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Abstract. The widespread use of vibrating tables in industry motivates researchers to develop
new, efficient designs that can increase production profitability. For this purpose, the authors present
a new schematic design of a vibrating table with an inertial drive, proposed to be powered by a
hydraulic coupling. The principle of operation is as follows: the driving shaft of the hydraulic
coupling is rotated by an electric motor, while its driven shaft is connected to an unbalanced mass.
In this case, it is assumed that the rotor of the induction electric motor reaches its nominal operating
mode, and the unbalanced speed “locks” near the resonant peak due to processes associated with the
Sommerfeld effect. This enables the automatic maintenance of the forced oscillation frequency near
the pre-resonant regime, thereby implementing energy-saving operating modes in the vibration
system of the vibrating table, without the need for expensive control systems.

A problem arises because the implementation of such a design requires a clear justification of
the inertial, stiffness, and force parameters of the oscillatory system. In addition, it is necessary to
analyze the dynamic characteristics of the oscillatory system. This will enable a priori verification of
the design's operability with the required technological parameters.

This article addresses the issues discussed. For this purpose, the authors present the
methodology for determining the inertial, stiffness, and force parameters of a two-mass resonant
vibrating table with an inertial drive. For the specified operating mode, analytical expressions are
given for determining the amplitudes of mass oscillations, stiffness coefficients of elastic elements,
the amplitude of the excitation force, and unbalance parameters. The dynamic parameters of such an
oscillatory system, namely the dynamic coefficients of the oscillating masses, are analytically
derived and analyzed. A specific example demonstrates the application of the proposed approach to
calculating a two-mass oscillatory system with a force disturbance from a reactive mass. The
amplitude-frequency characteristic of the oscillatory system is constructed and analyzed.

The value of this article lies in presenting a comprehensive methodology for calculating the
vibration systems mentioned. A distinctive feature of this methodology is that it provides refined
analytical expressions for setting the parameters of the vibration system. The material is
accompanied by clear visualization. The presented methodology can be used by engineers when
designing vibration technological equipment of this type.

Keywords: harmonic oscillations, pre-resonant mode, Sommerfeld effect, inertial parameters,
stiffness parameters, force parameters, dynamic coefficient, amplitude-frequency characteristic.
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Introduction

In industry, two-mass vibrating machines with unbalanced vibration exciters are widely used, whose
operating mode is pre-resonant with respect to the natural frequency of the system's oscillations. This mode
allows for significantly reduced power consumption of the drive, as much less energy is spent on setting
the vibrating system into motion, in proportion to the dynamic coefficient of the system. In such vibrating
machines, expensive control systems are used to stabilize the unbalanced rotation frequency in the vicinity
of the resonance peak, which significantly increases the cost of such structures and their maintenance.

Problem Statement

As the capacity of vibration installations increases, the cost of control systems increases
disproportionately. Therefore, eliminating such a component as the control system will make vibration
technological equipment cheaper and significantly reduce the cost of its maintenance and repair.

It is the implementation of a new concept for driving an oscillatory system, in which there will be no
control system, that will enable the solution of the scientific and applied problem of creating inexpensive
and reliable vibration technology equipment.

Review of Modern Information Sources on the Subject of the Paper

Two-mass resonant vibration machines with inertial drives are widely used in material processing,
compaction, feeding, screening, and testing systems due to their high energy efficiency and the ability to
operate near natural frequencies while maintaining large output amplitudes at low energy input. The period
from 2015 to 2025 has shown substantial progress in analytical modeling, nonlinear dynamic analysis,
multi-parameter optimization, and numerical-experimental validation of two-mass resonant systems.

To date, the analytical methods for calculating mechanical oscillating systems are generally
sufficiently described in educational literature [1]. Many years of work by scientists have been included in
the reference literature for engineers and scientists, for example [2].

