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Abstract. This article presents an analytical and engineering justification for the use of flat 
elastic elements in eccentric-pendulum-type resonant vibration tables. The study addresses the 
design, calculation, and structural optimization of resonant elastic nodes, which ensure directional 
oscillations, define dynamic performance, and determine the durability and reliability of the 
machine. Stiffness and strength calculation procedures are derived for elastic components of 
rectangular and circular cross-sections, considering material properties, geometric parameters, and 
stress constraints under cyclic loading. Analytical results indicate that circular elements experience 
higher bending stresses than rectangular ones for equivalent stiffness, requiring increased length to 
achieve comparable durability. Finite-element simulations validate these findings, confirming the 
superior structural efficiency, lower operating stresses, and enhanced geometric adaptability of flat 
elements. The research provides a rigorous basis for selecting flat elastic components in the design 
of high-performance resonant vibration systems. 

Keywords: stiffness parameters, force parameters, elastic element, stress, geometric 
parameters of an elastic element, bending moment. 

Introduction 
Any vibration machine can be divided into three main components: vibrating masses, elastic units 

(both resonant elements and vibration isolators), and the drive. During engineering design, masses are 
assigned arbitrary geometric parameters and shapes based on the developer's subjective opinion and technical 
requirements. It is often possible to proceed without a careful calculation of their natural vibration modes, 
strength characteristics, and so on. The drive is often selected from vibration exciters unified by the 
manufacturer (mainly based on the frequency of forced oscillations and the excitation force), and it 
practically does not require additional recalculation. Resonant elastic units, however, require not only a 
verified calculation but also high-quality design solutions, careful manufacturing and fastening, and proper 
operation. Therefore, they constitute some of the most critical components of resonant vibration machines. 

Elastic nodes comprise elastic links of vibration machines that connect oscillating masses elastically, 
maintaining them in a given position and providing flexibility between adjacent masses. Elastic nodes are 
designed for specific inertial parameters of masses. Only by properly coordinating the stiffness of elastic 
nodes with the inertial parameters of the interacting masses can an oscillating system with the necessary 
properties be formed. 
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During the rapid development of vibration technology, dozens of varieties of elastic units have been 
tested, whose components include elements of various types and designs, such as elastic elements with 
rectangular and circular cross-sections (rods and torsion bars), coiled springs, rubber gaskets, and 
pneumatic cylinders. There are vibration machines that utilize combined elastic units, which integrate steel 
and rubber elements, as well as other hybrid designs. A characteristic feature of elastic units is that their 
stiffness is significantly lower compared to the stiffness of the masses. A disturbed mechanical oscillatory 
system deforms primarily in these most compliant zones and can be considered as a system of absolutely 
rigid bodies connected by elastic bonds. 

Problem Statement 
The operational reliability and durability of vibration machines largely depend on the quality of the 

design and manufacturing of resonant elastic nodes, their positioning, and the mechanical properties 
attributed to them. The rigidity of such nodes is strictly defined. They serve to provide oscillatory motion 
to masses in near-resonant modes, playing the role of converters of the kinetic energy of mass motion into 
the potential energy of elastic deformation. The potential energy accumulated in them (when the spring is 
in a deformed state) is converted into kinetic energy of mass motion during the restoration of the elastic 
elements. The largest deformations occur in these nodes. No other component of a vibration machine can 
be compared to them in terms of the loads perceived per unit of stiffness. Therefore, when designing 
resonant vibration machines, the greatest attention is paid to calculating these critical nodes. 

Until recently, elastic steels were mainly used as materials for elastic elements. Currently, fiberglass 
is becoming increasingly widespread. Fiberglass has proven itself well: although it is inferior to steel in 
terms of mechanical properties, its main advantage is that it does not require such expensive technological 
operations as grinding, hardening, or annealing to manufacture elastic elements. Additionally, this material 
tolerates alternating loads well, and its multilayer structure effectively prevents crack propagation. In the 
future, mechanics are expected to transition to composite materials whose mechanical properties will be 
equal to those of high-quality steels. This trend is already observed in leading industrial countries, 
especially in the production of high-tech products. 

