝+𝐶1

(1)

𝑝
,       (8) 

𝑤22
(𝑐)
(𝑝) =

𝐶0
(2)
𝑝+𝐶1

(2)

𝑝
,       (9) 

where 𝐶0
(𝑖)

, 𝐶1
(𝑖)

 are the controller settings (i = 1, 2). 
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In formulas (6) and (7) the transfer functions of the object are known. Considering the transfer functions of the 

regulators of the first and second circuits (8) and (9), we write the transfer function of the closed-loop system for the 

first and second circuits 

 𝑤11
(𝑦𝑢)

(𝑝) =
𝑏1
(1)
𝐶0
(1)
𝑝+𝑏1

(1)
𝐶1
(1)

𝑝3+𝑎1𝑝
2+(𝑏1

(1)
𝐶0
(1)
+𝑎2)𝑝+𝑏1

(1)
𝐶1
(1),      (10) 

𝑤22
(𝑦𝑢)

(𝑝) =
𝑏0
(2)
𝐶0
(2)
𝑝2+(𝑏0

(2)
𝐶1
(2)
+𝑏1

(2)
𝐶0
(2)
)𝑝+𝑏1

(2)
𝐶1
(2)

𝑝3+(𝑎1+𝑏0
(2)
𝐶0
(2)
)𝑝2+(𝑏0

(2)
𝐶1
(2)
+𝑏1

(2)
𝐶0
(2)
+𝑎2)𝑝+𝑏1

(2)
𝐶1
(2).    (11) 

The parameters for setting the controllers will be determined by the combined method [7], [8], the essence of 

which is that on the p -plane (on the plane of poles) certain values of the poles in the left part of the p -plane are selected 

to achieve the desired properties of the automatic control system. 

Vieta's theorem establishes the relationship between the roots of the characteristic equation of the system and its 

coefficients. Since for the first and second circuits the characteristic equations of the closed system have the same orders 

(n = 3), we will have [7]: 

{
 
 

 
 𝑝1 + 𝑝2 + 𝑝3 = −

𝛼1

𝛼0
,

𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3 =
𝛼2

𝛼0

𝑝1𝑝2𝑝3 = −
𝛼3

𝛼0
.

,      (12) 

The coefficients of the characteristic equation for the first circuit are as follows: 𝛼0 = 1, 𝛼1
(1)
= 𝑎1, 

 𝛼2
(1)
= 𝑎2 + 𝑏1

(1)
𝐶0
(1)

, 𝛼3
(1)
= 𝑏1

(1)
𝐶1
(1)

, where 𝑏1
(1)
= 𝑎12𝑏21, 𝑎1 = −(𝑎11 + 𝑎22), 𝑎2 = 𝑎11𝑎22 − 𝑎12𝑎21. For the 

second circuit: 𝛼0 = 1, 𝛼2
(2)
= 𝑏0

(2)
𝐶1
(2)
+ 𝑏1

(2)
𝐶0
(2)
+ 𝑎2, 𝛼3

(2)
= 𝑏1

(2)
𝐶1
(2)

. 

Since 𝛼0 = 1, we have the following system of equations for the first circuit: 

{

𝑝1 + 𝑝2 + 𝑝3 = −𝛼1,
𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3 = 𝛼2,

𝑝1𝑝2𝑝3 = −𝛼3.
 

Let the roots of the characteristic equation of the first circuit be as follows: 𝑝1 = −𝜋1 + 𝑗𝜁1, 𝑝2 = −𝜋1 − 𝑗𝜁1. 

From the first equation of the system of equations (12) we find 𝑝3 = −(𝑝1 + 𝑝3) − 𝛼1. Considering the values of 

𝑝1 and  𝑝2we have 𝑝3 = 2𝜋1 − 𝛼1
(1)

. 

