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Abstract. The widespread use of vibrating tables in industry motivates researchers to develop 
new, efficient designs that can increase production profitability. For this purpose, the authors present 
a new schematic design of a vibrating table with an inertial drive, proposed to be powered by a 
hydraulic coupling. The principle of operation is as follows: the driving shaft of the hydraulic 
coupling is rotated by an electric motor, while its driven shaft is connected to an unbalanced mass. 
In this case, it is assumed that the rotor of the induction electric motor reaches its nominal operating 
mode, and the unbalanced speed “locks” near the resonant peak due to processes associated with the 
Sommerfeld effect. This enables the automatic maintenance of the forced oscillation frequency near 
the pre-resonant regime, thereby implementing energy-saving operating modes in the vibration 
system of the vibrating table, without the need for expensive control systems. 

A problem arises because the implementation of such a design requires a clear justification of 
the inertial, stiffness, and force parameters of the oscillatory system. In addition, it is necessary to 
analyze the dynamic characteristics of the oscillatory system. This will enable a priori verification of 
the design's operability with the required technological parameters. 

This article addresses the issues discussed. For this purpose, the authors present the 
methodology for determining the inertial, stiffness, and force parameters of a two-mass resonant 
vibrating table with an inertial drive. For the specified operating mode, analytical expressions are 
given for determining the amplitudes of mass oscillations, stiffness coefficients of elastic elements, 
the amplitude of the excitation force, and unbalance parameters. The dynamic parameters of such an 
oscillatory system, namely the dynamic coefficients of the oscillating masses, are analytically 
derived and analyzed. A specific example demonstrates the application of the proposed approach to 
calculating a two-mass oscillatory system with a force disturbance from a reactive mass. The 
amplitude-frequency characteristic of the oscillatory system is constructed and analyzed. 

The value of this article lies in presenting a comprehensive methodology for calculating the 
vibration systems mentioned. A distinctive feature of this methodology is that it provides refined 
analytical expressions for setting the parameters of the vibration system. The material is 
accompanied by clear visualization. The presented methodology can be used by engineers when 
designing vibration technological equipment of this type. 

Keywords: harmonic oscillations, pre-resonant mode, Sommerfeld effect, inertial parameters, 
stiffness parameters, force parameters, dynamic coefficient, amplitude-frequency characteristic. 
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Introduction 
In industry, two-mass vibrating machines with unbalanced vibration exciters are widely used, whose 

operating mode is pre-resonant with respect to the natural frequency of the system's oscillations. This mode 
allows for significantly reduced power consumption of the drive, as much less energy is spent on setting 
the vibrating system into motion, in proportion to the dynamic coefficient of the system. In such vibrating 
machines, expensive control systems are used to stabilize the unbalanced rotation frequency in the vicinity 
of the resonance peak, which significantly increases the cost of such structures and their maintenance. 

Problem Statement 
As the capacity of vibration installations increases, the cost of control systems increases 

disproportionately. Therefore, eliminating such a component as the control system will make vibration 
technological equipment cheaper and significantly reduce the cost of its maintenance and repair. 

It is the implementation of a new concept for driving an oscillatory system, in which there will be no 
control system, that will enable the solution of the scientific and applied problem of creating inexpensive 
and reliable vibration technology equipment. 

Review of Modern Information Sources on the Subject of the Paper 
Two-mass resonant vibration machines with inertial drives are widely used in material processing, 

compaction, feeding, screening, and testing systems due to their high energy efficiency and the ability to 
operate near natural frequencies while maintaining large output amplitudes at low energy input. The period 
from 2015 to 2025 has shown substantial progress in analytical modeling, nonlinear dynamic analysis, 
multi-parameter optimization, and numerical–experimental validation of two-mass resonant systems. 

To date, the analytical methods for calculating mechanical oscillating systems are generally 
sufficiently described in educational literature [1]. Many years of work by scientists have been included in 
the reference literature for engineers and scientists, for example [2]. 

