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The paper considers a model of a two-dimensional interacting electron gas confined in an
asymmetric oscillator potential well. It is investigated the energy of the system’s ground
state and electron density using restricted Boltzmann machine.
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1. Introduction

Description of interacting multi-electron systems (with the number of electrons N ≈ 10 − 100) by
solving the Schrödinger equation is a very complex mathematical modeling problem and is in fact
NP-hard.

The recent development of quantum computating and machine learning [1–4] gives us a possibility to
find energy and electron density for systems with a finite number of electrons without applying Monte–
Carlo methods [5] by getting back to the usage of variational methods in quantum mechanics [6].

Since, in general, the variational wave function can have an arbitrary functional form, it is natural to
use neural networks to solve a variational problem. As an example, we can provide so-called Boltzmann
Machines [2,4]. In work [7], such an approach was applied to describing a system of a finite number of
interacting fermions that models a symmetric quantum dot.

However when developing a model of quantum dots the symmetry of the quantum dot should
obviously be taken into account. In this work considered the simplest model of an asymmetric quantum
dot – the electron in a potential well that can be described by an asymmetric oscillator. Modeling is
conducted for the total energy and electrons density distribution using a restricted Boltzmann machine.
The influence of the asymmetry of the quantum well on the calculated characteristics is analyzed.

2. Model Hamiltonian

Let us consider a two-dimensional electronic system in an asymmetric oscillatory potential well. Hamil-
tonian Ĥ that will allow us to model the characteristics of a such system we present in the following
form
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is a potential that models an asymmetric hole; ri = (xi, yi) is a radius vector that describes the position
of the electron (xi, yi) ∈ R

2, N is a number of electrons, e is an electron charge, and m is its mass.
The last term in Eq. (1) describes the electron-electron interaction.
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It is convenient to switch to the so-called atomic system of units [6] in what unit of measurement
of coordinates (xi, yi) is the Bohr radius
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~
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,

and put
~ = m = e = 1,

in such a system of units;
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where rij = |ri − rj |.
Let us introduce the ellipticity parameter
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, (3)

Then we can rewrite Eq. (2) as
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We will use model Hamiltonian (4) to evaluate energies of the ground state
E0 6 〈ψ|Ĥ |ψ〉, (5)

where H is defined by Eq. (4) and |ψ〉 is a trial wave function of the variational principle.
Following [7], we formulate several different ansatzes for the wave function |ψ〉.
The first

|ψ〉Slater−Jastrow(R,α, β) = g(R, β) · |ψ〉ref , (6)

where

g(R, β) = exp




N∑

i=1

N∑

j>i

aijrij
1 + βrij


 , (7)

the Padé–Jastrow factor models correlations between electrons, where β is a variational parameter,

aij =

{
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1, σi 6= σj ,

|ψ〉ref = e−ω1(x2+
√
µy2)Hm

(√
ω1x

)
Hn

(√
ω2y

)
, (8)

is an ansatz based on eigenfunctions of harmonic oscillator [6], R = |ri−rj|, σi is a spin of i-th electron.
The second and third ansatz are set respectively as

|ψ〉RBM(R,α, β, ω) = P (R;α, β, ω) · |Φ〉Slater, (9)

|ψ〉RBM+PJ(R,α, β, ω) = P (R;α, β, ω) · g(R, β) · |Φ〉Slater. (10)

In the two last expressions
|Φ〉Slater = det
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is a Slater determinant [2]
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is a separated inputs distribution of a restricted Boltzmann machine [1].
According to the variational principle, the total energy of the considered system (4)

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 , (13)

where 〈. . .〉 is a dot product in a Hilbert space and ψ is a wave function of the chosen ansatz (6)–(10).
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3. Modeling algorithm

Applying parallel computing is crucial for increasing computational efficiency in solving multi-particle
quantum systems. However, simply increasing the available computing resources is not always enough.
You should also think about developing algorithms that will minimize the number of floating-point
operations, minimize the number of caching errors, and minimize communication between parallel
processes. As the basis for solving this problem, we adopt the algorithm proposed in [7].

As noted in [7], one of the most computationally expensive parts of the software implementation is
finding the kinetic energy in the Schrödinger equation. The calculation process includes, among other
elements, finding the Laplacian of the wave function. To increase efficiency, we rewrite the Laplacian
as follows:

∇2
iψT

ψT

= ∇2
i lnψT + (∇i lnψT )

2. (14)

This way of writing the expression for the Laplacian provides two important advantages. First, the
logarithm provides greater numerical stability to the trial wave function, due to its exponential form.
In general, this method is often used in various computational problems, including for many other
ansatzes that are formulated for the trial wave function [7]. Second, this form allows us to separate the
different elements of the wave function by writing the trial wave function as the product ψT =

∏
j ψj .