Considering the value of 𝑝3, the second and the third equation of system (12) will take the following form: 

𝜋1
2 + 𝜁1

2 − 2𝜋1(2𝜋1 − 𝛼1
(1)
) = 𝛼2

(1)
, 

(𝜋1
2 + 𝜁1

2)(2𝜋1 − 𝛼1
(1)
) = −𝛼3

(1)
. 

Let us determine the degree of oscillation of the first circuit of the system 𝜇1 =
𝜁1

𝜋1
. From the last equality we find 

𝜁1 = 𝜋1𝜇1. Considering the values of 𝜁1, 𝛼1
(1)

, 𝛼2
(1)

and 𝛼3
(1)

, we will have 

𝜋1
2𝑟1 − 2𝜋1(2𝜋1 − 𝑎1) = 𝑏1

(1)𝐶0
(1) + 𝑎2, 

𝜋1
2𝑟1(2𝜋1 − 𝑎1) = −𝑏1

(1)𝐶1
(1)

, 

where 𝑟1 = 𝜇1
2 + 1. 
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From the resulting system of equations, we find 

𝐶0
(1) =

1

𝑏1
(1) (𝜋1

2𝑟1 − 2𝜋1(2𝜋1 − 𝑎1) − 𝑎2),         (13) 

𝐶1
(1) = −

1

𝑏1
(1) 𝜋1

2𝑟1(2𝜋1 − 𝑎1),      (14) 

where 𝑏1
(1)
= 𝑎12𝑏21. 

Therefore, the tuning parameters of the primary circuit regulator will be calculated using formulas (13) and (14), 

which are functions of the real part of the roots 𝑝1and 𝑝2 

For the stability of a closed system, the condition 𝑝3 < 0 must be fulfilled or considering the value of 𝑝3 we will have 

0 < 𝜋1 <
𝑎1

2
.       (15) 

In addition to condition (15), it is necessary that the PI controller tuning parameters be positive numbers, i.e. 

𝐶0
(1)
> 0 and 𝐶1

(1)
> 0. 

Now we will find the tuning parameters of the PI controller as a function of the real part 𝜋2of the characteristic 

equation of the second closed loop. We have 

{

𝑝1 + 𝑝2 + 𝑝3 = −𝛼1
(2)
,

𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3 = 𝛼2
(2)

𝑝1𝑝2𝑝3 = −𝛼3
(2)
.

, 

where 𝑝1 = −𝜋2 + 𝑗𝜁2; 𝑝2 = −𝜋2 − 𝑗𝜁2; 𝜇2 =
𝜁2

𝜋2
. 

From the first equation of the obtained system of equations we find 𝑝3 = 2𝜋2 − 𝛼1
(2)

. Considering the value of 

𝛼1
(2)

 we have 

𝑝3 = 2𝜋2 − 𝑎1 − 𝑏0
(2)
𝐶0
(2)

,      (16) 

If we now consider the roots of the characteristic equation 𝑝1, 𝑝2 and the root 𝑝3, which is determined by formula 

(16), and the values of 𝛼2
(2)

and 𝛼3
(2)

, we obtain the following result: 

{
(2𝜋2𝑏0

(2) − 𝑏1
(2))𝑐0

(2) − 𝑏0
(2)𝑐1

(2) = 𝑎2 − 𝜋2
2(𝑟2 − 4) − 2𝜋2𝑎1,

𝜋2
2𝑟2𝑏0

(2)
𝐶0
(2)
− 𝑏1

(2)𝐶1
(2) = 𝜋2

2𝑟2(2𝜋2 − 𝑎1),
   (17) 

where 𝑏0
(2)
= 𝑏22; 𝑏1

(2)
= 𝑎21𝑏12 − 𝑎11𝑏22; 𝑟2 = 𝜇2

2 + 1. 

The system of linear algebraic equations (17) can be represented in the following form: 

{
𝜒11𝐶0

(2)
+ 𝜒12𝐶1

(2)
= 𝑞1,

𝜒21𝑐0
(2)
+ 𝜒22𝑐1

(2)
= 𝑞2.

