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This study explicitly addresses the examination timetabling problem (ETP) at University
Malaysia Sarawak (UNIMAS), which encompasses both online and physical exams treated
within a unified framework of uncapacitated and capacitated formulations. Currently, fac-
ulty exam timetabling managed by proprietary systems meets basic constraints but needs
to incorporate faculty and stakeholder preferences into a mathematical formulation, mak-
ing solution quality difficult to assess. To address this issue, we propose a mathematical
model that includes university-wide constraints and considers extended soft constraints
that accommodate faculty and stakeholder preferences for room sharing and achieving
balanced exam splits for shared and non-shared exam scenarios. We introduce a two-stage
multi-neighborhood local search method with a balancer to produce high-quality solu-
tions that meet these constraints. Our approach outperforms existing proprietary systems
by meeting all standard constraints and achieving extended soft constraints, improving
scheduling efficiency and stakeholder satisfaction, and offering a more optimal solution for
real-world exam timetabling.
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1. Introduction

The Exam Timetabling Problem (ETP) stands out as one of the complex scheduling issues due to its
intricate nature and constraints. Recognized as a non-deterministic polynomial (NP) hard problem,
ETP requires exponential computational time with an increasing problem size. ETPs are classified
into incapacitated, where room capacities are disregarded, and capacitated, where room capacities are
treated as hard constraints. This paper presents an ETP dataset derived from real-world scenarios
at University Malaysia Sarawak (UNIMAS), encompassing online exams, treated as incapacitated
formulations, and physical exams, treated as capacitated formulations, within a unified framework.

UNIMAS adopts a two-tiered approach to optimize exam scheduling. Firstly, the Pre-Graduate
Studies Division centrally schedules generic subjects and elective courses; then, faculties indepen-
dently oversee the scheduling of program-specific courses. Our study focuses on the latter. While
some faculties schedule manually, others utilize a proprietary system, namely the FESS 2.0 system [1],
which employs a two-stage heuristic: firstly, it clusters courses for concurrent examination, then al-
locates clusters to specific timeslots and rooms. To the best of the authors’ understanding, a proper
mathematical model for comprehending the underlying problem and assessing its optimality is lack-
ing. Therefore, there is a need to formulate and develop a mathematical model, building upon the
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constraints present. The manual timetabling is disregarded here due to its limited feasibility within
desired timeslots and suboptimal room usage for large-scale exam scheduling.

Exam logistics present inherent challenges. One practical challenge involves sharing exams within
rooms to minimize the number of rooms, a common practice among faculties. However, some faculties
adamantly refuse to adopt this practice, adding a layer of complexity to the scheduling process. Fur-
thermore, there is a frequent need to split rooms when specific exam sizes exceed the capacity of the
largest available room, potentially leading to overcrowding or underutilization in certain rooms. For
instance, consider a scenario where 205 students are assigned, with 100 in room A, 100 in room B,
and only 5 in room C. Such disparities often confuse students in the minority room (C), potentially
resulting in delays and disruptions during exams. Students are required to take the exam only in their
allocated room. Therefore, achieving a balanced distribution of students across rooms for split exams
is essential to ensure a smoother exam experience.

The contributions of this paper are three-fold: (i) we formulate the mathematical model for the
UNIMAS ETP to understand the underlying problem constraints and assess its optimality compre-
hensively, (ii) include extended soft constraints on faculty preference in room sharing and balanced
exam split, addressing the resistance from some faculties to adopt sharing practices; and (iii) introduce
a multi-neighborhood local search approach to optimize scheduling while considering these extended
soft constraints efficiently. We showcase applying the proposed approaches in real-world case studies
on the Faculty of Economics and Business (FEB) and the Faculty of Cognitive Sciences and Human
Development (FCSHD), demonstrating that the algorithm can effectively address these scheduling
issues.

Section 2 covers related work, while Section 3 presents a mathematical formulation and its associ-
ated constraints with extensions. Section 4 provides a detailed description of our proposed algorithms.
Experimental results are discussed in Section 5, and conclusions are presented in Section 6.

2. Related work

Prior research has documented surveys on the examination timetabling problem, covering formula-
tions, solution methods, and algorithms, as evidenced by previous studies such as [2,3]. In the survey
presented in the latest study by Siew et al. [4], existing contemporary solution methodologies are cat-
egorized into several distinct categories: heuristics, mathematical optimization, matheuristics, meta-
heuristics, hybrid approaches, and hyper-heuristics. The widespread utilization of metaheuristics over
the past decades has garnered significant attention and continues to grow in its application for solving
optimization problems [5], including the ETP.