Fig. 1. Spatial model of an eccentric-pendulum-type vibrating table 
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Today, there is a need to create a vibrating table, the schematic diagram of which is shown in Fig. 1. 
The design of this vibrating table represents an improvement over the development presented in [1]. A 
distinctive feature of this design is the use of resonant elastic elements. The principle of operation is as 
follows. The working body of the vibrating table 1 is connected through resonant elastic elements 4 to the 
reactive body 2, which is mounted on the foundation 9 through vibration isolators 3. A drive shaft 5 is 
installed in the housing of the reactive body 2, on which a pendulum 6 is mounted with eccentricity ε. 
Shaft 5 is driven by an asynchronous electric motor 8 through a flexible coupling 7. The pendulum 6 and 
the reactive body 2 are periodically displaced relative to each other by an amount ε due to the rotation of 
the shaft 5. The working (active) body 1 is kinematically excited by the movement of the reactive body 2. 

To implement a resonant structure, it is necessary to use elastic elements. The authors of this article 
will deal with the issues of analysis and determination of the optimal cross-section of resonant elastic 
elements. 

Review of Modern Information Sources on the Subject of the Paper 
The calculation and engineering of elastic elements – springs, rods, leaf springs, and continuous 

members – represent a central methodological axis in the design of high-performance vibratory machines. 
These works collectively advance the theoretical foundation, modeling strategies, and optimization of 
elastic components operating under resonant, inter-resonant, and vibro-impact regimes. 

Lanets monograph "High-Efficiency Inter-Resonance Vibration Machines with Electromagnetic 
Drive" [2] establishes the fundamental analytical framework for determining stiffness characteristics of 
spring systems employed in dual- and inter-resonance configurations. The monograph emphasizes the 
decomposition of elastic structures into discrete and continuous components, applying linearized and 
nonlinear stiffness models depending on the operating regime. In this work, the derivation of equivalent 
stiffness for complex elastic assemblies enables closed-form expressions for natural frequencies and 
dynamic compliance – parameters essential for high-efficiency operation near resonance. His later 
textbook, "Fundamentals of Analysis and Design of Vibratory Machines" [3], formalizes these methods 
into a design workflow, emphasizing the importance of accurate elastic-element modeling when creating 
machines with narrow operational bandwidths. The textbook highlights analytical rod and beam theory, 
Rayleigh–Ritz approximations, and finite-element-based stiffness estimation as interchangeable tools, 
depending on geometric complexity. 

The modeling perspective is significantly expanded in Kachur et al. [4], who investigate forced 
oscillations of continuous elastic members using PDE-based formulations. Their work utilizes distributed-
parameter elastic models to capture the contributions of bending and axial stiffness under dynamic 
excitation. Modal decomposition techniques enable the reduction of high-order distributed systems to 
manageable computational models while preserving the fidelity of elastic behavior. The integration of 
elastic-member modeling with non-stationary excitation makes this study a relevant extension of Lanets 
earlier discrete-focused formulations. 

Nazarenko and colleagues address elastic behavior under nonlinear and impact-type loading. In their 
monograph on material compaction systems [5], elastic elements are described within hybrid discrete–
continuous assemblies, where stiffness nonlinearity arises from contact losses, prestressing, and geometric 
constraints. Their later article [6] highlights how higher harmonics of technological loads influence 
dynamic stress within elastic subsystems, necessitating refined stiffness modeling that is sensitive to 
amplitude-dependent effects. This contributes a crucial nonlinear correction to classical linear elastic 
analyses. 

The contributions by V.Gursky and I.Kuzio [7-8] focus specifically on flat springs and rod systems, 
which are fundamental elastic components in vibratory machines. In [7], the authors conduct a 
comprehensive analysis of the strength and durability of flat springs subjected to vibro-impact loading. 
Their approach integrates dynamic stiffness, stress concentration modeling, and fatigue assessment, 
offering a detailed methodology for calculating elastic components operating under high-stress gradients. 
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The study [8] investigates rods with intermediate supports under dynamic action, using elastic-beam theory 
to determine stiffness distribution, modal characteristics, and transient deformation – key aspects when 
rods serve as continuous elastic guides or supports. 

