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Abstract 

Autonomous navigation of unmanned aerial vehicles (UAVs) in unstructured industrial environments remains 

challenging due to irregular geometry, dynamic obstacles and sensor uncertainty. Classical Simultaneous Localization 

and Mapping (SLAM) systems, though geometrically consistent, often fail under poor initialization, textureless areas 

or reflective surfaces. To overcome these issues, this work proposes a hybrid transformer-geometric framework that 

fuses learned scene priors with keyframe-based SLAM. A TinyViT encoder and lightweight multi-task decoder jointly 

estimate inverse depth, surface normals and semantic segmentation, providing dense geometric and semantic cues that 

stabilize localization and mapping. These priors are incorporated into the SLAM optimization to enhance convergence, 

reject dynamic objects and improve relocalization. The system operates near real-time (~1 FPS) on a Raspberry Pi 5 

CPU, suitable for keyframe-level inference. Experiments show robust localization and consistent mapping in cluttered, 

reflective and dynamic industrial scenes, confirming that transformer-based dense perception effectively complements 

classical SLAM for resource-efficient UAV navigation. 

Keywords: UAV robust control; computer vision; SLAM; transformer-based neural network; autonomous 

navigation; 3D environment understanding. 

1. Introduction 

Autonomous navigation of unmanned aerial vehicles (UAVs) i.e. quadcopters in unstructured industrial 

environments remains a vital task for modern mobile robotics. In such settings, the surrounding scene is typically 

characterized by irregular geometry, varying illumination, dynamic obstacles and sensor noise. These factors lead to 

incomplete or inconsistent sensory data, making real-time localization, mapping, and trajectory planning highly 

uncertain. Moreover, the limited computational resources available on embedded systems further constrain the use of 

computationally intensive algorithms for reliable navigation. 

Conventional Simultaneous Localization and Mapping (SLAM) methods, though widely used, remain limited when 

applied to stochastic and unstructured environments. Traditional feature-based or keyframe-based SLAM approaches rely 

heavily on precise initial conditions and accurate sensor calibration. Without sufficiently accurate initialization, the 

optimization problem behind SLAM may diverge or converge to suboptimal local minima. Furthermore, these methods 

typically assume static or near-static environments, while industrial spaces often contain reflective, transparent or dynamic 

objects that produce unstable key-points and degrade the quality of the generated map. As a result, the robustness and 

reliability of autonomous navigation are significantly reduced under real-world conditions. 
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To address these challenges, recent developments in neural scene understanding offer a promising alternative. 

Transformer-based neural architectures demonstrate exceptional capabilities when capturing long-range dependencies 

and global spatial relationships in both two-dimensional and three-dimensional data. Unlike convolutional networks, 

transformers process visual information through self-attention mechanisms, enabling them to model context and 

uncertainty across the entire visual field. This property is extremely beneficial for unstructured scenes, where local 

geometric cues alone are insufficient for reliable understanding and further autonomous navigation. 

In this work, we propose a transformer-based approach for predicting 3D scene parameters – such as depth, surface 

normal orientation, semantic segmentation, and object class distributions – directly from visual observations. The 

predicted scene structure serves as a prior for keyframe-based SLAM, providing an informed initialization that improves 

convergence stability and reduces localization errors. Additionally, semantic segmentation allows the system to exclude 

points associated with reflective or dynamically moving objects from the optimization process, preventing instability 

in pose estimation. When trained on large-scale datasets encompassing diverse visual contexts, including segmentation 

supervision derived from EfficientSAM, the model demonstrates robust generalization across a wide range of industrial 

environments and illumination conditions. 

The integration of transformer-based scene prediction with traditional SLAM approaches enables a hybrid navigation 

framework that combines the interpretability of geometric methods with deep learning adaptiveness. Such a hybrid approach 

enhances localization robustness, reduces computational overhead and enables more efficient decision-making for 

autonomous quadcopter control in stochastic and dynamically changing unstructured industrial environments. 

2. Analysis of related works 

Autonomous UAV navigation in unstructured and visually challenging industrial environments lies at the 

convergence of geometric SLAM, learning-based perception, and resource-constrained onboard control. Classical 

geometric SLAM-both key-frame and feature-based pipelines (e.g., ORB-style systems, direct dense methods)-remains 

widely used due to well-understood models of camera geometry, principled optimization, and interpretability. However, 

such systems exhibit characteristic failure modes under real-world conditions: poor or ambiguous initialization, 

reflective or transparent surfaces, dynamic obstacles, or high sensor noise [1], [2]. Critically, bundle adjustment and 

pose-graph optimization depend on reasonably accurate initial poses and reliable correspondences. When these 

prerequisites are violated, the resulting non-linear optimization may diverge or converge to incorrect local minima, 

producing tracking dropouts or severely distorted maps [2], [3].  