Metaheuristics, one of the most commonly used techniques in exam timetabling [4], operate it-
eratively, guiding and modifying subordinate heuristics to manipulate either a complete or partial
single solution or a collection of solutions to generate high-quality solutions efficiently [6]. Subordinate
heuristics may encompass a simple local search or a construction method. One significant advan-
tage of metaheuristics lies in their nature as abstract search methods, allowing the application of
their fundamental search logic to diverse problems characterized by basic components such as solution
representation, quality assessment, and the concept of locality.

Locality refers to the practical generation of neighbouring solutions through heuristically guided
functions based on either a single solution or a collection of incumbent solutions. During each itera-
tion, local search relies on transitioning from the current solution to a neighbouring solution using a
neighbourhood operator. This operator navigates the search space region surrounding the initial so-
lution [7]. More recent contributions have predominantly utilized metaheuristic techniques, including
local search methods, successfully applied to solve the ETP.

Müller [8] proposed a multi-phase algorithm, employing iterative forward search in the construction
phase and integrating hill climbing and the great deluge. Bykov and Petrovic [9] extended hill climb-
ing by incorporating a counting mechanism, demonstrating robust performance with the Saturation
Degree heuristic. Burke and Bykov [10] introduced a late acceptance hill-climbing method, showcasing
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efficiency, and scale independence, particularly beneficial for larger instances. Bellio et al. [11] devel-
oped a two-stage simulated annealing approach utilizing multiple neighborhoods with proper parameter
tuning, which achieved state-of-the-art results for the Toronto benchmark.

Recent studies have focused on the most renowned benchmarks, including the incapacitated Toronto
benchmark [12], the capacitated Track 1 of the ITC 2007 benchmark [13], and research encompassing
either or both of these benchmarks in [14–19]. Meanwhile, some studies address specific real-world
cases by focusing on capacitated scenarios, as educational institutions’ policies impose constraints and
preferences, resulting in various iterations of the ETP. Notable examples of real-world case studies
include University Malaysia Pahang in Malaysia [20], University Technology MARA [21], Purdue Uni-
versity in the USA [22], KU Leuven in Belgium [23], several Italian universities [24], and the Sepuluh
Nopember Institute of Technology in Indonesia [25].

The capacitated formulation incorporates the clash-free constraint while encompassing period du-
ration and room-related constraints. Specifically, it stipulates that each exam must occur in a separate
room and that no exams should be split between rooms. Institutions in [26, 27] have policies that ei-
ther prohibit splitting exams among multiple rooms or disallow simultaneous exams in the same room.
Dammak et al. [28] permitted scheduling multiple exams within a single room but prohibited splitting
exams across rooms.

In contrast, Komijan and Koupaei [29] devised a binary model for the ETP, allowing exams to
be split into rooms on the same floor if the room capacity is exceeded, with room sharing permitted
for a maximum of two exams per room. Genc and Sullivan [30] proposed a two-phase constraint
programming model for the University College Cork ETP, allowing exams to be split across multiple
rooms with one exception. Carlsson et al. [31] introduced a portfolio approach comprising both exact
and metaheuristic methods, limiting exams to one per room but allowing for exams to be split across
multiple rooms.

Laporte and Desroches [32] employed a room allocation subroutine wherein each room hosts a single
exam. Larger exams are divided across multiple rooms, and efforts are made to distribute students
evenly among rooms using a rooms balancer, but only in conditions where room sharing is not allowed.
Our work seamlessly incorporates these principles. Moreover, we introduce a flexible framework that
caters to shared and non-shared exams customized to faculty preferences. Within this framework, we
maintain the imperative of balanced distribution for split exams, catering to the requirements of both
shared and non-shared exam scenarios.

3. Problem formulation

Exam timetabling involves allocating resources such as students and rooms over limited periods to
conduct pre-defined exams while adhering to hard and soft constraints [33]. Meeting hard constraints
ensures a feasible timetable while minimizing violations of soft constraints. Table 1 presents a set of
notations and variable definitions formally describing these constraints.

We utilize two binary variables as specified by:

xik =

{

1, if exam i is assigned to timeslot k,

0, otherwise.

yir =

{

1, if exam i is assigned to room r,

0, otherwise.