The elastic behavior of two-dimensional continuous members is further explored by Maistruk et al. 
[9], who derive the natural frequencies of plate-like elements using combined analytical and numerical 
procedures. Later optimization-oriented studies by Maistruk [12] and Maistruk, Lanets, and Maystruk [13] 
refine the determination of stiffness distributions in continuous sections of vibrating tables. Their research 
introduces shape-optimization frameworks that link geometric parameters to effective stiffness, stress 
fields, and frequency-response characteristics. These works leverage finite-element analysis (aligned with 
methodologies described in Adams and Abraham [10]) and incorporate damping-contact corrections 
inspired by continuous contact models such as those discussed by Poursina and Nikravesh [11]. 

Collectively, these publications form a cohesive, evolving methodology: beginning with 
foundational analytical stiffness modeling, progressing through distributed-parameter and nonlinear 
formulations, and culminating in modern optimization-driven elastic-element design. 

Objectives and Problems of Research 
It has been established that resonant elastic nodes are primarily implemented in the form of elastic 

elements with rectangular or circular cross-sections, as their ends are easily rigidly fastened and it is 
technologically simple to shape them to achieve a given stiffness. The main part of the article is devoted to 
establishing the advantages and disadvantages of such elastic elements. 

Main Material Presentation 
The deformation of the working area of the elastic elements is carried out by translational 

displacement (without rotation) of one end of the elastic element relative to the other (the places of 
attachment to the oscillating masses). The ends of the elastic elements in the oscillating masses are rigidly 
clamped (Fig. 2). Let us consider a flat model of the load of the working area of an elastic element with a 
length of l , which is shown in Fig. 3. The forces that arise in the attachment points when the ends of the 
element are displaced relative to each other without scrolling are [2, 3]: 

- for the force   benR F= 3
δ12

l
JE

= ;  (1) 

- for the bending moment   M =
2

δ6
l

JEМ ben = .  (2) 

where E  is the modulus of elasticity of the element material during tension; J  is the moment of inertia of 
the cross-section of the elastic element; l  is the length of the working section of the elastic element that is 
deformed. 

Fig. 2. Scaled diagram of the deformation of the resonant flat elastic element of the vibrating table, 
as shown in Fig. 1. 
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Fig. 3. Flat model of a loaded elastic element 

For the case of deformation of an elastic element in Fig. 3, we are interested in expression (1), in 
which the linear displacement δ  is related to the force benF , which, in fact, represents the forces that arise 
in the oscillatory system during the movement of masses. For this case, the stiffness coefficient c  of one 
elastic element, when its ends are displaced relative to each other without rotation, using expression (1), is 
defined as follows [14]: 

3
12

δ l
JEFc ben == .  (3) 

If we use elastic elements of rectangular and circular cross-sections that bend along the axis y
relative to the axis z , their moments of inertia of the cross-section will be defined as: 

12

3bhJJ f == ;   (4) 

64
π 4dJJ r == ,   (5) 

where h  and b  are the width and thickness of the elastic element of rectangular cross-section; d  is the 
diameter of the elastic element of circular cross-section. Taking into account (4) and (5), expression (3) for 
rods of rectangular and circular cross-sections, respectively, can be written as: 

3

3

l
Ebhc = ;  (6) 

3

4

16
π3

l
Edc = .   (7) 

To constructively form an elastic element with a rectangular cross-section with an already known 
value of stiffness c , it is most convenient l  to find the thickness of the working section by specifying its 
length b  and width h . Considering the elastic node immediately, instead of the parameter c  we introduce 

12c  – the value of the stiffness of the elastic node, which is determined through the inertial-stiffness 
parameters of the system. So, using (6), we obtain 

3 12

pknhE
clb =  or   3 2

2Ω

zknhE

m
lb

p

agg= ,  (8) 

where in expression (8) we additionally introduce 
9.0...7.0≈pk  (9)
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is the clamping coefficient of the elastic element, which takes into account the loss of stiffness during 
fastening. It is introduced into practice during calculations and is caused by the presence of micro-gaps, the 
flexibility of the clamping itself, the quality of bolt tightening; n   is the number of working sections of the 
elastic unit. In Fig. 1 the elastic unit consists of eight elastic elements. There are two working sections in 
each (Fig. 2). Therefore, 16=n . Similarly, for a circular section element, constructively specifying only its 
length l , the diameter d  of the working section, using (7) 

