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Abstract

Autonomous navigation of unmanned aerial vehicles (UAVs) in unstructured industrial environments remains
challenging due to irregular geometry, dynamic obstacles and sensor uncertainty. Classical Simultaneous Localization
and Mapping (SLAM) systems, though geometrically consistent, often fail under poor initialization, textureless areas
or reflective surfaces. To overcome these issues, this work proposes a hybrid transformer-geometric framework that
fuses learned scene priors with keyframe-based SLAM. A TinyViT encoder and lightweight multi-task decoder jointly
estimate inverse depth, surface normals and semantic segmentation, providing dense geometric and semantic cues that
stabilize localization and mapping. These priors are incorporated into the SLAM optimization to enhance convergence,
reject dynamic objects and improve relocalization. The system operates near real-time (~1 FPS) on a Raspberry Pi 5
CPU, suitable for keyframe-level inference. Experiments show robust localization and consistent mapping in cluttered,
reflective and dynamic industrial scenes, confirming that transformer-based dense perception effectively complements
classical SLAM for resource-efficient UAV navigation.

Keywords: UAV robust control; computer vision; SLAM; transformer-based neural network; autonomous
navigation; 3D environment understanding.

1. Introduction

Autonomous navigation of unmanned aerial vehicles (UAVs) i.e. quadcopters in unstructured industrial
environments remains a vital task for modern mobile robotics. In such settings, the surrounding scene is typically
characterized by irregular geometry, varying illumination, dynamic obstacles and sensor noise. These factors lead to
incomplete or inconsistent sensory data, making real-time localization, mapping, and trajectory planning highly
uncertain. Moreover, the limited computational resources available on embedded systems further constrain the use of
computationally intensive algorithms for reliable navigation.

Conventional Simultaneous Localization and Mapping (SLAM) methods, though widely used, remain limited when
applied to stochastic and unstructured environments. Traditional feature-based or keyframe-based SLAM approaches rely
heavily on precise initial conditions and accurate sensor calibration. Without sufficiently accurate initialization, the
optimization problem behind SLAM may diverge or converge to suboptimal local minima. Furthermore, these methods
typically assume static or near-static environments, while industrial spaces often contain reflective, transparent or dynamic
objects that produce unstable key-points and degrade the quality of the generated map. As a result, the robustness and
reliability of autonomous navigation are significantly reduced under real-world conditions.

* Corresponding author. Email address: a.sazonov@kpi.ua

This paper should be cited as: O. Kuchkin, A. Sazonov, I. Cherepanska, A. Zhuchenko. (2025). Transformer-based
network for robust 3D industrial environment understanding in autonomous UAYV systems. Energy Engineering and
Control Systems, Vol. 11, No. 2, pp. 210 — 216. https://doi.org/10.23939/jeecs2025.02.210



Transformer-Based Network for Robust 3D Industrial Environment Understanding in ... 211

To address these challenges, recent developments in neural scene understanding offer a promising alternative.
Transformer-based neural architectures demonstrate exceptional capabilities when capturing long-range dependencies
and global spatial relationships in both two-dimensional and three-dimensional data. Unlike convolutional networks,
transformers process visual information through self-attention mechanisms, enabling them to model context and
uncertainty across the entire visual field. This property is extremely beneficial for unstructured scenes, where local
geometric cues alone are insufficient for reliable understanding and further autonomous navigation.

In this work, we propose a transformer-based approach for predicting 3D scene parameters — such as depth, surface
normal orientation, semantic segmentation, and object class distributions — directly from visual observations. The
predicted scene structure serves as a prior for keyframe-based SLAM, providing an informed initialization that improves
convergence stability and reduces localization errors. Additionally, semantic segmentation allows the system to exclude
points associated with reflective or dynamically moving objects from the optimization process, preventing instability
in pose estimation. When trained on large-scale datasets encompassing diverse visual contexts, including segmentation
supervision derived from EfficientSAM, the model demonstrates robust generalization across a wide range of industrial
environments and illumination conditions.