The notations and variable definitions outlined in Table 1 indicate the hard constraint (section 3.1)
and soft constraint (section 3.2) in the UNIMAS ETP, followed by the objective function (section 3.3).
Finally, extended soft constraints (section 3.4) are given special consideration on a case-by-case basis.

3.1. Hard constraints

HC1: Each exam must be allocated to only one timeslot.
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Table 1. Notations employed in for the problem formulation of ETP.

Parameter Description
N The number of examinations, i, j ∈ {1, 2, . . . , N}, where i 6= j.
T The number of timeslots, k ∈ {1, 2, . . . , T }.
R The number of rooms, r, u ∈ {1, 2, . . . , R}, where r 6= u.
D The total duration of the examination period (in days).
A The number of distinct areas where rooms are located, a, b ∈ {1, 2, . . . , A}, where a 6= b.
Rk The number of rooms available at timeslot k.
vr The total capacity for room r.
ur The total unused capacity for room r.
mi The number of rooms where exam i has been split.
S The number of students, s ∈ {1, 2, . . . , S}.
Si The number of students enrolled in exam i.
cij A conflict matrix, where each element cij , i, j ∈ {1, 2, . . . , N}, represents the number of students

who are simultaneously taking both exams i and j.

HC1 mandates that each exam be allocated to only one available timeslot, as specified in equa-
tion (1),

T
∑

k=1

xik = 1. (1)

HC2: No student is allowed to take two examinations simultaneously.
HC2 enforces a conflict-free requirement, wherein if examinations i and j are scheduled in timeslot k,

the stipulation is that the number of students sitting for both examinations i and j must be 0, i.e.,
cij = 0. This stringent constraint is expressed in equation (2),

N−1
∑

i=1

N−1
∑

j=1

T
∑

k=1

xikxjkcij = 0. (2)

HC3: The total number of students assigned to a room does not surpass its capacity.
HC3 ensures students assigned to a room do not exceed its capacity, as equation (3) indicates,

Si 6

R
∑

r=1

yikvr. (3)

HC4: The timeslots used must not exceed the duration of the planned exam session.
HC4 ensures that the number of time slots utilized does not exceed the number of days in the

planned exam session, with two time slots allocated per day, as indicated in equation (4),

T

2
6 D. (4)

3.2. Soft constraints

SC1: Minimize room wastage by reducing the number of rooms used.
The cost of the count of rooms used in each period k, denoted by rk, and summing these counts

across all timeslots during the examination period in SC1, denoted as z1, is illustrated in equation (5)
along with equation (6),

z1 =

T
∑

k=1

rk, (5)

where
N−1
∑

i=1

xik = rk (6)

SC2: Spread each set of student examinations evenly.
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The proximity cost in SC2, denoted as z2, pertaining to the distribution of exams throughout the
exam period, is depicted in equation (7). Equation (8) represents the weight of the penalty incurred
when two exams, i and j, are scheduled with a gap of |kj − ki| timeslots between them. The proximity
values utilized in this context (16, 8, 4, 2, and 1) correspond to the formula’s logic, where a larger gap
between exams results in a decreased penalty. The proximity values introduced by Carter et al. [12]
have been widely adopted in other research studies [20, 34, 35],

z2 =

N−1
∑

i=1

N
∑

j=i+1

cijw|kj−ki|, (7)

where

w|kj−ki| =

{

25−|kj−ki|, if 1 6 |kj − ki| 6 5,

0, otherwise.
(8)

SC3: Minimize the number of rooms for a split examination; allocate rooms in the same area
(building or campus) when possible.

The splitting cost in SC3, denoted as z3, is illustrated in equation (9), while equation (10) defines mi,
representing the number of rooms to which exam i has been assigned. In cases where an exam is divided
into multiple rooms, a penalty cost is assigned. Additionally, allocating an exam to different areas
incurs a penalty of 1 for each additional area beyond the first. This penalty reflects the undesirability
of splitting exams across multiple areas due to the increased complexity or inefficiency it introduces ,
which implies that for each additional area beyond the first, a penalty of 1 is added.

z3 =

N
∑

i=1

mi + (Ai − 1), (9)

where

mi =
R
∑

r=1

yir. (10)

SC4: Schedule exams within designated timeslots.
The undesired slot cost for exams not scheduled at designated timeslot or designated timeslot range

in SC4, denoted as z4, is illustrated in equation (11),

z4 =
N
∑

i=1

(1− xik̄). (11)