With the use of existing methods, engineers and scientists are engaged in developing new designs of 
vibrating technological equipment [3]; improving existing ones by providing optimal operating modes [4]; 
implementing optimal trajectories of the movement of the working body [5]; ensuring the necessary 
amplitude-frequency characteristics of oscillating systems [6]; investigating dynamic processes in inertial 
vibration exciters [7, 8] and improving their characteristics [9]; analyzing mathematical models of 
vibration equipment [10]; delving deeply into issues of dynamics [11, 12] and synchronization of inertial 
vibration exciters [13]; improving the control processes of inertial vibration exciters [14, 15]. 

Between 2015 and 2018, several European research groups expanded classical formulations of linear 
two-degree-of-freedom resonant systems. A foundational work is [16]. Their analysis formalized linear 
differential equations for an inertial exciter operating in frequency ranges close to the primary resonance. 
The authors derived explicit expressions for amplitude–frequency characteristics, phase portraits, and 
sensitivity to stiffness–mass ratios. Their method enabled the direct computation of optimal tuning 
conditions, allowing for maximum amplitude amplification. 

In industry, two-mass vibration machines with unbalanced vibration exciters have become 
widespread, operating in a pre-resonant mode relative to the natural frequency of the system's oscillations 
[17]. This mode enables a significant reduction in the drive's power consumption. In such vibration 
machines, to stabilize the unbalanced rotation frequency in the vicinity of the resonant peak, control 
systems [14] or complex inertial drive systems [9] are used, which increase the cost of the structures and 
their maintenance. 

Objectives and Problems of Research 
Based on the materials [17, 18], it is proposed to develop a vibrating table with an inertial drive 

using a hydraulic coupling. For this purpose, it is proposed that the driving shaft of the hydraulic coupling 
be rotated by an electric motor. The driven shaft of the hydraulic coupling is connected to an unbalanced 
mass. In this case, it is assumed that the rotor of the induction electric motor will reach its nominal 
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operating mode, and the unbalance speed will “lock” near the resonant peak due to processes associated 
with the Sommerfeld effect. This will enable the system to automatically maintain the frequency of forced 
oscillations near the pre-resonant tuning, thereby implementing energy-saving operating modes in the 
vibration system of the vibrating table. Expensive control systems are not required. 

The proposed vibrating table (Fig. 1) contains a reactive body 5 with a mass 2m , to which an 
unbalanced unit 4 with a mass dm  is attached below. The working body 7 with a mass 1m  is connected to 
the reactive body 5 through flat resonant springs 6, the stiffness coefficient of which is 12с . The structure 
is mounted on a fixed base through vibration isolators 8, the stiffness coefficient of which is izс . The 
vibration isolators are attached to the working body 7. 

The oscillatory system is set in motion as follows. The rotor of the induction electric motor 1 starts 
to rotate after it is turned on. Its motion is described by the torque of perturbation M  and the angle of 
rotation θ . The induction motor drives the drive shaft of the hydraulic coupling 2. The rotation from the 
driven shaft of the hydraulic coupling, described by the angle of rotation φ , is transmitted through the 
flexible coupling 3 to the unbalanced mass 4. The alternating force disturbance of the forced oscillations in 
the system occurs due to the forced rotation with the circular frequency ω  of the unbalanced mass dm , the 
center of mass of which is located with an eccentricity r  relative to the axis of rotation of the shaft. The 
centrifugal force iF  that arises is the cause of the alternating force disturbance of the oscillating mass 
along the x -axis. The oscillatory motion of the mass 2m  through the flat resonant springs 6 is transmitted 
to the mass 1m . The masses 1m  and 2m  oscillate in antiphase, with amplitudes 1X  and 2X , respectively. 
It is assumed that the oscillations of the masses along the y -axis will be small, and therefore these motions 
are neglected.  

Due to the fact that the unbalanced shaft is located at a certain distance from the center of mass of 
the system mc , a disturbance moment arises that rotates the oscillatory system in the xy -plane along the 
independent coordinate γ . 