With the use of existing methods, engineers and scientists are engaged in developing new designs of
vibrating technological equipment [3]; improving existing ones by providing optimal operating modes [4];
implementing optimal trajectories of the movement of the working body [5]; ensuring the necessary
amplitude-frequency characteristics of oscillating systems [6]; investigating dynamic processes in inertial
vibration exciters [7, 8] and improving their characteristics [9]; analyzing mathematical models of
vibration equipment [10]; delving deeply into issues of dynamics [11, 12] and synchronization of inertial
vibration exciters [13]; improving the control processes of inertial vibration exciters [14, 15].

Between 2015 and 2018, several European research groups expanded classical formulations of linear
two-degree-of-freedom resonant systems. A foundational work is [16]. Their analysis formalized linear
differential equations for an inertial exciter operating in frequency ranges close to the primary resonance.
The authors derived explicit expressions for amplitude—frequency characteristics, phase portraits, and
sensitivity to stiffness—mass ratios. Their method enabled the direct computation of optimal tuning
conditions, allowing for maximum amplitude amplification.

In industry, two-mass vibration machines with unbalanced vibration exciters have become
widespread, operating in a pre-resonant mode relative to the natural frequency of the system's oscillations
[17]. This mode enables a significant reduction in the drive's power consumption. In such vibration
machines, to stabilize the unbalanced rotation frequency in the vicinity of the resonant peak, control
systems [14] or complex inertial drive systems [9] are used, which increase the cost of the structures and
their maintenance.

Objectives and Problems of Research

Based on the materials [17, 18], it is proposed to develop a vibrating table with an inertial drive
using a hydraulic coupling. For this purpose, it is proposed that the driving shaft of the hydraulic coupling
be rotated by an electric motor. The driven shaft of the hydraulic coupling is connected to an unbalanced
mass. In this case, it is assumed that the rotor of the induction electric motor will reach its nominal
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operating mode, and the unbalance speed will “lock” near the resonant peak due to processes associated
with the Sommerfeld effect. This will enable the system to automatically maintain the frequency of forced
oscillations near the pre-resonant tuning, thereby implementing energy-saving operating modes in the
vibration system of the vibrating table. Expensive control systems are not required.

The proposed vibrating table (Fig. 1) contains a reactive body 5 with a mass m,, to which an
unbalanced unit 4 with a mass m,; is attached below. The working body 7 with a mass m; is connected to
the reactive body 5 through flat resonant springs 6, the stiftness coefficient of which is ¢, . The structure
is mounted on a fixed base through vibration isolators 8, the stiffness coefficient of which is ¢;, . The
vibration isolators are attached to the working body 7.

The oscillatory system is set in motion as follows. The rotor of the induction electric motor 1 starts
to rotate after it is turned on. Its motion is described by the torque of perturbation M and the angle of
rotation 0. The induction motor drives the drive shaft of the hydraulic coupling 2. The rotation from the
driven shaft of the hydraulic coupling, described by the angle of rotation ¢, is transmitted through the
flexible coupling 3 to the unbalanced mass 4. The alternating force disturbance of the forced oscillations in
the system occurs due to the forced rotation with the circular frequency ® of the unbalanced mass m, , the
center of mass of which is located with an eccentricity » relative to the axis of rotation of the shaft. The
centrifugal force F; that arises is the cause of the alternating force disturbance of the oscillating mass
along the x-axis. The oscillatory motion of the mass m, through the flat resonant springs 6 is transmitted
to the mass my . The masses m; and m, oscillate in antiphase, with amplitudes X; and X,, respectively.
It is assumed that the oscillations of the masses along the y -axis will be small, and therefore these motions
are neglected.

Due to the fact that the unbalanced shaft is located at a certain distance from the center of mass of
the system ¢,,, a disturbance moment arises that rotates the oscillatory system in the xy-plane along the

independent coordinate vy .

i_\
/’i AN e X e
i
i \’J
I - ==
- — | — W,
T . 7
—=— | D) — =
—— g ———1
——— e = —- //71
Wﬁluf’\ —= — = 2

L 2
Fi=mgr o M

Fig. 1. Schematic diagram of a resonant vibrating table with a hydraulic coupling, where:
1 — induction electric motor; 2 — hydraulic coupling; 3 — flexible leaf coupling; 4 — unbalanced mass; 5 —reactive
mass (reactive body); 6 — resonant elastic system; 7 — active mass (working body); 8 — vibration isolators.