4
3

12
π3

2
рknE

lcd =  or   4 2

32

π3

Ω
2

zknE

lm
d

р

agg= .   (10) 

In practice, for a rectangular cross-section, it is convenient to specify the ratio of its sides 

b
h

=℘ ,  (11) 

and, therefore, expression (8) taking into account (11) can be written in the form 

4
3

12

рknE
lcb

℘
= or   4 2

32Ω

zknE

lm
b

р

agg

℘
= .   (12) 

Expressions (8), (10) and (12) require, after forming the geometric dimensions, checking the 
strength of the elastic elements, since their lengths l  are chosen arbitrarily. However, it is this parameter 
that is responsible for the stress in the element. Let us justify the choice of lengths so that they already take 
into account the strength parameters. 

It is known that the normal stress during bending that occurs in such elastic elements is defined as 

W
Mben=σ ,  (13) 

where benM  and W  are respectively the bending moment applied to the elastic element at a certain 
section and the moment of resistance of its working section. We can determine the bending moment 
according to (2). The moments of resistance of rectangular and circular cross-sections relative to the axis z  
are defined as follows: 

6

2bhW f = ;   (14) 

32
π 3dWr = .   (15) 

We assume that the acting torque benM  applied to one element of the elastic assembly is such that 
the stresses σ  are equal to the permissible ]σ[ . More precisely, the stresses σ  are equal to the permissible 

]σ[ 1−  under symmetrical cyclic loading. Therefore, expression (13) can be written in the form 
WMben /]σ[ 1 =− .                                                                 (16)

We use expressions (2) and (14), (15). For these expressions, we write down the values of the 
moments of inertia (expressions (4) and (5)) taking into account (11). Then expression (16) for elastic 
elements of rectangular and circular cross-sections can be respectively presented as follows: 

21
δ3]σ[

l
bEkк=− ;  (17) 

21
δ3]σ[

l
dEkк=−

,  (18) 

where кk  is the additionally introduced stress concentration coefficient in the elastic element. It mainly 
lies within the limits 
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3.1...1.1=кk                                                                      (19) 
and is selected from reference literature. 

Taking into account (17) and (18) the lengths of the elastic elements: 
– for rectangular cross-section

]σ[
δ3

1−
=

bEkl к ;  (20) 

– for the round cross-section

]σ[
δ3

1−
=

dEkl к .  (21) 

Let us substitute the dependencies for b  (expression (12)) and d  (expression (10)) into expressions 
(20) and (21), respectively. Then, the minimum permissible length of the elastic element that can be
accepted is determined as follows:

– for rectangular cross-section

5 4
1

443
12

min
]σ[

δ81

−℘
=

р

к
kn

kEcl    or   5 24
1

4432

min
]σ[

δΩ81

zkn

kEm
l

р

кagg

−℘
= ;  (22) 

– for round cross-section

5 4
1

443
12

min
]σ[π

δ432

−
=

р

к
kn

kEcl    or   5 24
1

4432

min
]σ[π

δΩ432

zkn

kEm
l

р

кagg

−
= .  (23) 

Knowing the deformation δ  of the elastic node, the calculated stiffness 12c  of the elastic node and 
the modulus of elasticity E  of the material, according to (22) or (23), we establish the minimum possible 
length of the working section of the elastic element. After that, choosing the length of the elastic element 
from the condition 

minll ≥ ,   (24) 
According to (12) or (10), we determine its thickness b  or diameter d . 

Consider a conditionally selected two-mass oscillatory system of the vibration machine in Fig. 1. 
The oscillatory masses for this vibration machine are kg1461 =m  and kg382 =m . The system oscillates 
rectilinearly at a frequency rad/s628Ω =  ( Hz100ν = ). It is necessary to calculate the resonant elastic 
node. When the resonant tuning is equal to 97.0=z , the stiffness coefficient is [2, 3] 

m
N10264.1

97.0
628

38146
38146ΩΩ 7

22

21

21
2

12 ⋅=















+
⋅

=















+

=





=

zmm
mm

z
mc agg . 