The integration of transformer-based scene prediction with traditional SLAM approaches enables a hybrid navigation
framework that combines the interpretability of geometric methods with deep learning adaptiveness. Such a hybrid approach
enhances localization robustness, reduces computational overhead and enables more efficient decision-making for
autonomous quadcopter control in stochastic and dynamically changing unstructured industrial environments.

2. Analysis of related works

Autonomous UAV navigation in unstructured and visually challenging industrial environments lies at the
convergence of geometric SLAM, learning-based perception, and resource-constrained onboard control. Classical
geometric SLAM-both key-frame and feature-based pipelines (e.g., ORB-style systems, direct dense methods)-remains
widely used due to well-understood models of camera geometry, principled optimization, and interpretability. However,
such systems exhibit characteristic failure modes under real-world conditions: poor or ambiguous initialization,
reflective or transparent surfaces, dynamic obstacles, or high sensor noise [1], [2]. Critically, bundle adjustment and
pose-graph optimization depend on reasonably accurate initial poses and reliable correspondences. When these
prerequisites are violated, the resulting non-linear optimization may diverge or converge to incorrect local minima,
producing tracking dropouts or severely distorted maps [2], [3].

To alleviate these limitations of purely geometric pipelines, a second class of approaches augments SLAM with
learned priors. These hybrid geometric-neural methods integrate compact depth codes, CNN-based dense prediction
models, or latent scene representations into the optimization loop [3], [4]. By providing coarse but globally consistent
scene structure, such priors improve robustness in weakly textured or ambiguous regions and regularize dense mapping.
Yet the majority of these approaches still rely on convolutional backbones or low-dimensional latent codes, which
inherently limit the ability to model long-range spatial dependencies and global context — an important aspect of
complex industrial scenes with clutter, large structures, and variable lighting.

A third category, neural SLAM and neural-implicit mapping, replaces explicit geometric representations with
learned continuous fields. Neural radiance field (NeRF)-inspired methods, neural implicit mapping (e.g., NICE-SLAM)
and end-to-end learned tracking-mapping architectures [5], [6] can recover high-fidelity scene geometry and
demonstrate resilience to noise or partial observations. Nevertheless, because these systems typically maintain dense
neural fields or multi-level feature grids, they suffer from scalability constraints and are difficult to deploy on resource-
limited UAV platforms that require strict real-time guarantees. Although hierarchical latent grids and local implicit
representations partially mitigate this overhead, integrating these dense neural structures with real-time control
pipelines and onboard estimation remains an open challenge [7].

A more recent lineage of SLAM-relevant research investigates transformer-based perception and multimodal
fusion as a means to enhance mapping inputs. Vision Transformers (ViTs), hierarchical variants such as Swin, as well
as transformer-based dense predictors and point-cloud transformers (e.g., DPT, Point Transformer) demonstrate strong
global reasoning capabilities for depth estimation, surface normal prediction, and semantic segmentation [8]-[11].
Furthermore, multimodal transformers-such as BEV/3D fusion models (e.g., BEVFormer, TransFusion)-leverage
global cross-attention to align heterogeneous inputs (RGB, depth, LiDAR, inertial cues) and temporal information,
which directly aligns with UAV sensing conditions under calibration uncertainty [12]. For tasks central to SLAM,
transformer-augmented depth and segmentation networks (e.g., AdaBins, DPT, BinsFormer) provide improved
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accuracy and uncertainty estimation, while large pre-trained models such as SAM and EfficientSAM supply reliable
masks that enable filtering of dynamic or reflective objects during geometric optimization [13]-[16].

Finally, learned optimization frameworks represent a distinct category that reinterprets tracking and mapping as
differentiable iterative refinement. Systems such as DROID-SLAM show that learned, recurrent update rules can
improve resilience to poor initialization and reduce catastrophic failures without fully replacing the geometric pipeline
[16]. These frameworks highlight an emerging direction: using learned modules not as end-to-end replacements, but as
components that supply robust priors or corrections to traditional SLAM optimization.