Fig. 1. Schematic diagram of a resonant vibrating table with a hydraulic coupling, where: 
1 – induction electric motor; 2 – hydraulic coupling; 3 – flexible leaf coupling; 4 – unbalanced mass; 5 – reactive 

mass (reactive body); 6 – resonant elastic system; 7 – active mass (working body); 8 – vibration isolators. 

Before proceeding with the development of the proposed design, it is necessary to clearly 
substantiate the inertial, stiffness, and force parameters of the oscillatory system. In addition, it is necessary 
to analyze the dynamic characteristics of such a system in near-resonant operating modes. It is the inertial, 
stiffness, and force parameters that are decisive during the operation of the design and determine its 
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operability. The authors address these issues in this article. At this stage, the authors are interested in 
establishing the parameters of the two-mass resonant oscillatory system. The parameters of the fluid 
coupling and electric motor are not the object of these studies. 

Main Material Presentation 
Consider a two-mass oscillatory system with an inertial 

drive subjected to a disturbance from the reactive mass (Fig. 2). 
This schematic representation corresponds to the vibrating table 
shown in Fig. 1. Force perturbation from the mass 2m  is the 
most appropriate. The system has viscous resistance coefficients 

12μ  and іzμ , which reflect the dissipation of energy in the 
resonant elastic unit and vibration isolators, respectively. The 
parameter іzμ  additionally takes into account the viscous 
resistance caused by the action of the loading medium on the 
working body (mass 1m ). 

The perturbation force  
)ω(sinω)ω(sin)( 2

0 trmtFtF d==  
is applied only to one mass, and its amplitude 0F  depends on the 
frequency, since it is generated by the rotational motion of the 
unbalance with a circular frequency ω . This determines the 
features of these systems. Therefore, the system of equations in complex values has the form: 
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The complex amplitudes of 1X  and 2X  take the form: 
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The modules of the complex amplitudes 1X  and 2X  will be written as: 
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Fig. 2. Two-mass oscillatory  
system with inertial drive 
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is the modulus of the determinant of the coefficient matrix from equation (3); )/( 2121 mmmmmag += is 

the reduced mass. 
Setting the frequency and stiffness parameters. We will use the determinant D0  (expression (7)) of 

the matrix of coefficients. By equating it to zero and neglecting the viscous resistance, we obtain the 
expression that sets the dependence of the natural frequencies on system parameters. Writing 

2 2 2
12 іz 1 12 2 12D (c c m )(c m ) c 0ω ω= + − − − =1 ,   (8) 

we determine where the function D ( )ω1  crosses the frequency axis ω . Equation (8) can also be written as 
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Since during resonance the frequency of forced oscillations Ω coincides with the natural frequency 
nΩ , assuming nΩω = , the natural frequencies of the system are obtained as 
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As we see, two roots appear, since the system is two-mass and mounted on vibration isolators of stiffness 
іzc . The signs (–) and (+) correspond to the first and second natural frequencies, respectively. According to 

(10), the natural frequencies can be determined if the inertial and stiffness parameters are known. 
In fact, the system in Fig. 2 is a three-mass system if the foundation mass fm  is considered. We 

assume the foundation mass is infinitely large and does not participate in oscillations; therefore, it is 
omitted. The two-mass system installed on soft vibration isolators does not “feel” them at higher 
frequencies, because it operates far above the first resonant peak caused by the isolators. Thus, its working 
mode can be regarded as resonant with respect to the first resonance. If it is necessary to take into account 
the mass of the foundation fm , the natural frequencies can be determined from 
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Applying the limit as ∞→fm , (11) reduces to (10). 
When designing vibrating machines, the inertial and stiffness parameters must be chosen to provide 

strictly specified natural frequencies. The following approach is used. Assuming vibrating masses 1m  and 

2m  are already defined, the natural frequencies 1Ωn  and 2Ωn  are assigned from conditions: 
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where 
098...94.0=z    (13) 

– resonant tuning of a two-mass oscillatory system;
5...3=izz  (14) 