      (18) 

From (18) we find 

𝐶0
(2)
=

𝜒22𝑞1−𝜒12𝑞2

Δ
,      (19) 

𝐶1
(2)
=

𝜒11𝑞2−𝜒21𝑞1

Δ
 ,     (20) 
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where 𝜒11 = 2𝜋2𝑏0
(2)
− 𝑏1

(2)
; 𝜒12 = −𝑏0

(2)
; 𝜒21 = 𝜋2

2𝑟2𝑏0
(2)

; 𝜒22 = −𝑏1
(2)

; 

𝑞1 = 𝑎2 − 𝜋2
2(𝑟2 − 4) − 2𝜋2𝑎1; 𝑞2 = 𝜋2

2𝑟2(2𝜋2 − 𝑎1); Δ = 𝜒11𝜒22 − 𝜒12𝜒21. 

The stability of the second circuit of the autonomous control system will occur when the following conditions are 

met: 𝐶0
(2)
> 0, 𝐶1

(2)
> 0 and 𝑝3 < 0. From formula (16) we find that 

0 < 𝜋2 <
1

2
(𝑎1 + 𝑏0

(2)
𝐶0
(2)
).        (21) 

Therefore, for both the first and second circuits, the tuning parameters of the PI controllers are functions of the 

real part 𝜋1and 𝜋2 the roots 𝑝1and 𝑝2. 

The values of 𝜋1and 𝜋2 shall be defined in such a way that the generalized integral criterion takes a minimum 

value. Therefore, we will minimize 

𝐽 = ∫ (𝜀2(𝑡) + 𝜏2𝜀̇2(𝑡))
∞

0
𝑑𝑡,      (22) 

where  𝜀(𝑡) is the amount of inconsistency (control error); τ is a constant value that determines the influence of the 

component 𝜀̇2(𝑡) on the quality of the control process. 

We can rewrite criterion (22) in the following form: 

𝐽 = 𝐽1 + 𝜏
2𝐽2,      (23) 

where 𝐽1 = ∫ 𝜀2(𝑡)𝑑𝑡
∞

0
; 𝐽2 = ∫ 𝜀̇2(𝑡)𝑑𝑡

∞

0
. 

The values of the components 𝐽1and 𝐽2can be calculated using tables [7] if the transfer functions of the control 

error and its derivative with respect to the controller task are known. 

The control error transfer function for the first loop was calculated using the following formula: 

𝑊𝜀𝜇
(1)
(𝑝) =

1

1+𝑊𝑜𝑠
(1)
(𝑝)

, 

where 𝑊𝑜𝑠
(1)
(𝑝) is the transfer function of the open system. 

Considering formula (6), we can write 𝑊𝑜𝑠
(1)
(𝑝) = 𝑤11(𝑝)𝑤11

(𝑒𝑙)
(𝑝). Considering the values of  

𝑤11(𝑝) =
𝑏1
(1)

𝑎0
(1)
𝑝2+𝑎1

(1)
𝑝+𝑎2

(1)  and 𝑤11
(𝑒𝑙)
(𝑝) =

𝐶0
(1)
𝑝+𝐶1

(1)

𝑝
, we obtain 

𝑊𝐸𝑢
(1)
(𝑝) =

(𝑎0
(1)
𝑝2+𝑎1

(1)
𝑝+𝑎2

(1)
)𝑝

𝑎0
(1)
𝑝3+𝑎1

(1)
𝑝2+(𝑎2

(1)
+𝑏1

(1)
𝐶0
(1)
)𝑝+𝑏1

(1)
𝐶1
(1).      (24) 

With a single step input 𝑢𝑑
(1)

 (Fig. 1), the Laplace representation of the control error will be as follows: 

E1
(1)
(𝑝) =

𝑎0𝑝
2+𝑎1𝑝+𝑎2

𝛼0
(1)
𝑝3+𝛼1

(1)
𝑝2+𝛼2

(1)
𝑝+𝛼3

(1),      (25) 

where 𝛼0
(1)
= 𝑎0 = 1. 