Across these SLAM paradigms-geometric, hybrid geometric—neural, neural-implicit, transformer-based
perception, and learned optimization — emerges a common insight: geometric SLAM remains efficient, explainable,
and suited to real-time UAV deployment, but its performance degrades in visually challenging conditions; meanwhile,
fully neural alternatives offer richer scene understanding but often impose prohibitive computational and scalability
costs. This motivates a balanced strategy in which learning contributes high-level global scene priors while geometric
optimization maintains accuracy and real-time reliability. The approach proposed in this work follows precisely this
principle: a transformer-based dense perception module is executed only on keyframes to predict depth, surface
normals, semantic masks, and uncertainty maps, which then provide informed initialization and robust correspondence
selection for a conventional key-frame SLAM backend. By restricting learned inference to keyframes and leveraging
segmentation-aware rejection of unstable points, the system preserves the efficiency and interpretability of geometric
SLAM while substantially improving convergence stability and robustness in industrial UAV environments
characterized by reflective materials, dynamic objects and variable lighting.

3. Algorithms and methods

This section outlines the proposed hybrid perception and mapping framework, which integrates transformer-based
dense prediction with traditional keyframe-based SLAM for robust autonomous navigation in unstructured industrial
environments. The overall system comprises a lightweight transformer encoder-decoder network for multi-task scene
understanding and a tightly coupled SLAM module that exploits the predicted geometric and semantic priors to improve
localization stability and mapping fidelity.

3.1. Overview

In this work, we propose a hybrid perception and mapping framework designed for autonomous UAV navigation
in unstructured industrial environments. The framework leverages a transformer-based encoder-decoder architecture to
generate dense predictions of inverse depth, surface normals, and semantic segmentation from monocular RGB inputs.
These dense priors are subsequently integrated into a keyframe-based VIO backend to enhance robustness and reduce
the risk of divergence during bundle adjustment. The high-level architecture is depicted in Fig. 1. A TinyViT backbone
serves as the lightweight visual encoder, providing multi-scale features to a multi-head decoder.

TinyViT Backbone 2 '
In;iu-t“R_GB e Multi-head Decoder

Dense predictions
— —— —
Inverse depth Head i Surface Normals Head [ Semantic segmentation Head

Conv up -> regression : Conw up -> normalize L2 1 Conv up -> softmax (C classes)

IMU data = VIO pipeline

Nx3 Sparse, Keyframe based

Fig. 1. High-level architecture of the proposed framework.
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The decoder outputs three complementary modalities:

1) Inverse depth maps, providing scene geometry cues even in textureless regions.

2) Surface normals, enforcing local geometric consistency.

3) Semantic segmentation masks, facilitating the rejection of dynamic or reflective surfaces.

The predicted outputs are fused into the SLAM module to guide pose-graph optimization and improve convergence
reliability.

3.2. TinyViT backbone and decoder design

The TinyViT backbone [1] was selected for its balance between representational capacity and computational
efficiency, enabling deployment on resource-constrained UAV hardware. It processes monocular RGB images to
extract hierarchical feature representations at multiple spatial resolutions.

The decoder, shown in Fig. 2, adopts a multi-task structure with three dedicated output branches for inverse depth,
surface normals, and semantic segmentation. Each branch employs convolutional upsampling with skip connections
from the corresponding TinyViT layers, thereby maintaining high-resolution spatial information while minimizing
computational cost.

Input RGB

HxWx3

.

Tiny\ViT Backbone

Multiscale feature

T

TinyWIT decoder ———»  Unet-like decoder
Dense positional Semantic segmentation Head | Inverse depth Head Surface Normals Head
embeddings Conv up -> softmax (C classes) Conv up -> regression Conv up -> normalize L2

extracrion

Fig. 2. Transformer-based network architecture.

This design enables joint optimization across complementary geometric and semantic cues, which has been shown
to improve prediction stability and cross-task consistency in dense scene understanding.

3.3. Data and training

The model is trained on widely used 3D perception datasets that provide synchronized RGB, depth, normal, and
semantic labels:

e NYUv2 [17]: indoor scenes with dense depth and semantic labels.
e ScanNet [18]: large-scale indoor scans with rich geometry and object classes.

e TUM-RGBD [19]: sequences suitable for evaluating SLAM performance in dynamic and cluttered
environments.