– resonant tuning of vibration isolators; Ω – frequency of forced oscillations. The unknown parameters
remain 12c  and іzc . Using (8), we form a system of equations by substituting (12):
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Solving (13), we obtain: 
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where 
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Inserting the necessary parameters into (16) and (18), we determine the stiffnesses 12c  and ensure 
that the required natural frequencies and operating modes are obtained. If stiffness 12c  is sought from a 
known parameter іzc , then, using (8) in the form 
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we obtain a simpler expression than (18): 
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Let us note that (16), (18), and (22) are rarely used in practice. To establish 12c , a simplified 
notation is usually applied, neglecting the stiffness of vibration isolators. If 0→іzc , determinant (8) 
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Using (8) again, write 
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Since 12ccіz <<  (typical in practice), we apply the condition ∞→12c , obtaining 
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where 21 mmmvm +=  – the total vibrating mass. Thus, the first natural frequency of the system on 
vibration isolators can be determined with high accuracy as 
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So, if the condition is met 12ccіz << – the first resonant peak at the frequency 1Ωω n=  is caused 
almost only by the presence of vibration-isolating elastic elements. The softer they are, the more this peak 
is directed towards 0ω = , and their stiffness іzc  will have a negligible effect on the value of the second 
natural frequency 2Ωn  of the system. 

In fact, the operation of the vibration machine at the first resonance peak is reduced to a single-mass 
system formed by a conditionally isolated mass on vibration isolators with a certain stiffness іzc . Stiffness 

іzcс >>12 , so the system at the frequency 1Ωn  will oscillate as a whole without relative displacement of 

the masses 1m  and 2m . 
The second resonant peak at the frequency 2Ωn , which is the working one for us, is formed almost 

only by the resonant two-mass oscillatory system formed by the masses 1m , 2m  and the elastic node with 
stiffness 12c , connecting them. Thus, using (23) 
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Using determinant (7), the phase shift z  between displacement amplitude and disturbance force is 
obtained as 
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The required amplitude of the disturbance force 0F  (static moment of inertia of the unbalance 
rmd ) to ensure a specified oscillation amplitude ( 1X  or 2X ) is derived from (5) and (6): 
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For such an oscillatory system, using expressions (5) and (6), the ratio of oscillation amplitudes is 
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Under the boundary condition 0ω =  expressions (5) and (6) become: 
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Let us analyze the results obtained in (33) and (34) for their application in establishing the 
dynamic coefficients of the system. The complexity of this situation lies in the fact that the static deflection 
is zero, because for 0ω =  we obtain 0)0ω(2)0ω(1 == == XX . Indeed, when the unbalance does not rotate, 
there is no inertial force and displacement. But understanding that static deflection is a displacement under 
the action of a force without additional reinforcements, we can consider the far-resonant case, when the 
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dynamic coefficient in systems with an unbalance drive is equal to unity. For the mass, 2m  the 
displacement in the far-resonant mode is determined according to the second expression from (34). Indeed, 
this expression indicates the displacement of the mass only under the action of the disturbance force, 
because it can be represented in the form 
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That is, the disturbance force is counteracted only by the inertial force from the mass movement. 
There are no stiffnesses that would indicate the presence of elastic nodes, and therefore, no reinforcement 
is required either. Although the mass 1m  To establish its displacement in a non-dynamic mode, we will 
adhere to the above approach kinematically. This is due to the fact that, although the disturbance force 0F  
It is not directly applied to the mass; it is still transmitted through the elastic elements. We predict what the 
displacement of the mass under the action of the disturbance force would be if it were applied directly to it. 
Thus, the hypothetical static displacement is 
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So, dividing expressions (5) and (6) into the corresponding expressions from (34) and (36), we have 
the dependences for the mass dynamic coefficients 1m  and 2m : 
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where D0  is established according to (7). At the limits, expressions (37) and (38) take on the following 
values: 
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Case with viscous resistance only in the resonant elastic node. The corresponding diagram is shown 

in Fig. 3. For such a case, the complex amplitudes of oscillations, taking (4) as a basis, can be determined 
as follows: 






