3.3. Objective functions

According to the given mathematical expressions, the total soft conflict penalty cost for a solution
can be formulated using equation (12). The objective is to minimize the total penalty, denoted as
z(X), in a feasible solution X. The penalty coefficients for the soft constraints, labelled as α1, α2,
α3, and α4, are assigned values of 1, 1, 1, and 2, respectively. The penalty coefficient for α4 carries a
higher penalty compared to other constraints as it requires directly affects the faculty and structure
of the exam schedule. Prioritizing adherence to designated timeslots restricts the flexibility to make
improvements or adjustments for individual exams, limiting the options for rescheduling or reallocating
resources. Consequently, this restriction amplifies the penalties associated with other soft constraints.
In the context of general evaluation, the objective function will solely consider university-level soft
constraints,

zX = α1 · z1 + α2 · z2 + α3 · z3 + α4 · z4. (12)

3.4. Extended soft constraints

SE1: Flexible Exam Session – Faculties can shorten their exam sessions as long as they adhere to the
overall duration allocated by the university for exams.
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SE2: No Room Sharing – Certain faculties, like FCSHD, prefer not to share rooms for multiple
exams unless those exams are combined and treated as a single entity.

SE3: Balance Room Allocation for Split Exam – Ensuring fair distribution of students across rooms
for split exams.

4. Two-stage multi-neighborhood local search

Our solution approach comprises two stages: a constructive heuristic and hill climbing. In each stage,
we utilize distinct neighborhood structures. In Stage I, we consider all hard constraints and slot
preferences to find a feasible solution. In Stage II, we refine the initial solution to accommodate soft
constraints, incorporating additional constraints derived from specific case studies. We explore feasible
solutions throughout this process, ensuring conflict violations are avoided.

4.1. Neighborhood structure

In Stage I, we employed two neighbourhoods:

1. Ejection move, denoted by EM(e, p), takes as attributes one exam e ∈ E and one period p ∈ P .
The move involves ejecting exam e from its period p(e) and attempting to insert all exams from
the Ejection Pool (EP) into p(e), without causing any conflict violations. If at least one exam is
inserted into p(e), then e will be moved to the EP.

2. Insertion move, denoted as IM(e, p), takes as attributes one exam e ∈ E and one period p ∈ P .
This move involves attempting to insert an exam e from the EP into a random period p, without
causing any conflict violations.

In Stage II, six additional neighborhoods were introduced as follows, exploring only the feasible
part of the search space.

1. Shift move, denoted by SM(e, p, rl), takes as attribute one exam e ∈ E, and one period p ∈ P .
The move involves assigning e in p(e) and rl(e), to a randomly selected period p and/or rooms rl,
with p(e) 6= p. The move occurs if the size of the selected rl 6 rl(e).

2. Swap exams, denoted by SE(ei, ej), takes as attributes two exams ei, ej ∈ E, ei 6= ej , involves
swapping ei within period p(ei) and rooms rl(ei) with ej within period p(ej) and rooms rl(ej). The
move occurs if the size of the selected rl 6 rl(e).

3. Kick exam [37], denoted by KE(ei, ej , p), takes as attributes two exams ei, ej ∈ E, ei 6= ej and
one period p ∈ P . The move involves assigning ei ∈ p(ei), to the period of ej , denoted by p(ej),
and assigning ej to a randomly selected period p, with p(ei), p(ej) 6= p. The move occurs if the size
of the selected rl 6 rl(e).

4. Shift room, denoted by SR(e, rl), takes as attribute one exam e ∈ E, and one room list rl ∈ R.
The move involves assigning exam e to a randomly selected room list rl, considering only rooms in
the same area. The move is executed when the size of the rl < rl(e), and p(rl) 6= p(rl(e)).

5. Compact room within period, denoted by CR(e, rl), takes as attribute one exam e ∈ E, and
one room list rl ∈ R. The move involves assigning e in to a randomly selected rl within the same
period and non-empty room(s) in the same area. The move occurs if room sharing is allowed and
the size of the selected rl < rl(e) and p(rl) = p(rl(e)).

6. Downsize room, denoted by DR(e, rl), takes as attribute one exam e ∈ E, and one room list
rl ∈ R. The move involves assigning e in to a randomly selected rl within the same period and
smaller sized empty room(s). The move occurs if sharing a room is prohibited and the size of the
selected rl < rl(e) and p(rl) = p(rl(e)).