Before proceeding with the development of the proposed design, it is necessary to clearly
substantiate the inertial, stiffness, and force parameters of the oscillatory system. In addition, it is necessary
to analyze the dynamic characteristics of such a system in near-resonant operating modes. It is the inertial,
stiffness, and force parameters that are decisive during the operation of the design and determine its
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operability. The authors address these issues in this article. At this stage, the authors are interested in
establishing the parameters of the two-mass resonant oscillatory system. The parameters of the fluid

coupling and electric motor are not the object of these studies.

Main Material Presentation

Consider a two-mass oscillatory system with an inertial
drive subjected to a disturbance from the reactive mass (Fig. 2).
This schematic representation corresponds to the vibrating table
shown in Fig. 1. Force perturbation from the mass m, is the

most appropriate. The system has viscous resistance coefficients
1y and p; , which reflect the dissipation of energy in the

resonant elastic unit and vibration isolators, respectively. The
parameter p; additionally takes into account the viscous

resistance caused by the action of the loading medium on the
working body (mass my ).
The perturbation force
F(t)=Fysin(ot)=my, ro? sin (01)
is applied only to one mass, and its amplitude F, depends on the

frequency, since it is generated by the rotational motion of the
unbalance with a circular frequency ®. This determines the

Fig. 2. Two-mass oscillatory
system with inertial drive

features of these systems. Therefore, the system of equations in complex values has the form:
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is the modulus of the determinant of the coefficient matrix from equation (3); mgg =mymy /(my +my)is
the reduced mass.
Setting the frequency and stiffness parameters. We will use the determinant D (expression (7)) of

the matrix of coefficients. By equating it to zero and neglecting the viscous resistance, we obtain the
expression that sets the dependence of the natural frequencies on system parameters. Writing
D, =(c; +Ciz_mlwz)(clz_mzwz)_clzzzoa (8)
we determine where the function D, (@) crosses the frequency axis . Equation (8) can also be written as
D =t —| S2tC% | Cu o, %l . 9)
' ml m2 ml m2
Since during resonance the frequency of forced oscillations Q coincides with the natural frequency
Q,, assuming o =, , the natural frequencies of the system are obtained as

2

1{cip+c, c 1{cihp+c,, c C1H C;

in ) == 12 iz 12 T |- 12 iz 12 | _ 2%z ] (10)
’ 2 ny no 4 ny noy my myp

As we see, two roots appear, since the system is two-mass and mounted on vibration isolators of stiffness
¢;, - The signs (—) and (+) correspond to the first and second natural frequencies, respectively. According to
(10), the natural frequencies can be determined if the inertial and stiffness parameters are known.

In fact, the system in Fig. 2 is a three-mass system if the foundation mass m, is considered. We

assume the foundation mass is infinitely large and does not participate in oscillations; therefore, it is
omitted. The two-mass system installed on soft vibration isolators does not “feel” them at higher
frequencies, because it operates far above the first resonant peak caused by the isolators. Thus, its working
mode can be regarded as resonant with respect to the first resonance. If it is necessary to take into account
the mass of the foundation m ;, the natural frequencies can be determined from

2
1| ¢jp+c;, c c; 1| ¢jp+c;, ¢ c; Ciy C;
12 T Ciz L2, Ciz T 12 TCiz o2 |, Ciz _ 12 Ci3

Qu1,2=4/7 — - —
2 nmy my m]( 4 nmy my m]( my my m](

(m1 +my +m]() . (11)

Applying the limit as m; — oo, (11) reduces to (10).