++−−−
−−++−=








−

0

1

1212
2

21212

12121212
2

1

2

1 0

μωωμω
μωμωω

Ficmic
icicm

X
X ,  (40) 

Fig. 3. Idealized diagram of a two-mass  
oscillatory system with an unbalanced drive 
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The solution to (40) will be the following modules of the oscillation amplitudes: 
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For (41) and (42) at the limiting frequencies, the results obtained for the previous case are valid. The 
amplitude values of the disturbance force and the static moments of unbalance, recorded through the 
system parameters, are elementary established using expressions (41) and (42). Thus: 
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Dividing expressions (41) and (42) into the corresponding expressions from (34) and (36), we will 
determine the mass dynamic coefficients using the following expressions: 
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For expressions (45) and (46) at the limit frequencies, the results obtained for the dynamic 
coefficients in the previous case are valid. The natural frequency of the system will be determined by the 
simplified expression (28), and the stiffness value 12c  – according to (23). The critical value of the 
resistance coefficient k12μ , at which no peak will be observed, is established as follows [17]: 

agk mc1212 2μ = .                                                             (47) 

Using the denominator under the root in expressions (45)-(46), the phase shift between the mass 
displacement 2m  and the disturbance force vector 0F  is found according to the expression
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The resonant frequency at which the maximum of the oscillation amplitude and the dynamic 
coefficient is observed is determined by equating the first derivative of ω  expressions (45) and (46) to 
zero. Therefore, for the mass, 1m  it will be observed at the circular frequency 
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and for mass 2m  we will have 
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It is interesting that for such oscillatory systems, the resonance peaks of the active and reactive 
masses are observed at close but different frequencies. Substituting (49) and (50) into (41), (45) and (42), 
(46), respectively, one can determine the maximum values of the oscillation amplitudes and dynamic 
coefficients at the resonance frequencies for the masses 1m  and 2m , respectively. 

Let for the scheme in Fig. 4, in which the oscillating masses kg2001 =m  and kg1002 =m  are 
driven by an unbalanced vibration exciter at the frequency of forced oscillations rad/s150Ωω == , it is 
necessary to select the stiffness 12c  of the elastic unit and set the static moment of unbalances rmd  so 
that the working body (mass )1m  develops the oscillation amplitude mmX 21 = . We assume that the 
inertial value of the mass 1m  as a working body already takes into account the mass fraction of the 
conditionally attached loading medium. Using (13), we assume that the resonant tuning of the system 

.96.0=z  Using (24) 
.kg7.66)100200/(100200)/( 2121 =+⋅=+= mmmmmag  

Fig. 4. Calculation scheme of a two-mass oscillatory system  
with an unbalanced drive with mass disturbance 1m  

Then the stiffness 12c  of the elastic node connecting the oscillating masses 1m  and 2m , according 
to (23), is equal to 
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and the viscous drag coefficient 12μ , using (47), is 

== agmc1212 205.0μ s/mN7377.661063.1205.0 6 ⋅=⋅⋅⋅⋅ . 

Taking into account (44), the static moment of unbalance, established through the amplitude of 
oscillations 1X  of the working body, will be 
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To ensure parameter (51), the unbalance can be made with a mass kg3=dm , and its center of mass 
should be located on the radius == m02.0r сm2  relative to the axis of rotation. To determine whether 
the calculated parameters will provide the technologically necessary amplitude of oscillations, we will 
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construct the amplitude-frequency characteristic of the system (Fig. 5a), using expressions (41) and (42). 
For our case 22

0 ω062.0ω)ω( == rmF d  and the circular frequency varies within rad/s250...0ω∈ . From
the graphical dependence, we observe that the amplitude of oscillations of the working body at the 
frequency of forced oscillations =Ω rad/s150  is mm21 =X . Indeed, taking the second expression from 
(41) as a basis, we obtain