Eight elastic elements are used. In this case, the number of working sections that work on bending is 

16=n . The material of the elastic elements is steel, the modulus of elasticity of which is Pa101.2 11⋅=E . 
The allowable stress under the action of symmetrical cyclic loading for such a material is =− ]σ[ 1 MPa170 . 

Let us assume that the relative amplitude of the oscillations of masses 1m  and 2m  is 

1XX rel = =+ 2X mm8.0 . The elastic node is deformed by the stiffness to the specified value 
mm8.0δ == relX . According to (19), we assume that the stress concentration coefficient in the elastic 

elements is 1.1=кk , and the clamping coefficient 8.0=рk  (see expression (9)). We assume that the 

parameter ℘  (see expression (11)) is 14=℘ . If we use expression (22), the minimum length of the 
working section of the elastic element will be 
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m131.0
]107.1[8.01614

1.10008.0]101.2[10264.181
]σ[

δ81
5 48

443117
5 4

1

443
12

min =
⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
=

℘
=

−р

к
kn

kEcl . 

If we accept mm135=l , then the thickness of the working section of the elastic element according 
to (12) will be equal to 

mm36.5m1036.5
8.016101.214

135.010264.1 34
11

37
4

3
12 =⋅=

⋅⋅⋅⋅

⋅⋅
=

℘
= −

рknE
lcb . 

The width of the elastic element, using expression (11), is 
mm7536.514 =⋅=℘= bh . 

In an elastic element, the stresses do not exceed the permissible ones =− ]σ[ 1 MPa170 , because 
according to expression (17) 

]σ[MPa163
135.0

0008.000536.0101.21.13δ3σ 12

11

2 −<=
⋅⋅⋅⋅⋅

==
l

bEkк MPa170= .

Analysis of elastic elements of circular cross-section. The cross-sectional shape of resonant elastic 
elements is predominantly rectangular, which is why these elements are often referred to as planar. The 
advantage of a rectangular cross-section over a circular one is that, in the case of providing directional 
vibrations, the stresses that arise in rectangular-section elements are lower than in circular-section elastic 
elements, since the radius of inertia of the latter is larger. 

Suppose we need to implement a resonant elastic node of a given stiffness to provide directed 
oscillations to the masses. The elements of the node are deformed according to the scheme in Fig. 2. For 
this purpose, we will try to use rectangular and circular cross-sections of the elastic element. 

To ensure a certain stiffness during bending, provided that the material and lengths of the elastic 
elements with rectangular and circular cross-sections are the same, it is sufficient for us that the moments 
of inertia J  of both sections relative to the axis z  are the same. Therefore, if we equate (4) and (5), taking 
into account (11), the ratio of the diameter of d  the elastic element of circular cross-section to the 
thickness of b  the elastic element of rectangular cross-section will be 

44 14.1
π3

2 ℘≈
℘

=
b
d .  (25) 

That is, if we implement an elastic node with circular-section elements, their diameter will be greater 

than the thickness of rectangular-section elements by a factor of 14=℘ , 2.21414.1 4 =  times, provided 
that the lengths and stiffnesses of both elastic elements (nodes) are equal (Fig. 4). The force N630=F  
applied to one working section of an elastic element deforms it regardless of the shape of the cross-section 
by the value δ == relX mm8.0 . This value of the force is established using expression (3) and taking into 
account the fact that the number of elastic sections 16=n . So 

N630
16

0008.010264.1δ 7
12 =

⋅⋅
===

n
cFF ben .   (26) 

Due to the fact that the diameter of the element of circular section is greater than the thickness of the 
element of rectangular section, the normal stresses during bending that arise in these elements will differ 
proportionally. Since the bending moment is the same, substituting expressions (14) and (15) in turn into 
(13), taking into account (11) and (25), the ratio of normal stresses in elastic elements of circular and 
rectangular cross-sections, provided that they are made of the same material and their lengths are equal, 
will be defined similarly to (25), namely 
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.14.1
σ
σ 4℘≈=

b
d

f

r   (27) 

Therefore, the stresses arising in circular-section elements are several times higher, which is also 
confirmed using the finite element method (Fig. 5). 