When designing vibrating machines, the inertial and stiffness parameters must be chosen to provide
strictly specified natural frequencies. The following approach is used. Assuming vibrating masses m; and
m, are already defined, the natural frequencies Q,; and Q,, are assigned from conditions:

0 =0, =01 Q=" (12
Z;, z
where
z=0.94...098 (13)
— resonant tuning of a two-mass oscillatory system;
z;, =3..5 (14)

— resonant tuning of vibration isolators; Q— frequency of forced oscillations. The unknown parameters
remain ¢, and ¢, . Using (8), we form a system of equations by substituting (12):

{(Clz e —my Q1 zi) ) (e —my (Q/zi)P)~ch=0;
(c1p +cip —my (Q/2)%) (c1g —my (Q/2)*)~cf2 =0.
Solving (13), we obtain:

(15)

2
c,-z=<m1+mz)[3J Z,.. (16)

iz
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where
2 2 m 2 2
zi{(z - lz)+\/(z —z)7 -472 }
m
Z, = : (17)
zz{(zz—zizz)—Zz +\/(z —zlz)2 4m2 ZZZZZ}
m m
Q 2
C|2:£ L J[_j Zp: (18)
m, +m, )\ z
where
(zz+zi22)+\/(zz—zi23)2—4mzzzzizZ
ml
Z,= 7 : (19)
and the equality holds
1
Z =——, or Z,-7Z,=1. (20)

Inserting the necessary parameters into (16) and (18), we determine the stiffnesses ¢, and ensure
that the required natural frequencies and operating modes are obtained. If stiffness ¢;, is sought from a
then, using (8) in the form
(c12 +¢z =m (Q/2)*)(erg =my (Q/2)%) =cfh =0, 1)
we obtain a simpler expression than (18):
5=
z m . (22)

2
ny my Q
=l || —
my +my z Q 2 Ciz
z my +my

Let us note that (16), (18), and (22) are rarely used in practice. To establish ¢, , a simplified

known parameter ¢, ,

notation is usually applied, neglecting the stiffness of vibration isolators. If ¢;; — 0, determinant (8)

becomes my my (Q/z)* —cyy (my +my)=0, from where

2
Q
Cl2 = mag(?J 5 (23)
where the aggregate mass m,, is
__™mm 24
mag my + my ( )

Using (8) again, write

(c1a +cip —my (Q/2:,)*)(epn —my (Q/2,)H)—ch =0,
where

2
Q 2 (ml o J(QJ s
+ .
ciz=(m1+m2){Z—J i Zzlz . (25)
iz Q
mz(} -2
Ziz

Since ¢;, << ¢, (typical in practice), we apply the condition ¢;, — oo, obtaining

0 2
Ciz =My {_J > (26)

Ziz
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where m,,, =m)+m, — the total vibrating mass. Thus, the first natural frequency of the system on
vibration isolators can be determined with high accuracy as

Q , ,
in =" ~ \/ ClZ — \/ ClZ . (27)
Ziz My my +m;

So, if the condition is met c¢;, << ¢, — the first resonant peak at the frequency o =Q,; is caused

almost only by the presence of vibration-isolating elastic elements. The softer they are, the more this peak
is directed towards ® =0, and their stiffness c¢;, will have a negligible effect on the value of the second

natural frequency Q,, of the system.

In fact, the operation of the vibration machine at the first resonance peak is reduced to a single-mass
system formed by a conditionally isolated mass on vibration isolators with a certain stiffness ¢;, . Stiffness

12 >> ¢, , so the system at the frequency Q,; will oscillate as a whole without relative displacement of
the masses m; and m,.

The second resonant peak at the frequency Q,,, which is the working one for us, is formed almost
only by the resonant two-mass oscillatory system formed by the masses m;, m, and the elastic node with
stiffness ¢, , connecting them. Thus, using (23)

Q,, Qa2 | a2 (28)
z mag nmymy
my +nmy

Using determinant (7), the phase shift z- between displacement amplitude and disturbance force is

obtained as

2 2

o pp (07 (my+my)—ci) =0 pi (¢1p —my ©7) , (29)
2 2 2

0~ (m +m2)(012 —Mye © )— Ciz (c1p =My~ ) + ) Hi O

The required amplitude of the disturbance force F, (static moment of inertia of the unbalance

¥ = atan(

my r) to ensure a specified oscillation amplitude ( X or X, ) is derived from (5) and (6):