To alleviate these limitations of purely geometric pipelines, a second class of approaches augments SLAM with 

learned priors. These hybrid geometric-neural methods integrate compact depth codes, CNN-based dense prediction 

models, or latent scene representations into the optimization loop [3], [4]. By providing coarse but globally consistent 

scene structure, such priors improve robustness in weakly textured or ambiguous regions and regularize dense mapping. 

Yet the majority of these approaches still rely on convolutional backbones or low-dimensional latent codes, which 

inherently limit the ability to model long-range spatial dependencies and global context – an important aspect of 

complex industrial scenes with clutter, large structures, and variable lighting.  

A third category, neural SLAM and neural-implicit mapping, replaces explicit geometric representations with 

learned continuous fields. Neural radiance field (NeRF)-inspired methods, neural implicit mapping (e.g., NICE-SLAM) 

and end-to-end learned tracking-mapping architectures [5], [6] can recover high-fidelity scene geometry and 

demonstrate resilience to noise or partial observations. Nevertheless, because these systems typically maintain dense 

neural fields or multi-level feature grids, they suffer from scalability constraints and are difficult to deploy on resource-

limited UAV platforms that require strict real-time guarantees. Although hierarchical latent grids and local implicit 

representations partially mitigate this overhead, integrating these dense neural structures with real-time control 

pipelines and onboard estimation remains an open challenge [7].  

A more recent lineage of SLAM-relevant research investigates transformer-based perception and multimodal 

fusion as a means to enhance mapping inputs. Vision Transformers (ViTs), hierarchical variants such as Swin, as well 

as transformer-based dense predictors and point-cloud transformers (e.g., DPT, Point Transformer) demonstrate strong 

global reasoning capabilities for depth estimation, surface normal prediction, and semantic segmentation [8]–[11]. 

Furthermore, multimodal transformers-such as BEV/3D fusion models (e.g., BEVFormer, TransFusion)-leverage 

global cross-attention to align heterogeneous inputs (RGB, depth, LiDAR, inertial cues) and temporal information, 

which directly aligns with UAV sensing conditions under calibration uncertainty [12]. For tasks central to SLAM, 

transformer-augmented depth and segmentation networks (e.g., AdaBins, DPT, BinsFormer) provide improved 
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accuracy and uncertainty estimation, while large pre-trained models such as SAM and EfficientSAM supply reliable 

masks that enable filtering of dynamic or reflective objects during geometric optimization [13]–[16].  

Finally, learned optimization frameworks represent a distinct category that reinterprets tracking and mapping as 

differentiable iterative refinement. Systems such as DROID-SLAM show that learned, recurrent update rules can 

improve resilience to poor initialization and reduce catastrophic failures without fully replacing the geometric pipeline 

[16]. These frameworks highlight an emerging direction: using learned modules not as end-to-end replacements, but as 

components that supply robust priors or corrections to traditional SLAM optimization. 

Across these SLAM paradigms-geometric, hybrid geometric–neural, neural-implicit, transformer-based 

perception, and learned optimization – emerges a common insight: geometric SLAM remains efficient, explainable, 

and suited to real-time UAV deployment, but its performance degrades in visually challenging conditions; meanwhile, 

fully neural alternatives offer richer scene understanding but often impose prohibitive computational and scalability 

costs. This motivates a balanced strategy in which learning contributes high-level global scene priors while geometric 

optimization maintains accuracy and real-time reliability. The approach proposed in this work follows precisely this 

principle: a transformer-based dense perception module is executed only on keyframes to predict depth, surface 

normals, semantic masks, and uncertainty maps, which then provide informed initialization and robust correspondence 

selection for a conventional key-frame SLAM backend. By restricting learned inference to keyframes and leveraging 

segmentation-aware rejection of unstable points, the system preserves the efficiency and interpretability of geometric 

SLAM while substantially improving convergence stability and robustness in industrial UAV environments 

characterized by reflective materials, dynamic objects and variable lighting. 

3. Algorithms and methods 

This section outlines the proposed hybrid perception and mapping framework, which integrates transformer-based 

dense prediction with traditional keyframe-based SLAM for robust autonomous navigation in unstructured industrial 

environments. The overall system comprises a lightweight transformer encoder-decoder network for multi-task scene 

understanding and a tightly coupled SLAM module that exploits the predicted geometric and semantic priors to improve 

localization stability and mapping fidelity. 