To improve generalization, data augmentations include random cropping, photometric distortion, and horizontal
flipping. The total loss function is defined as:

L= Adeepth + AnLnormals + AsLsegmentation > (1)

where Lgepep, is the L1 loss on inverse depth; Lygpmais is the cosine distance between predicted and ground-truth
normals; Lgegmentation 18 the standard cross-entropy loss; Ag, Ap, Ag are the weights (they are tuned empirically to
balance geometric and semantic supervision).
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3.4. Integration with SLAM

The integration between the transformer-based predictor and the geometric SLAM module is central to the
proposed system. The predicted priors are incorporated at multiple stages of the SLAM pipeline:

1) Depth and normal priors are used to initialize 3D landmarks in each keyframe, providing improved geometric
consistency for bundle adjustment.

2) Segmentation masks filter out features corresponding to reflective, transparent, or dynamic objects (e.g.,
machinery in motion or operator presence), preventing them from corrupting the optimization process.

3) Uncertainty weighting is introduced by leveraging per-pixel confidence maps from the network to modulate
residuals in the optimization objective, effectively guiding the solver toward reliable measurements.

4) Pose refinement employs a modified cost function:
E =Ziwilln(MI?, (2)

where w; are confidence weights derived from the neural priors; 1;(T) are photometric and geometric residuals.

By combining learned priors with geometric optimization, the hybrid system achieves improved convergence from
poor initial conditions, enhanced map consistency, and increased robustness in the presence of environmental
uncertainty. An illustration of the fused predictions-depth, normals, and segmentation is shown in Fig. 3, highlighting
how geometric and semantic cues complement each other to produce reliable scene representations even under
challenging lighting and cluttered conditions.

d)

Fig. 3. Example predictions from the multi-task decoder: (a) input RGB image, (b) inverse-depth map, (c¢) surface-normal map,
and (d) semantic segmentation.
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3.5. Computational considerations

The proposed architecture is designed with the computational limitations of embedded onboard systems in mind.
In particular, the entire inference pipeline is capable of running on a Raspberry Pi 5 using CPU-only processing, without
the need for any dedicated GPU accelerator. Despite the modest computational resources, the transformer-based
predictor achieves an average throughput of approximately one frame per second.

Although this frame rate might appear low compared to high-performance computing setups, it remains entirely
adequate for the target application. The model is invoked exclusively on keyframes, primarily during relocalization or
loop-closure events within the SLAM pipeline — operations that typically occur at a temporal frequency close to one
second. Consequently, the computational burden imposed by the neural predictor does not hinder real-time navigation
or control.

The TinyViT encoder ensures efficient feature extraction through a compact hybrid convolution-attention design,
while the multi-task decoder reuses shared feature hierarchies to minimize redundant computation across depth, normal
and segmentation outputs. As a result, the overall system maintains a favorable trade-off between semantic richness,
geometric reliability, and energy efficiency, enabling practical onboard deployment on resource-constrained aerial
platforms.

4. Conclusion

This paper introduced a hybrid perception-localization framework designed for UAV navigation in unstructured
industrial environments, where classical geometric SLAM systems often fail due to poor initialization, textureless
regions, reflective surfaces or dynamic elements. By combining a lightweight transformer-based encoder (TinyViT)
with a shared multi-task decoder predicting inverse depth, surface normals and semantic segmentation, the proposed
method provides rich geometric and semantic priors that guide and stabilize subsequent keyframe-based SLAM
optimization.

Unlike purely geometric pipelines, the presented system maintains reliable localization even under partial
occlusions, illumination changes or non-Lambertian surfaces — conditions common in industrial halls, workshops or
storage areas. The learned priors supply accurate depth and normal structure in regions where visual features are sparse,
while segmentation enables selective rejection of unstable or dynamic regions during bundle adjustment. This synergy
between learned perception and geometric optimization significantly enhances map consistency, pose convergence, and
relocalization reliability.

Despite being executed on a low-power embedded platform (Raspberry Pi 5, CPU-only), the neural module
achieves approximately 1 frame per second, which is fully sufficient given its role in keyframe-level correction rather
than per-frame tracking. This makes the overall system practical for onboard deployment, satisfying real-time
constraints while preserving robustness and interpretability.