Fo= Xlnu-o _ XZID|O (30)
0_\/ 2 2 2 \/ 2 4 2 2 2
Ci2 tRi ® mi ® =0 [2m) (c1p +¢;;)— (112 +Riz) ]+ (12 +¢4z)
X, D X, D
mr= 1 (o) _ 2 (o) . (31)

’ wz\jclzz +/J|22 o’ a)z\/mlz o' —0)2[21’1’1] (CIZ +Caz)_(ﬂ|2 +,uiz)2]+(clz +Ciz)2

For such an oscillatory system, using expressions (5) and (6), the ratio of oscillation amplitudes is

ﬁz\/ C122 +H122 o’ (32)
Xy \mf o -0 [2my (crp + )~ (2 + 1) 1+ (i +6)°
Under the boundary condition ® =0 expressions (5) and (6) become:
Xi(o=0) =0; X2(0=0) =0, (33)
and if © - o
Xi(oow) =0 X2 (0—so0) =My 1/ my. (34)

Let us analyze the results obtained in (33) and (34) for their application in establishing the
dynamic coefficients of the system. The complexity of this situation lies in the fact that the static deflection
is zero, because for ® =0 we obtain X740y = X3(=0) =0. Indeed, when the unbalance does not rotate,

there is no inertial force and displacement. But understanding that static deflection is a displacement under
the action of a force without additional reinforcements, we can consider the far-resonant case, when the
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dynamic coefficient in systems with an unbalance drive is equal to unity. For the mass, m, the

displacement in the far-resonant mode is determined according to the second expression from (34). Indeed,

this expression indicates the displacement of the mass only under the action of the disturbance force,
because it can be represented in the form
2
X2 (0ow) = Mal _Td ro; - fo 5, or Fy= m2m2X2(w—>oo)- (35)
m my® mMH®
That is, the disturbance force is counteracted only by the inertial force from the mass movement.
There are no stiffnesses that would indicate the presence of elastic nodes, and therefore, no reinforcement

is required either. Although the mass m; To establish its displacement in a non-dynamic mode, we will
adhere to the above approach kinematically. This is due to the fact that, although the disturbance force F|,

It is not directly applied to the mass; it is still transmitted through the elastic elements. We predict what the

displacement of the mass under the action of the disturbance force would be if it were applied directly to it.
Thus, the hypothetical static displacement is

2
K mgro°  mgr
61 st = 2 = 2 = . (36)
mo mo m

So, dividing expressions (5) and (6) into the corresponding expressions from (34) and (36), we have
the dependences for the mass dynamic coefficients m; and m,:

2 [2 . 2 2
ho = XL mOTyC TR O
1

= = ; (37)
6lst D-O
2 = X, m, o’ \/ml2 oN _w2[2m1 (cpy +¢;,)— (1, +/Jaz)2]+(c1z +Ciz)2 38
5 - , 38)
2st

(o]

where D, is established according to (7). At the limits, expressions (37) and (38) take on the following
values:

M(w=0) =05 22(0=0) =05 A(oow) =05 Aa(gse0) =1 (39)
Case with viscous resistance only in the resonant elastic node. The corresponding diagram is shown
in Fig. 3. For such a case, the complex amplitudes of oscillations, taking (4) as a basis, can be determined

as follows:
_ -1
2 , :
{)_(1}: MmO +cpp FIOU —Cl2 TIOU {2} (40)
X> —Cpp —ioup —my o +cpy Hiopp, Fo

_|

o

=5
? < F

2

]

X
%Ol

Fig. 3. Idealized diagram of a two-mass
oscillatory system with an unbalanced drive
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The solution to (40) will be the following modules of the oscillation amplitudes:

2 2 2 2
X, =— Fo \/ ciz +(1120) ___mgr ciz +(1120) L @4
2 2,2 2 2.2 2
o (my +my) | (12 =Mz ©7)" +(1120) mytmy \(crp —myg ©)7 +(1p0)
2.2 2 2.2 2
Y. - Fo (clo=mo”)" +(up0)” _ mgr | (cp=m o) +({,0) 42)
2 2.2 2 2.2 2
o (my+my) \[(c1o=mMge ®°)" +(pppw)” M +My |\ (c1p —mye ©°)° + (1120)