3.1. Overview 

In this work, we propose a hybrid perception and mapping framework designed for autonomous UAV navigation 

in unstructured industrial environments. The framework leverages a transformer-based encoder-decoder architecture to 

generate dense predictions of inverse depth, surface normals, and semantic segmentation from monocular RGB inputs. 

These dense priors are subsequently integrated into a keyframe-based VIO backend to enhance robustness and reduce 

the risk of divergence during bundle adjustment. The high-level architecture is depicted in Fig. 1. A TinyViT backbone 

serves as the lightweight visual encoder, providing multi-scale features to a multi-head decoder.  

 

Fig. 1. High-level architecture of the proposed framework. 
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The decoder outputs three complementary modalities: 

1) Inverse depth maps, providing scene geometry cues even in textureless regions. 

2) Surface normals, enforcing local geometric consistency. 

3) Semantic segmentation masks, facilitating the rejection of dynamic or reflective surfaces. 

The predicted outputs are fused into the SLAM module to guide pose-graph optimization and improve convergence 

reliability. 

3.2. TinyViT backbone and decoder design 

The TinyViT backbone [1] was selected for its balance between representational capacity and computational 

efficiency, enabling deployment on resource-constrained UAV hardware. It processes monocular RGB images to 

extract hierarchical feature representations at multiple spatial resolutions. 

The decoder, shown in Fig. 2, adopts a multi-task structure with three dedicated output branches for inverse depth, 

surface normals, and semantic segmentation. Each branch employs convolutional upsampling with skip connections 

from the corresponding TinyViT layers, thereby maintaining high-resolution spatial information while minimizing 

computational cost. 

 

Fig. 2. Transformer-based network architecture. 

This design enables joint optimization across complementary geometric and semantic cues, which has been shown 

to improve prediction stability and cross-task consistency in dense scene understanding. 

3.3. Data and training 

The model is trained on widely used 3D perception datasets that provide synchronized RGB, depth, normal, and 

semantic labels: 

● NYUv2 [17]: indoor scenes with dense depth and semantic labels. 

● ScanNet [18]: large-scale indoor scans with rich geometry and object classes. 

● TUM-RGBD [19]: sequences suitable for evaluating SLAM performance in dynamic and cluttered 

environments. 

To improve generalization, data augmentations include random cropping, photometric distortion, and horizontal 

flipping. The total loss function is defined as: 

𝐿 = 𝜆𝑑𝐿𝑑𝑒𝑝𝑡ℎ + 𝜆𝑛𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑠 + 𝜆𝑠𝐿𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ,              (1) 

where 𝐿𝑑𝑒𝑝𝑡ℎ  is the L1 loss on inverse depth; 𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑠 is the cosine distance between predicted and ground-truth 

normals; 𝐿𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  is the standard cross-entropy loss; 𝜆𝑑, 𝜆𝑛 , 𝜆𝑠 are the weights (they are tuned empirically to 

balance geometric and semantic supervision). 
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3.4. Integration with SLAM 

The integration between the transformer-based predictor and the geometric SLAM module is central to the 

proposed system. The predicted priors are incorporated at multiple stages of the SLAM pipeline: 

1) Depth and normal priors are used to initialize 3D landmarks in each keyframe, providing improved geometric 

consistency for bundle adjustment. 

2) Segmentation masks filter out features corresponding to reflective, transparent, or dynamic objects (e.g., 

machinery in motion or operator presence), preventing them from corrupting the optimization process. 

3) Uncertainty weighting is introduced by leveraging per-pixel confidence maps from the network to modulate 

residuals in the optimization objective, effectively guiding the solver toward reliable measurements. 

4) Pose refinement employs a modified cost function: 

𝐸 = ∑ 𝑤𝑖‖𝑟𝑖(𝑇)‖2
𝑖  ,                (2) 

where 𝑤𝑖  are confidence weights derived from the neural priors; 𝑟𝑖(𝑇) are photometric and geometric residuals. 

By combining learned priors with geometric optimization, the hybrid system achieves improved convergence from 

poor initial conditions, enhanced map consistency, and increased robustness in the presence of environmental 

uncertainty. An illustration of the fused predictions-depth, normals, and segmentation is shown in Fig. 3, highlighting 

how geometric and semantic cues complement each other to produce reliable scene representations even under 

challenging lighting and cluttered conditions. 

 
a) b) 

 
c) 

 
d) 

Fig. 3. Example predictions from the multi-task decoder: (a) input RGB image, (b) inverse-depth map, (c) surface-normal map, 

and (d) semantic segmentation. 



 Transformer-Based Network for Robust 3D Industrial Environment Understanding in …  

 

215 

3.5. Computational considerations 

The proposed architecture is designed with the computational limitations of embedded onboard systems in mind. 