Now we find the Laplace representation of the derivative of the control error: E1
(1)
(𝑝) = 𝐿[𝜀̇(𝑡)]. 

Since 𝐿[𝜀̇(𝑡)] = 𝑝E(1)(𝑝) − 𝜀(0), then, using the theorem on the initial value of the function, we obtain:  

𝜀(0) = lim
𝑝→∞

𝑝E(1) = 1. 
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Considering the found value of 𝜀(0), we obtain 

𝐸2
(1)
(𝑝) =

𝛽0𝑝
2+𝛽1𝑝+𝛽2

𝛼0
(1)
𝑝3+𝛼1

(1)
𝑝2+𝛼2

(1)
𝑝+𝛼3

(1),      (26) 

where 𝛽0 = 0; 𝛽1 = −𝑏1
(1)
𝐶0
(1)

; 𝛽2 = −𝑏1
(1)
𝐶1
(1)

. 

For the second circuit, using the same algorithm, we determined the Laplace representation of the control error 

and its derivative. Therefore, 

E1
(2)
=

𝑎0𝑝
2+𝑎1𝑝+𝑎2

𝛼0
(2)
𝑝3+𝛼1

(2)
𝑝2+𝛼2

(2)
𝑝+𝛼3

(2),     (27) 

E2
(2)
=

𝜑0𝑝
2+𝜑1𝑝+𝜑2

𝛼0
(2)
𝑝3+𝛼1

(2)
𝑝2+𝛼2

(2)
𝑝+𝛼3

(2),      (28) 

where 𝜑0 = 𝑎1 − 𝛼1
(2)

, 𝜑1 = 𝑎2 − 𝛼2
(2)

, 𝜑2 = −𝛼3
(2)

. 

The analysis of formulas (24) – (28) shows that the difference between the polynomials of the numerators and 

denominators is equal to one. Therefore, using the known values of E1
(𝑖)

, E2
(𝑖)

, i = 1,2 from the table in [7], for the first 

circuit we find: 

𝐽𝑁,1
(1)
= 𝑎0

2𝛼2
(1)
𝛼3
(1)
+ (𝑎1

2 − 2𝑎0𝑎2)𝛼0
(1)
𝛼3
(1)
+ 𝑎2

2𝛼0
(1)
𝛼1
(1)

,      (29) 

𝐽𝑁,2
(1)
= 𝛽0

2𝛼2
(1)
𝛼3
(1)
+ (𝛽1

2 − 2𝛽0𝛽2)𝛼0
(1)
𝛼3
(1)
+ 𝛽2

2𝛼0
(1)
𝛼1
(1)

,    (30) 

𝐽𝐷
(1)
= 2𝛼0

(1)
𝛼3
(1)
(𝛼1

(1)
𝛼2
(1)
− 𝛼0

(1)
𝛼3
(1)
).     (31) 

Since 𝛽0 = 0, then 

𝐽𝑁,2
(1)
= 𝛽1

2𝛼0
(1)
𝛼3
(1)
+ 𝛽2

2𝛼0
(1)
𝛼1
(1)

.        (32) 

For the second control circuit we find 

𝐽𝑁,1
(2)
= 𝑎0

2𝛼2
(2)
𝛼3
(2)
+ (𝑎1

2 − 2𝑎0𝑎2)𝛼0
(2)
𝛼3
(2)
+ 𝑎2

2𝛼0
(2)
𝛼1
(2)

,    (33) 

𝐽𝑁,2
(2)
= 𝜑0

2𝛼2
(2)
𝛼3
(2)
+ (𝜑1

2 − 2𝜑0𝜑2)𝛼0
(2)
𝛼9
(2)
+ 𝜑2

2𝛼0
(2)
𝛼1
(2)