For (41) and (42) at the limiting frequencies, the results obtained for the previous case are valid. The
amplitude values of the disturbance force and the static moments of unbalance, recorded through the
system parameters, are elementary established using expressions (41) and (42). Thus:

2.2 2 2.2 2
(clp—mgg ©7)" +(n1p0) (c12 =mgg ®7)7 +(1120)
Fy = X|0° (m1+m2)\/ = - = X0 (m) +my) <= . (43)
iz +(1120) (cip=mo”)" + (1 p0)
2.2 2 2.2 2
(c12 —mgg ©7)7 +(u120) (c12 =mgg ®)" +(H120)
mdrle(m1+m2)J = 5 = X, (my +my) <= . (44)
iz +(py20) (clz—m )" +(npo)

Dividing expressions (41) and (42) into the corresponding expressions from (34) and (36), we will
determine the mass dynamic coefficients using the following expressions:

2 2
_ mag 12 +(H1203) . (45)

Ay = ;
2,2 2
ny \/(012 —Myg ® )+ (HIZ(’))

2,2 2
m (CIZ_mag(D ) +(H1203)

For expressions (45) and (46) at the limit frequencies, the results obtained for the dynamic
coefficients in the previous case are valid. The natural frequency of the system will be determined by the
simplified expression (28), and the stiffness value ¢, — according to (23). The critical value of the

2.2 2
Ay _Mag \/ (c1p =m ©7)" +(11p0) (46)

resistance coefficient i, , at which no peak will be observed, is established as follows [17]:

Hi2k =+/2C12Myg - 47)

Using the denominator under the root in expressions (45)-(46), the phase shift between the mass
displacement m, and the disturbance force vector F, is found according to the expression

_ Wy
% =atan| ————— . (48)
Clz—magOJ

The resonant frequency at which the maximum of the oscillation amplitude and the dynamic
coefficient is observed is determined by equating the first derivative of @ expressions (45) and (46) to
zero. Therefore, for the mass, my it will be observed at the circular frequency

c12 2 s
Q,=—= | JI+—=—-1, (49)
H12 Cl2 Myg
and for mass m, we will have

m —m 2 2 2mm 2

1 ~Mag 2uip 1 1Mag Uiy

Q,,= 1+ + |2 Tag Mg |1 (50)
my +ms, crp (my +myg) Cip\ M tmyg  Cpp
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It is interesting that for such oscillatory systems, the resonance peaks of the active and reactive
masses are observed at close but different frequencies. Substituting (49) and (50) into (41), (45) and (42),
(46), respectively, one can determine the maximum values of the oscillation amplitudes and dynamic
coefficients at the resonance frequencies for the masses m; and m,, respectively.

Let for the scheme in Fig. 4, in which the oscillating masses m; =200 kg and m, =100 kg are
driven by an unbalanced vibration exciter at the frequency of forced oscillations @ =Q =150 rad/s, it is
necessary to select the stiffness ¢;, of the elastic unit and set the static moment of unbalances m; r so
that the working body (mass m;) develops the oscillation amplitude X; =2 mm. We assume that the
inertial value of the mass m; as a working body already takes into account the mass fraction of the

conditionally attached loading medium. Using (13), we assume that the resonant tuning of the system
z=0.96. Using (24)

ag = mymy [(my +my) = 200-100/(200+100) = 66.7 kg.

my =100 kg

Fig. 4. Calculation scheme of a two-mass oscillatory system
with an unbalanced drive with mass disturbance m

Then the stiffness ¢;, of the elastic node connecting the oscillating masses m; and m,, according

2 2
Q 150 6 N
= =1 =667 —| =1.63-10° —,
a2 m"g(zj (0.96) m

to (23), is equal to

and the viscous drag coefficient i, , using (47), is

My =0.05.[2¢1p myq = 0.05/2-1.63-10°-66.7 =737 N-s/m.