In each iteration of Stage II, an united neighbourhood can be derived by combining the selected
neighbourhoods with the random order to introduce an element of stochasticity and allow us to take
full advantage of the search capabilities of each neighbourhood, considering that some of these neigh-
bourhoods are complementary. These moves reject outcomes that violate hard constraints and adhere
to specific soft constraint types, aiming to enhance elements related to other constraint violations.
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They may improve one cost at the expense of another in the feasible part of the search space. If such
moves lead to an overall deterioration in the objective, they are rejected.

For ease of reference, we symbolize the neighbourhoods associated with the eight moves above
as NS1, NS2, NS3, NS4, NS5, NS6, NS7, and NS8 respectively. NS1 and NS2 are general basic
neighbourhoods, while NS6, NS7, and NS8 correspond to room-related moves, while NS4 and NS5

pertain to period-related moves. NS3 is associated with both period and room move. Due to the
simplification of constraints in NS4 to NS7, the search space of these neighbourhoods is slightly
smaller than that of NS3 and NS8. Consequently, the search in neighbourhoods NS4 to NS7 is much
faster than that in NS3 and NS8.

4.2. Constructive heuristic

We implement a two-step approach customized to suit the distinct requirements of both online and
physical exams. Firstly, we schedule online exams into designated time slots, meticulously ensuring
the absence of any conflicts. We assume that eLEAP can handle online exams without encountering
any capacity constraints. Secondly, concerning physical exams, we prioritize exams with preferred
time slots, ordered by large enrolment first. Subsequently, we allocate the remaining physical exams to
available time slots, ensuring no scheduling conflicts and maximizing the efficient utilization of available
rooms.

The room allocation process involves the following steps: initially, the algorithm utilizes the first-
choice heuristic to identify single rooms capable of accommodating a given exam size. If none of the
single rooms is adequate, the best-fit heuristic [38] is employed within the same area. In cases where
splitting within the same area is not possible, we resort to the least preferable option, which involves
dividing rooms across different areas. Any unscheduled exams are placed into the EP. If the EP is not
empty at the end of the process, the algorithm initiates the utilization of neighborhoods NS1 and NS2

iteratively until all exams are scheduled, leaving no remaining exams in the EP. The initial feasible
solution in this stage should meet all hard constraints HC1-HC4 and satisfy SC4.

4.3. HC-based multi-neighborhood local search

The Hill Climbing (HC) process involves taking non-worsening steps, allowing for repetitive application
in a standard manner until a local minimum is attained. Similar to traditional greedy HC, a control
parameter called the “cost threshold” is employed to accept candidate solutions with lower costs, while
higher-cost solutions are rejected. A set of combined neighbourhoods in a random order in local search
(CNLS) runs in each iteration. CNLS employs a single cost threshold for all neighbourhoods within
one iteration, which is updated to the latest current solution at the end of the iteration to enhance
the flexibility and efficiency of the search process, allowing for a thorough exploration of the solution
space.

The process begins with an initial feasible solution generated in Stage I, with the cost threshold set
to the initial solution’s cost value. Throughout the search, if no shared room constraint is applied, then
neighbors NS3, NS4, NS5, NS7, NS8 will be selected. Otherwise, neighbors NS3, NS4, NS5, NS6

will be chosen. The algorithm exclusively accepts candidates with costs lower than the cost threshold
or lower than the current solution cost. The cost threshold is then updated to the current cost at
the end of each iteration, gradually decreasing and guiding the search towards a superior solution
until the stopping criteria are met. Our CNLS approach is summarized in the algorithm depicted in
Algorithm (1).

At the end of the algorithm, a Balancer is employed to distribute student allocations in rooms for
split exams. The Balancer operates analogously to how an AVL tree [39] adjusts to maintain balance
post-tree allocation, ensuring efficient searches. After optimizing timeslot and room allocations, this
Balancer redistributes students across rooms allocated for split exams, maintaining a proportionate
distribution relative to room capacity. Notably, no timeslot or room reallocation occurs during the
balancing process. Consequently, adjustments to student numbers in split exams can be independently
performed without incurring additional cost penalties.
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Algorithm 1 HC-based Multi-Neighborhood Local Search Algorithm.