In particular, the entire inference pipeline is capable of running on a Raspberry Pi 5 using CPU-only processing, without 

the need for any dedicated GPU accelerator. Despite the modest computational resources, the transformer-based 

predictor achieves an average throughput of approximately one frame per second. 

Although this frame rate might appear low compared to high-performance computing setups, it remains entirely 

adequate for the target application. The model is invoked exclusively on keyframes, primarily during relocalization or 

loop-closure events within the SLAM pipeline – operations that typically occur at a temporal frequency close to one 

second. Consequently, the computational burden imposed by the neural predictor does not hinder real-time navigation 

or control. 

The TinyViT encoder ensures efficient feature extraction through a compact hybrid convolution-attention design, 

while the multi-task decoder reuses shared feature hierarchies to minimize redundant computation across depth, normal 

and segmentation outputs. As a result, the overall system maintains a favorable trade-off between semantic richness, 

geometric reliability, and energy efficiency, enabling practical onboard deployment on resource-constrained aerial 

platforms. 

4. Conclusion 

This paper introduced a hybrid perception-localization framework designed for UAV navigation in unstructured 

industrial environments, where classical geometric SLAM systems often fail due to poor initialization, textureless 

regions, reflective surfaces or dynamic elements. By combining a lightweight transformer-based encoder (TinyViT) 

with a shared multi-task decoder predicting inverse depth, surface normals and semantic segmentation, the proposed 

method provides rich geometric and semantic priors that guide and stabilize subsequent keyframe-based SLAM 

optimization. 

Unlike purely geometric pipelines, the presented system maintains reliable localization even under partial 

occlusions, illumination changes or non-Lambertian surfaces – conditions common in industrial halls, workshops or 

storage areas. The learned priors supply accurate depth and normal structure in regions where visual features are sparse, 

while segmentation enables selective rejection of unstable or dynamic regions during bundle adjustment. This synergy 

between learned perception and geometric optimization significantly enhances map consistency, pose convergence, and 

relocalization reliability. 

Despite being executed on a low-power embedded platform (Raspberry Pi 5, CPU-only), the neural module 

achieves approximately 1 frame per second, which is fully sufficient given its role in keyframe-level correction rather 

than per-frame tracking. This makes the overall system practical for onboard deployment, satisfying real-time 

constraints while preserving robustness and interpretability. 

In summary, the proposed hybrid approach demonstrates that combining transformer-based dense perception with 

traditional SLAM backends enables robust localization in highly unstructured, cluttered and noisy environments, 

bridging the gap between data-driven scene understanding and precise geometric mapping. This line of research opens 

the way toward fully autonomous UAV systems capable of long-term, stable operation in complex industrial scenarios 

without dependence on external infrastructure or high-end hardware. 
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Нейромережа трансформерного типу для робастного розуміння 

тривимірного промислового середовища в автономних системах БПЛА 

Олексій Кучкін, Артем Сазонов, Ірина Черепанська, Анатолій Жученко 

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», 

просп. Перемоги, 37, м. Київ, 03056, Україна 

Анотація 

Автономна навігація безпілотних літальних апаратів (БПЛА) в неструктурованих промислових 

середовищах залишається складним завданням через нерегулярну геометрію, динамічні перешкоди та 

невизначеність сенсорних даних. Класичні системи SLAM, попри геометричну узгодженість, часто 

виявляються нестійкими за умов поганої ініціалізації, відсутності текстури або наявності віддзеркалювальних 

поверхонь. Щоб подолати ці обмеження, у роботі запропоновано гібридний трансформерно-геометричний 

підхід, який поєднує навчальні апріорні уявлення сцени з ключовим SLAM-конвеєром. Енкодер TinyViT та 

легковаговий мультизадачний декодер спільно оцінюють зворотну глибину, нормалі поверхні та семантичну 

сегментацію, формуючи густі геометричні й семантичні підказки, що стабілізують локалізацію й побудову 

карти. Ці апріорні дані інтегруються в оптимізацію SLAM для прискорення збіжності, відкидання динамічних 

об’єктів та покращення релокалізації. Система працює майже в реальному часі (~1 FPS) на CPU Raspberry Pi 5, 

що робить її придатною для покадрового інференсу. Експерименти демонструють стійку локалізацію та 

консистентне картографування у захаращених, віддзеркалювальних і динамічних промислових сценах, 

підтверджуючи, що трансформерна густинна перцепція ефективно доповнює класичний SLAM для 

ресурсоощадної навігації БПЛА.  

Ключові слова: робастне керування БПЛА; комп’ютерний зір; SLAM; нейронна мережа на основі 

трансформера; автономна навігація; тривимірне розуміння середовища. 
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