,    (34) 

𝐽𝐷
(2)
= 2𝛼0

(2)
𝛼3
(2)
(𝛼1

(2)
𝛼2
(2)
− 𝛼0

(2)
𝛼3
(2)
).      (35) 

Formulas (27) – (35) determine the generalized quadratic criterion for both the first and second control loops, 

which we present in the following form: 

𝐽(𝑖) =
1

𝐽𝐷
(𝑖) (𝐽𝑁,1

(𝑖)
+ 𝜏𝑖

2𝐽𝑁,2
(𝑖)
), 𝑖 = 1,2     (36) 

The analysis of formulas (27) – (35) shows that the generalized quadratic criterion (36) for both the first and second 

control loops is a function of the position of the roots 𝑃1and 𝑃2on the p -plane, which is determined by the values of 

𝜋1and 𝜋2. 

Let us set the following problem: find such values of 𝜋1and 𝜋2that minimize the generalized quadratic criteria 𝐽(1) 

and 𝐽(2), that is 

min
𝜋1
(1)
≤𝜋𝑖≤𝜋1

(2)
: 𝐽(𝑖)(𝜋𝑖), 𝑖 = 1,2,      (37) 

where 𝜋𝑖
(1)

, 𝜋𝑖
(2)

, are the beginning and end of the interval of the local minimum of the functions 𝐽(𝑖)(𝜋𝑖), 𝑖 = 1,2. 
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The interval of the local minimum of the functions 𝐽(𝑖)(𝜋𝑖) is chosen based on the stability requirement of the 

control system, which is determined by the conditions 𝐶0
(𝑖)
> 0 and 𝐶1

(𝑖)
> 0, 𝑖 = 1,2, as well as relations (15) and (26). 

Using the developed method, software was created in the Matlab environment, with the help of which graphs of 

the dependences 𝐽(1)(𝜋1) and 𝐽(2)(𝜋2)  were constructed (Fig. 2). 

 

Fig. 2. Dependence graphs of 𝐽(1)(𝜋1) and 𝐽(2)(𝜋2). 

From the graphs (Fig. 2) we found the intervals of local minima 𝜋1 ∈ [0.3; 0.45] and 𝜋2 ∈ [0.3; 0.45], which 

contain the minima of the functions 𝐽(1)(𝜋1
∗) and 𝐽(2)(𝜋2). The solution of problem (37) gave the following results: 

𝜋1
∗ = 0.38389, 𝐽(1)(𝜋1

∗) = 2.5007; 𝜋2
∗ = 0.3880, 𝐽(2)(𝜋2

∗) = 2.5071. The values of 𝜋1
∗ and 𝜋2

∗ made it possible to 

determine the optimal tuning parameters 𝐶1
(𝑖)

 and 𝐶0
(𝑖)

,  𝑖 = 1,2 of the PI controllers for the first control loop according 

to formulas (13), (14) and for the second control loop according to formulas (19), (20) (Table 1). 

To assess the quality of the control process, using formulas (10) and (11), graphs of transient processes were 

constructed for the first and second control loops (Fig. 3), from which the quality indicators of the control process were 

determined (Table 1). 

 
Fig. 3. Transient processes for the first and second control loops. 

 

Table 1. Results of calculations of PI controller tuning parameters and control process quality indicators for the first and second 

control loops. 

 C0 C1 𝑡𝑐, s 𝜎, % 

First circuit 12.901 5.0406 15.6 0 

Second circuit 0.33871 0.13233 10.6 0 
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The calculation of the controller tuning parameters and the quality indicators of the control process were performed 

using software developed in the Matlab environment. Thus, the obtained indicators of the quality of the control process 

are satisfactory, since there is no overshoot in both the first and second circuits, and the control time is 15.6 and 10.6 s, 

respectively. 