Taking into account (44), the static moment of unbalance, established through the amplitude of
oscillations X of the working body, will be

2\2 2
(CIZ_magQ ) +(HIZQ)
mdr:Xl(m1+m2) 2 2 =
iz +(1129)

(1.63-10% —66.7-1502)2 + (737 -150)>
(1.63-10%)% +(737-150)2

To ensure parameter (51), the unbalance can be made with a mass m; =3 kg, and its center of mass

= 0.002-(200+100)-\/ =0.062 kg'm. (51)

should be located on the radius » =0.02 m = 2 cm relative to the axis of rotation. To determine whether
the calculated parameters will provide the technologically necessary amplitude of oscillations, we will



46 R. Kapalo, O. Lanets, O. Vambol, 1. Derevenko

construct the amplitude-frequency characteristic of the system (Fig. 5a), using expressions (41) and (42).
For our case Fy(®)=my ro’ =0.0620> and the circular frequency varies within o €0...250 rad/s. From

the graphical dependence, we observe that the amplitude of oscillations of the working body at the
frequency of forced oscillations Q = 150 rad/s is X; =2 mm. Indeed, taking the second expression from

(41) as a basis, we obtain
my r e+ (1 Q)2 _ 0062 (1.63-10%)% +(737-150)? ~
(1.63-10% —66.7-150%)? +(737-150)>

X =-

mytmy | (cg = mgg @)% + (i @2 2004100

=-0.002 m,

and if we use the second expression from (42), the amplitude of the oscillations of the reactive mass will be

(cp=m Q)% +(up @ 0062 | (1.63-10°-200-150%)% +(737-150)* _

mdr
X, = _ _
my +my \/(clz—mag 0%)? +(u Q)>  200+100 \/(1.63-106—66.7-1502)2+(737-150)2

=0.0035 m .
Note that in a system with an inertial drive X,/X)#m;/my=200/100=2, the relation of the

amplitudes of mass oscillations is not straightforward. The real ratio of the amplitudes of mass oscillations
can be obtained by dividing expressions (41) and (42) by each other, taking into account (23). We will
have

1.75.  (52)

242 2
ﬁ:—Xl \/ (cp=m Q)" +(11p )" _ [(1.63-10° -200-150%)2 +(737-150)> _
X1 cfy + (112 Q) (1.63-10%)% +(737-150)2

The phase shift between the mass displacement and the disturbance force vector F, is determined

according to (48)

oOH :atan[ 150-7372

g/zatan
1.63-10° —66.7-150>

5 }=0.714 rad=41°.
C12 —mag ()

For the mass m; the resonant peak will be observed at the circular frequency (see expression (49))

2 106 7272
Q, = 2 ||, 22 16310 -\/\/H—Z 7367 -1 =156.06£d,
Hi2 €1 Myg 737 1.63-10° -66.7 s

and for the mass m, we have (see expression (50))

2
o [memag Y 2w . (200—66.7j2+ 2.7372
o my+mgg | cp(myp+mgg) 200+66.7)  1.63-10°-(200+66.7) 156.6 Fad
pz: = = . —_—
1 (2mymge  ud 1 (2:200.66.7  737* s
cp(mp+myg  cpp 1.63-10% 200+66.7 1.63-10°

Substituting the obtained values € ,; and Q,, into the corresponding expressions (41)-(42) and

(45)-(46), we obtain that the maximum values of the amplitude of oscillations and the dynamic coefficient
for the mass m at the resonant frequency Q 1 =156.06 rad/s are:

Xl(Qpl):leax =—2.94Il’111’1; xl(Qpl)lemax=9.46,
and for the mass m, at the resonant frequency Q5 =156.6 rad/s:

XZ(QpZ):XZmax=5-87 mm ; Xz(sz)ZmeaX=9.46.
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X X3 max =2.87mm m =200kg; ©=Q=150rad/s;
], m X max =2.94 mm \ m,=100kg;  myr=0.062kg m;
0.006 R | X=2mm; p,=737Ns/m.
X (@)=2mm E';‘ ==0.96;
0.005T f]
X5 (@) =3.52 mm 'I"X _ omgr | (cp-m o) + (o)’
0.0047 o 2.2 2
. X0)=x0= T | (= mag o) + (o)
L myr Ny
3 my +ny i __mgr o+ (I"LIZ(D)