Require: maxIteration, timeLimit, a set of Exam (E), a set of neighbor(M);
1: initialization current := initSolution // solution from Stage I
2: initialization currentCost := calculatecost(current)
3: for i = 1, . . . ,maxIterationortime < timeLimit

4: updateCostThreshold(currentCost)
5: randomise(M) //Shuffle the list M
6: for j = 1, . . . , size(M)
7: (candidate, candidateCost) := generateNSolution(E,M) //generate a candidate solution
8: if candidateCost < currentCostorcandidateCost < thresholdCost then
9: current := candidate

10: currentCost := candidateCost

11: best := current

12: balancer(best) //apply balancer function on the best solution

5. Experiment and result

5.1. Experiment case studies and settings

As of 2024, UNIMAS comprises ten faculties and offers over 40 undergraduate programs, accommo-
dating 13 380 students. In this case study, our primary focus revolves around examination timetabling,
utilizing datasets from two esteemed faculties: the Faculty of Economics and Business (FEB) and the
Faculty of Cognitive Sciences and Human Development (FCSHD). These faculties, FEB and FCSHD,
stand out due to their significant student populations and extensive course-student enrolments. Con-
sequently, for specific exams, the sizes exceed the capacity of the largest available rooms, necessitating
the split of rooms for exams.

In contrast to the case problem in existing literature, our examination timetabling addresses both
online and physical exams, treating online exams as incapacitated and physical exams with capacitated
considerations. In the FEB-01 dataset, there are 40 courses with a system graph displaying 196 edges
and a 40x40 adjacency matrix, resulting in a density of 0.251. In the FEB-02 dataset, there are
47 courses with a system’s graph exhibiting 237 edges and a 47x47 adjacency matrix, indicating a
density of 0.219. In the FCSHD-02 dataset, there are 52 courses with a system’s graph exhibiting
184 edges and a 52x52 adjacency matrix, representing a density of 0.144. Conflict density is calculated
using the formula: (Number of conflicts)/(Total possible conflicts).

The characteristics of these datasets are outlined in Table 2. In the context of room resources, two
types of rooms are available: small-sized faculty rooms, available in every timeslot, and medium to
large-sized shared rooms, whose availability varies and is shared in a round-robin fashion among ten
faculties. Room sizes are classified as small (<100), medium (100–150), and large (>150).

Table 2. The characteristics of datasets.

Instances Exams Students Enrolments Exam Conflict Room Size
Type Density Distribution

FEB-01 40 1 921 6 026 Online & Physical 0.251 Small: 114,
Medium: 24,

Large: 10
FEB-02 47 2 131 7 151 Physical 0.219 Small: 91,

Medium: 33,
Large: 16

FCSHD-01 52 1 734 6 399 Physical 0.144 Small: 112,
Medium: 25,

Large: 14

The algorithm was implemented in Java and does not require any parameter setup. All experiments
were conducted on a computer operating under Windows 11, equipped with an Intel(R) Core(TM) i7
CPU running at 2.80 GHz and 16GB of RAM. The CLNS algorithm underwent 30 independent runs
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for each dataset, halting after 15 iterations or within a 60-second time limit, whichever occurred first.
The experiments in this study serve two primary purposes: first, to assess the effectiveness of the
proposed approach in tackling the university objective function compared to the outcomes produced
by the proprietary FESS, and second, to evaluate the proposed methods for enforcing extended soft
constraints and ascertain the existence of feasible solutions.

5.2. Experiment result – university standard objective

The comparison between our results and those from FESS based on the standard objective is presented
in Table 3. To ensure a fair comparison between our approach and the proprietary system, we stan-
dardize the time slots to align with those generated by the FESS system. Through experiments aimed
at achieving standard objectives, superior results were obtained. Table 3 shows that CNLS consistently
achieves lower mean values across all soft constraints (SC1 to SC4) and the overall total (Total Mean)
compared to FESS. These results highlight CNLS’s effectiveness in optimizing performance metrics
across different constraints and datasets, outperforming FESS regarding average outcomes. However,
this performance advantage comes with a trade-off in cost breakdown. Excelling in meeting specific
soft constraints may lead to higher expenses in other areas, thereby achieving superior performance in
certain aspects.

Table 3. The experimental result of CNLS algorithm.