5. Presentation and discussion of research results 

As a result of mathematical modeling of the low-temperature separation process as an object of automatic control, 

it was established that there are cross-links between control actions and output values (pressure and liquid level in the 

separator). The presence of cross-links reduces the efficiency of single-loop systems for automatic control of the low-

temperature separation process. 

The synthesized compensator makes it possible to eliminate cross-coupling and obtain two single-loop 

independent automatic control systems with PI regulators. 

The tuning parameters of the PI controllers of both the first and second control loops of the autonomous system 

are determined using the developed method of placing the roots of the characteristic equations on the complex p -plane, 

provided that the stability and minimum of the generalized quadratic control criterion are ensured. 

Computer simulation of the autonomous system for automatic control of the low-temperature separation process 

confirmed the high quality of the control process. There is no overshoot in the system. The control time is 15.6 s for 

the first circuit and 10.6 s for the second one. 

The direction of future research will be aimed at determining the structure of the cross-coupling compensator with 

the aim of its implementation on industrial microprocessor automation equipment. 

6. Conclusion 

The transfer functions of the cross-link compensator are determined, based on the condition that the matrix transfer 

function of the closed-loop control system must be diagonal. This condition makes it possible to "eliminate" cross-links 

and obtain two independent control loops with respect to the task influences. 

A method for determining the tuning parameters of PI controllers of an autonomous control system for the low-

temperature separation process by placing the roots of the characteristic equation on the p-plane has been developed. 

The choice of the placement of the roots of the characteristic equations of closed-loop systems of the first and second 

control loops was carried out by minimizing the generalized quadratic criterion of the quality of the control process and 

under the condition of the stability of the autonomous control system. 

Based on the software developed in Matlab environment, the PI controller tuning parameters were calculated 

(using the combined method) and quality indicators of the control process were defined. There is no overshoot in the 

system. The control time is 15.6 s for the first circuit and 10.6 s for the second one. 
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Синтез автоматичної системи керування  

низькотемпературним сепаратором 

Михайло Горбійчук, Ігор Єднак 

Івано-Франківський національний технічний університет нафти і газу,  

вул. Карпатська, 15, м. Івано-Франківськ, Україна, 76019 

Анотація 

Добутий газ із свердловини під високим тиском поступає на установку комплексної підготовки, де 

відбувається вилучення твердих домішок і води. Очищений природний газ має у своєму складі такі цінні 

компоненти як конденсат, а також важкі вуглеводні бутан і пропан. Для вилучення із газу попутних 

компонентів (конденсату і важких вуглеводнів) використовують низькотемпературну сепарацію 

Температурний режим в сепараторі підтримується за рахунок енергії стисненого газу. При проходженні газу 

через дросель внаслідок ефекту Джоуля-Томсона відбувається зниження тиску і температури. Технологічний 

режим в сепараторі забезпечується одноконтурними системами автоматичного керування – тиску і рівня 

конденсату. Як показали дослідження, виконані авторами статті, низькотемпературній сепарації як об’єкта 

керування притаманні внутрішні перехресні зв’язки. Їх наявність значно знижує ефективність одноконтурних 

систем керування. З метою підвищення якості процесу керування в роботі синтезована автономна система 

керування процесом низькотемпературної сепарації. У контур керування такої системи включений 

компенсатор перехресних зв’язків, внаслідок чого отримали дві незалежні одноконтурні системи 

автоматичного керування. На основі розробленої математичної моделі синтезована передавальна функція 

компенсатора та розроблений метод визначення параметрів ПІ-регуляторів. Суть методу у тому, що на 

комплексній площині коренів характеристичного рівняння визначається положення коренів, які повинні 

забезпечити бажану якість процесу керування. Розміщення коренів вибирається із умови мінімуму 

узагальненого квадратичного критерію якості процесу керування.  

Kлючові слова: низькотемпературна сепарація; математична модель; автономна система; компенсатор; 

ПІ-регулятор; квадратичний критерій. 