242 2
0.0020 [-======—mmmmemeeen - (012_mag(0 ) +(|“L12(D)

;XZ(Q)—NO) :m——062 mm
- am o)

2
M~ Mag 2pf

= = 1+
)‘2max('Q) )VZ(Qpl) 9.46 [ml"'mag] 012(m1+mag)
xlmax(g):xl(gpl):9-46 1 (2mlm lvllz]
In| Ay (Q) =5.68 Cip\(Im +Mgg €12
10T

A (Q)=6.44 e || 212, L jeerad

8t 2 (0)= ’:1_1 |—066 Hi2 €12 Mg S
m +m,

____________ : 2! 3, = Mag (c1a—my ) +(u0)°

’ ] (€12~ ) + (120’

------------------ [ ag 12

m _

r )\‘2(0) B ml +m2 :_ 0|33 0122 +(I"L12(D)2
©,)=1 i (C1p —Mag © ) +(120)°
0,)=1 !

1 \! M (@) =1
______________ __J\)-f.___ B o U SR S U
b —————— 7»1(@%)—0

o] 50 100 o, rad/s
rad rad
g = [92 =902 2 150@ / =1563 =
my S ag

Fig. 5. Frequency-domain dependences of the amplitudes of mass oscillations (a) and dynamic coefficients (b) for the
simplified calculation scheme of a two-mass oscillatory system with an unbalanced drive, shown in Fig. 4.

Let us establish the engine power required to ensure the nominal amplitudes of oscillations at the
forced frequency Q. To do this, we use the expression from [17], having first neglected the load mass. So
we get

3 2 2
NN m AT m x5 ) (53)
4n M %)
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Let us establish the components of expression (53). The dynamic coefficients of oscillating masses
(Fig. 5, b), if we use expressions (45) and (46), will be as follows:

j, = e e + (11 0)? _66.7 (1.63-10%)% +(737-150)> 64
my \(c1g —mag )% +(up0)* 100\ (1.63-10° -66.7-150%)* +(737-150)*

rMag | (cp—my 0*)” +(10)° 667 | (1.63:10° =200-150%)* +(737-150)° _ses
m\ (erg = mgg ©*)% +(pw)® 200 Y(1.63-10° ~66.7-150%)* +(737-150)*

If we assume an engine efficiency of 1 =0.8, then the drive power consumption will be

_150%-/6( 200-0.002>  100-0.0035>

408 6.44 5.68
When choosing the type of electric motor, it is necessary to ensure that its power is not less than the
calculated value. This condition is satisfied by an asynchronous electric motor 4 A80B4V 3 with a power
of N =1.5kW, with a synchronous rotational speed of ®; =157 pao/c. However, it is always better to

J:1.42 kW -

choose a motor with a safety margin in 1.1...1.3 times to avoid operation in critical modes. Therefore, we
take the electric motor model 4A90L4VY3 with a power of N =2.2 kW. In any case, excess power will

not harm the operation of the vibrating machine.

Conclusions

In this article, the authors present the methodology for establishing the inertial, stiffness, and force
parameters of a two-mass resonant vibrating table with an inertial drive. For the established operating
mode, analytical expressions are given for determining the amplitudes of mass oscillations, stiffness
coefficients of elastic elements, the amplitude of the disturbance force, and unbalance parameters. The
dynamic parameters of such an oscillatory system, namely the dynamic coefficients of the oscillating
masses, are analytically derived and analyzed. A specific example demonstrates the application of the
proposed approach to calculating a two-mass oscillatory system with a force disturbance from a reactive
mass. The amplitude-frequency characteristic of the oscillatory system is constructed and evaluated.

The value of this article lies in demonstrating a comprehensive methodology for calculating the
mentioned vibration systems. A feature of this methodology is that it provides refined analytical
expressions for setting the parameters of the vibration system. The material is accompanied by clear
visualization. The presented methodology can be used by engineers when designing vibration
technological equipment of this type.
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