Instances Approach
Soft constraints

SC1 SC2 SC3 SC4 Total
Best Mean Best Mean Best Mean Best Mean Best Mean

FEB-01
CNLS 59.0 61.0 21.3 23.2 31.0 31.6 6.0 6.0 118.5 121.8
FESS 58.0 – 18.0 – 40.0 – 16.0 – 132.0 –

FEB-02
CNLS 57.0 59.1 17.3 19.5 23.0 24.7 4.0 4.1 104.3 107.3
FESS 74.0 – 21.2 – 45.0 – 2.0 – 142.2 –

FCSHD-01
CNLS 72.0 75.2 12.7 16.1 22.0 25.6 6.0 6.0 114.5 123.0
FESS 78.0 – 19.8 – 32.0 – 4.0 – 133.8 –

5.3. Experiment result – extended soft constraints

5.3.1. Reduced exam session

Besides fulfilling the hard constraints and the objective function, both faculties aim to satisfy the
extended soft constraint SE1, the Flexible Exam Session constraint. Both faculties desire to tailor
their schedules to shorten their exam sessions’ duration rather than strictly adhering to the university’s
allocated timeframe. This adjustment aims to facilitate an earlier completion of exams. However, due
to room constraints, they need more rooms within the desired shortened exam session.

The experiment involved applying the Stage I constructive heuristic to three datasets and the
Toronto benchmark to assess the effectiveness of our approach in achieving the SE1 constraint, which
consists of scheduling exams within minimum timeslots. Table 4 illustrates the timeslots between the
FESS system/given timeslot limit and our constructive heuristic approach for the Toronto benchmark
and the studied datasets. The initial feasible solutions for all the Toronto instances could fit into the
given minimum timeslots. Furthermore, the timeslots could be reduced further for the studied datasets.
Our approach has demonstrated its capability to achieve SE1 and minimize the overall exam session
for each dataset. The * indicates the minimum number of timeslots for scheduling in the respective
instances. However, it is essential to note that this reduction comes at the expense of a higher overall
cost in the datasets.

5.3.2. Room sharing

Notably, FCSHD imposes an additional constraint, SE2, known as the No Room Sharing constraint.
Unlike other faculties, which generally minimize the number of rooms used by sharing exams in one
room, this constraint reflects FCSHD’s preference against sharing rooms for multiple exams unless those
exams are combined and treated as a single entity. Thus, all exams with shared rooms are adjusted
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Table 4. The experimental result of CNLS algorithm.

Instances
FESS System/ Limited Constructive Heuristic

Timeslots Timeslots Runtime (s)
FEB-01 10 10 0.20
FEB-02 14 12* 0.22

FCSHD-01 14 12* 1.66
CAR91 35 35 11.16
CAR92 32 32 46.53
EAR83 24 24 0.08
HEC92 18 18 40.73
KFU93 20 20 22.82
LSE91 18 18 1.85
RYE92 23 23 5.16
STA83 13 13 0.63
TRE92 23 23 1.51
UTA92 35 35 7.91
UTE92 10 10 1.51
YOR83 21 21 1.20

to remove any shared exams. The experiment involved applying the CLNS algorithm together with
and to the FCSHD-01 dataset. As depicted in Figure 1, the box plots comparing the distribution of
overall costs associated with shared and non-shared rooms demonstrate the significant impact of this
constraint on scheduling solutions’ costs. Solutions adhering to the SE2 constraint, which excludes
shared rooms, demonstrate higher median costs than those utilizing shared rooms.

Fig. 1. Cost for shared and non-shared rooms for FCSHD-01.

5.3.3. Balance distribution

On the other hand, the SE3 constraint, the Balance Room Allocation for Split Exam constraint, ensures
equitable distribution of students across rooms for split exams to prevent overcrowding or underuti-
lization in any room. Currently, the splitting method employs a sequential occupancy approach. For
example, if 205 students are allocated across rooms A, B, and C, the distribution would be as follows:
Rooms A and B, each accommodating 100 students, are fully occupied, leaving room C with only
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5 students. The minority of students in room C often encounter difficulty locating the correct room,
leading to confusion and delays in the exam process. Consequently, students who arrive at the wrong
room must be redirected to the correct one, resulting in wasted time and heightened stress levels.
To address this issue, the exam administrator desires a balanced distribution to streamline the exam
process.