=
⋅+⋅−⋅

⋅+⋅
⋅

+
−=

+−

+
+

−= 2226

226

2
12

22
12

2
12

2
12

21
1

)150737()1507.661063.1(
)150737()1063.1(

100200
062.0

)Ωμ()Ω(

)Ωμ(

ag

d

mc
c

mm
rm

X  

m002.0−= ,
and if we use the second expression from (42), the amplitude of the oscillations of the reactive mass will be 
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Note that in a system with an inertial drive 2100/200// 2112 ==≠ mmXX , the relation of the 

amplitudes of mass oscillations is not straightforward. The real ratio of the amplitudes of mass oscillations 
can be obtained by dividing expressions (41) and (42) by each other, taking into account (23). We will 
have 
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The phase shift between the mass displacement and the disturbance force vector 0F  is determined 
according to (48) 

o41rad714.0
1507.661063.1

737150atan
ω

μω
atan 26

2

2
12

12 ≡=










⋅−⋅

⋅
=














−
=

agmc
z . 

For the mass 1m  the resonant peak will be observed at the circular frequency (see expression (49)) 
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and for the mass 2m  we have (see expression (50)) 
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Substituting the obtained values 1Ω p  and 2Ω p  into the corresponding expressions (41)-(42) and 

(45)-(46), we obtain that the maximum values of the amplitude of oscillations and the dynamic coefficient 
for the mass 1m  at the resonant frequency =1Ω p rad/s06.156  are: 

mm94.2)Ω( max111 −== XX p ;    46.9λ)Ω(λ max111 ==p , 

and for the mass 2m  at the resonant frequency =2Ω p rad/s6.156 : 

mm87.5)Ω( max222 == XX p ;     46.9λ)Ω(λ max222 ==p . 
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Fig. 5. Frequency-domain dependences of the amplitudes of mass oscillations (a) and dynamic coefficients (b) for the 
simplified calculation scheme of a two-mass oscillatory system with an unbalanced drive, shown in Fig. 4. 

Let us establish the engine power required to ensure the nominal amplitudes of oscillations at the 
forced frequency Ω . To do this, we use the expression from [17], having first neglected the load mass. So 
we get 
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Let us establish the components of expression (53). The dynamic coefficients of oscillating masses 
(Fig. 5, b), if we use expressions (45) and (46), will be as follows: 
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If we assume an engine efficiency of 8.0η = , then the drive power consumption will be 

kW42.1
68.5
0035.0100

44.6
002.0200

8.04
6150 223

=








 ⋅
+

⋅
⋅

⋅
=N . 

When choosing the type of electric motor, it is necessary to ensure that its power is not less than the 
calculated value. This condition is satisfied by an asynchronous electric motor 3У4B80A4  with a power 
of kW,5.1=N  with a synchronous rotational speed of ./157ω срадs =  However, it is always better to 
choose a motor with a safety margin in 3.1...1.1  times to avoid operation in critical modes. Therefore, we 
take the electric motor model 3У4L90A4  with a power of .kW2.2=N  In any case, excess power will 
not harm the operation of the vibrating machine. 

Conclusions 
In this article, the authors present the methodology for establishing the inertial, stiffness, and force 

parameters of a two-mass resonant vibrating table with an inertial drive. For the established operating 
mode, analytical expressions are given for determining the amplitudes of mass oscillations, stiffness 
coefficients of elastic elements, the amplitude of the disturbance force, and unbalance parameters. The 
dynamic parameters of such an oscillatory system, namely the dynamic coefficients of the oscillating 
masses, are analytically derived and analyzed. A specific example demonstrates the application of the 
proposed approach to calculating a two-mass oscillatory system with a force disturbance from a reactive 
mass. The amplitude-frequency characteristic of the oscillatory system is constructed and evaluated. 

The value of this article lies in demonstrating a comprehensive methodology for calculating the 
mentioned vibration systems. A feature of this methodology is that it provides refined analytical 
expressions for setting the parameters of the vibration system. The material is accompanied by clear 
visualization. The presented methodology can be used by engineers when designing vibration 
technological equipment of this type. 
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