Fig. 4. Windows of the Cosmos Works module of the SolidWorks software product, 
which display the deformation of elastic elements of rectangular (a)  
and circular (b) cross-sections under the action of force N630=F  

 (the deflection of the elements is scaled) 

Fig. 5. Windows of the Cosmos Works module of the SolidWorks software product, 
which display the stresses in elastic elements of rectangular (a) and circular (b) cross-sections  

with the same bending stiffness and the same lengths of the working area that deforms  
(the deflection of the elements is scaled) 
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The stress in a circular cross-section element can be reduced by increasing its length. Therefore, if 
we need to ensure the same service life of elastic nodes with the same number of elastic elements, 
regardless of whether they have circular or rectangular cross-sections, the former will always be longer: 

fr ll > . Let's prove this. 

It is clear that the stiffnesses of the elastic elements with both cross-sections must be the same. 
Therefore, using (3), we can write 

33
1212

r

r

f

f

l
JE

l

JE
= .  (28) 

On the other hand, since the force benF  is the same in both cases, and the bending moment benM , if 
we solve (1) and (2) together, is 

2/lFM benben = ,  (29) 
using (16), we can write 

r

rben

f

fben
W

lF
W

lF
22

= .   (30) 

Solving (28) and (30) together, taking into account expressions (4), (5), (11), (14), (15) and 
introducing the notation 

frl ll=℘   (31) 
– the ratio of the lengths of elastic elements of circular and rectangular cross-sections, in which the same
stresses are provided, through the parameters of the nodes, we write as

55 11.1
π

1296
3
1

℘≈
℘

=℘l ,  (32) 

and the diameter of the circular cross-section through the thickness of the rectangular one will be 

.236.1π216
π3

2 5 25 23 ℘≈℘= bbd    (33) 

An expression identical to (32) can be obtained by dividing (23) by (22) 

,11.1
π81

432 55 ℘≈
℘

=℘l   (34) 

and expression (33), if we divide (23) by (22) and (20) by (21) and equate, respectively, it will take the 
form 

.236.1
π81

432 5 25
2

℘≈






 ℘= bbd   (35) 

Let us assume that to ensure the required rigidity of the elastic unit (Fig. 1) it is necessary to use 
16=n  elastic sections of rectangular cross-section with length mm135== fll , thickness mm36.5=b  

and width mm7536.514 =⋅=℘= bh  (Fig. 5, a). A similar elastic unit in terms of rigidity and strength 
characteristics on elements of circular cross-section will have working sections, the diameter of which, 
according to (33) 

mm1914π216
π3
36.52 5 23 =⋅⋅⋅⋅=d , 

and the length, using (31) and (32), is 

mm4.254
π

141296
3

135
π

1296
3

55 =
⋅

⋅=
℘

= f
r

l
l , 

which is confirmed using the finite element method (Fig. 6). 
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Fig. 6. Window of the CosmosWorks module of the SolidWorks software, showing the stress  
in a circular cross-section elastic element, identical in strength and stiffness characteristics  

to the element in Fig. 5. 

Conclusions 
The authors demonstrate that, under identical stiffness and material conditions, circular cross-section 

elastic elements exhibit significantly higher bending stresses than rectangular ones, due to their larger 
radius of inertia. Analytical derivations demonstrate that achieving the same operational stress level for a 
round element requires substantially greater length, making such solutions less compact and less 
structurally efficient. To validate these findings, finite-element simulations in SolidWorks (CosmosWorks) 
were performed to compare deflections and stress fields for rectangular and circular elements with equal 
bending stiffness. The numerical results fully confirm the analytical predictions: round elements 
experience higher stresses than flat ones and require lengthening to reach equivalent durability. 

The study concludes that flat elastic elements provide superior structural efficiency, lower operating 
stresses, simpler mounting, and greater geometric adaptability within resonant vibration systems. The 
research thus provides a rigorous basis for selecting flat cross-section elastic components in the design of 
high-performance resonant vibration tables. 
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