In the context of where exams may be split across multiple rooms, it fulfills the fair distribution
number of students based on the capacity of rooms for a split exam. A commonly used fairness measure
in resource allocation called Jain’s Fairness Index [40] is used. Let usedCapir denotes the used capacity
and totalCapir denotes the total capacity of exam i in room r. The throughput of an exam, denoted
as TPi, is defined in equation (13). The Jain’s Fairness Index JFI(R) over ne split exams, where ne

refers to the total number of split exams, is defined in equation (14),

TPi =

∑M
r=1

usedCapir
totalCapir

, (13)

JFI(R) =

(
∑ne

i=1
TPi

)2

ne ·
∑ne

i=1
(TPi)2

. (14)

The JFI(R) falls within the range of (0, 1], and its interpretation is intuitive. Specifically, when
a solution results in a JFI(R) equal to 1, it signifies that this solution represents a completely fair
allocation. The objective is to enhance fairness by maximizing JFI(R), indicating a more equitable
distribution of resources. Any exams that are not split are omitted from the calculation. Additionally,
the balancing function will not affect the objective function or the cost, as the balancing will be
performed within the existing room allocation.
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Fig. 2. Split room capacity usage: balanced vs. unbalanced.

The experiment involved applying the balancer function at the end of the algorithm to all datasets,
addressing the balancing of split exams for both shared room and non-shared room scenarios. The
results from Table 5 illustrate an improvement in the JFI(R) values after the balancing of student
distribution across multiple rooms for split exams. Across all instances, there is a consistent increase
in JFI(R) after balancing. Specifically, the percentage differences range from 3% to 13%. Additionally,
Figure 2 visually represents the distribution of capacity usage relative to room capacity for balanced
and unbalanced solutions. As depicted in the bar chart, the balanced solution exhibits a more even
distribution of capacity usage across rooms than the unbalanced one, underscoring the positive impact
of balancing measures on achieving fairness in student distribution during split exams.
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Table 5. Jain’s fairness index comparison.

Instances JFI Before Balancing JFI After Balancing %Difference
FEB-01 0.894 0.923 3%
FEB-02 0.892 0.921 3%

FCSHD-01 0.881 0.999 13%

6. Conclusions

This study addresses the real-world exam timetabling challenges at UNIMAS, encompassing incapaci-
tated and capacitated formulations within a unified framework. We formulated a mathematical model
and devised a two-stage multi-neighborhood algorithm to tackle this complex problem. Our approach
utilizes multi-neighborhood local search, which involves exploring a larger search space by balanc-
ing exploration across different neighborhoods and exploiting promising solutions within each. An
equiroom balancer ensures an even distribution of students across rooms, accommodating both shared
and non-shared exam scenarios. The results demonstrate that our proposed method outperforms the
proprietary system in achieving standard objectives. Additionally, we conducted evaluations of our ap-
proach against extended soft constraints on a case-by-case basis, including shortening exam sessions,
addressing room-sharing issues, and balancing student distributions for exam room allocation. In fu-
ture research endeavors, we aim to incorporate datasets from other faculties at UNIMAS to account
for the diverse aspects specific to each faculty. Moreover, our focus will expand toward achieving more
efficient resource allocation at the university level rather than solely at the faculty level.
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Багатосусiдський локальний пошук iз балансуванням розподiлу
кiмнат для розкладу iспитiв: практичний приклад
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У цьому дослiдженнi явно розглядається проблема розкладу iспитiв (ETP) в Унiвер-
ситетi Малайзiї Саравак (UNIMAS), який охоплює як онлайн, так i фiзичнi iспити,
що розглядаються в єдинiй структурi некомпетентних i компетентних формулювань.
Наразi розклад iспитiв викладачiв, який керується власними системами, вiдповiдає
основним обмеженням, але потребує включення вподобань викладачiв та зацiкавле-
них сторiн у математичне формулювання, що ускладнює оцiнку якостi рiшення. Щоб
розв’язати цю проблему, пропонується математична модель, яка включає загально-
унiверситетськi обмеження та враховує розширенi м’якi обмеження, якi враховують
уподобання викладачiв i зацiкавлених сторiн щодо спiльного використання кiмнат
i досягнення збалансованого розподiлу iспитiв для спiльних та iндивiдуальних сце-
нарiїв iспиту. Запроваджено двоетапний багатосусiдський метод локального пошуку
з балансуванням для створення високоякiсних рiшень, якi вiдповiдають цим обме-
женням. Запропонований пiдхiд перевершує iснуючi запатентованi системи, дотри-
муючись усiх стандартних обмежень i задовольняючи розширенi м’якi обмеження,
покращуючи ефективнiсть планування та задоволенiсть зацiкавлених сторiн, а та-
кож пропонуючи бiльш оптимальне рiшення для реального розкладу iспитiв.

Ключовi слова: розклад iспитiв; багатосусiдство; локальний пошук; баланс; скла-

дання розкладу; поширення iспиту.
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