In summary, the proposed hybrid approach demonstrates that combining transformer-based dense perception with
traditional SLAM backends enables robust localization in highly unstructured, cluttered and noisy environments,
bridging the gap between data-driven scene understanding and precise geometric mapping. This line of research opens
the way toward fully autonomous UAV systems capable of long-term, stable operation in complex industrial scenarios
without dependence on external infrastructure or high-end hardware.
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Heiipomepeska TpancgopmMepHOro Tumy aJjsi po6acTHOr0 po3yMiHHSA
TPUBUMIPHOT0 IPOMMCJIOBOIO Cepel0oBUILA B aBTOHOMHMX cucTtemax BITJIA

Onexkciit Kyukin, Aprem Ca3oHos, Ipuna Uepenancbka, AHaTomnii XKyueHko

Hayionanvuuii mexuiunuii ynigepcumem Yxpainu « Kuigcoxuui nonimexuiynuil incmumym imeni leopsi Cikopcvko2oy,
npocn. Ilepemoeu, 37, m. Kuis, 03056, Ykpaina

AHoTanisa

ABTOHOMHa HaBiraiisi OesmioTHux JitaneHux anapartiB (BIIJIA) B HecTpyKTypOBaHHX IPOMHUCIOBHX
CepellOBUINAX 3aMINAETBCS CKIAJHUM 3aBJIaHHSAM uepe3 HEperyJsipHy TI'€OMETpilo, IUHaMIuHI MEepelikoau Ta
HEBM3HAUCHICTh CEHCOpPHMX JaHmX. Kmacmuni cucremn SLAM, mompu TeoMEeTpHYHY Yy3TOJDKEHICTh, YacTo
BUSIBJISIFOTBCS HECTIMKMMU 32 YMOB TIOTaHOT iHIIiai3a1lii, BIICYTHOCTI TEKCTYpH a00 HasIBHOCTI BiI3epKaTIOBAIILHUX
noBepxoHb. 11106 momonmaTtw 1i 0OMeXeHHs, Y poOOTi 3alpONOHOBAHO TiOPUIHUI TpaHC(HOPMEPHO-TEOMETPUIHUI
MiAXiA, SKAH TMOo€IHy€e HaBUYAIbHI anpiopHi ySIBIEHHA ceHH 3 KiodoBuM SLAM-konBeepom. Enkonep TinyViT Ta
JIETKOBAaroBMi MYJIbTH3aIlauHUM JIEKOJIEp CHIJIBHO OIIHIOIOTH 3BOPOTHY IMTMOMHY, HOpMalli HOBEPXHi Ta CEMAaHTUYHY
CerMeHTalio, (HOpMYyIOUH T'YCTi TE€OMETPHUYHI i CEMaHTHYHI MiIKa3KH, IO CTAaOUTi3yIOTh JIOKadi3amio i moOymoBy
kaptu. Li anpiopHi AaHi iHTErpyOTHCS B onTuMizalito SLAM ais nmpuckopeHHs 301KHOCTI, BIIKUIaHHS JUHAMIYHUX
00’€eKTIB Ta NOKpalleHHs penokanizanii. CucreMa npaiioe Maixe B peansHoMmy 4aci (~1 FPS) na CPU Raspberry Pi 5,
mo pobutk ii mpuaTHOIO Ui MOKaJpoBoro iHdepeHcy. ExcriepuMeHTH AEMOHCTPYIOTH CTiMKy JIOKalizaliio Ta
KOHCUCTEHTHE KapTorpadyBaHHs Yy 3axapalleHWX, BiII3epKaTIOBAILHUX 1 JAMHAMIYHUX TPOMHCIOBUX CIICHAX,
MiATBEP/KYIOUM, IO TpaHCGOpMEpHa TyCTHHHA Iepuentis e(eKTHBHO [ONOBHIOE KiacuyHuii SLAM s
pecypcoorianaoi Hairamii BITJTIA.

KurouoBi cioBa: pobactae kepyBanHs BITJIA; xomm’totepumii 3ip; SLAM; HelipoHHa Mepeka Ha OCHOBI
TpaHcopMepa; aBTOHOMHA HaBirallis; TPUBUMIpHE PO3yMIHHSI CepeIOBHUIIIA.
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