The kinetic energy for each particle can then be written as the sum of the corresponding Laplacians
and gradients
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The next step will be to optimize the calculation of the Slater determinant,
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Here X = {x1, x2, . . . , xN} = {{r1, σ1}, {r2, σ2}, . . . , {rN , σN}}.
In the paper [7] it is noted that the direct computation of the Slater determinant is proportional

to O(n3). It is obvious that for large values of n computational complexity will be quite significant, so
it is worth looking for methods that will help to reduce the dimensionality for efficient calculation of
the determinant.

One approach is to split the Slater determinant into so-called “spin-up” and “spin-down” [6] parts,
without affecting the expected energy value in any way:

ψRBM = det [{φnm(r↑) ξ(σ↑)}]× det [{φnm(r↓) ξ(σ↓)}] . (18)

This reduces the dimension of the determinant.
Finding a general solution requires a matrix inversion procedure, which is quite computationally

expensive. Therefore, as in [7], to reduce the computational cost, an approach is proposed in which
particles are moved one by one during the configuration selection process. This means that the elements
of either one row or one column of the Slater determinant will change. In turn, this approach leads to
a simple relationship between the old and new inverse matrices:

d−1
kj =

{
1
Ri
d−1
kj , j = i,

d−1
kj − Sij

Ri
d−1
ki , j 6= i.

(19)

Here Ri is the ratio between the new and old determinants, and Sij is the cross product between the
columns in the new rows and the old matrix. As a result, finding a new inverse Slater matrix requires
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only a few operations if the previous inverse matrix is known. In (19)
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Using these expressions, the Slater determinant matrix inversion procedure is performed only once per
simulation.

Finally, the gradient and Laplacian of the logarithm of the determinant relative to the i-th particle
are given by the expressions

∇i ln det =
∑
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∇idjid
−1
ij , ∇2
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−1
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In these equations, dji is the element in the j-th row and i-th column of the matrix, and d−1
ij is the

corresponding element of the inverse matrix.

Table 1. In the column µ [7] denotes a row of results from the work [7].

N ω µ RBM RBM+PJ Slater-Jastrow
2 0.1 [7] 0.46774 0.44098 0.44129

1 0.47061 0.44107 0.44249
2 0.52464 0.50128 0.52162
4 0.62098 0.61654 0.62239

0.5 [7] 1.72343 1.65963 1.65974
1 1.75839 1.65938 1.65949
2 2.03667 1.94501 1.95664
4 2.22787 1.99085 2.10934

1 [7] 3.07891 2.99958 2.99936
1 3.05688 2.9993 3.018405
2 3.70162 3.55287 3.56096
4 4.20132 4.12645 4.34816

6 0.1 [7] 3.69711 3.57000 3.56951
1 3.70702 3.64006 3.65316
2 4.20246 4.06737 4.18436
4 4.97731 4.78665 5.13467

0.5 [7] 12.26400 11.80494 11.81042
1 12.39571 11.80637 11.93453
2 14.09163 13.64388 13.76409
4 15.91770 15.46373 16.03382

1 [7] 20.56356 20.17731 20.19182
1 20.49953 20.18462 20.36222
2 24.12246 23.42870 23.75789
4 26.07410 25.25064 27.69342

20 0.1 [7] 30.79068 30.14422 30.04032
1 30.72012 30.49311 30.91774
2 36.21925 35.44858 35.65152
4 39.19712 39.16432 39.73922

0.5 [7] 96.35655 94.10111 94.04339
1 96.51876 94.92191 94.17097
2 109.32720 107.59112 109.76361
4 120.45402 120.21697 120.95605

1 [7] 159.42833 156.10411 155.89004
1 158.69821 156.82013 157.21111
2 179.84105 178.28382 171.82520
4 193.39353 192.99321 196.35619
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4. Simulation results

Let us analyse the results obtained in the process of calculating the energy of various multi-particle
quantum systems (Table 1). As expected, with the parameter value µ = 1, the results are almost
identical to those of the work by [7]. The small error can be attributed to the inaccuracy of computer
calculations, different outcomes when training the network, and limited computing power. From the
results of calculations for µ = 2 and µ = 4) we can see that as the value of the parameter µ increases the
energy value increases. Such results is to be expected, because with an increase in µ, the asymmetry
of the quantum dot increases, which in turn leads to a weakening of the electron repulsion in the
direction of the major axis of the ellipse. Considering the computational time for different ansatzes,
we can say that the least expensive in this regard is the RBM ansatz (9). It is because it does not
take into account the Padé-Jastrow factor. And the ansatzes (6) and (10) require significantly more
time to calculate. As for other patterns and trends in the results, they are mostly similar to the ones
presented in [7].

Also, calculations were performed to find profiles of single-particle electron density for different
sets of parameters N = {2, 4, 6, 12}, ω = {0.1, 0.5, 1.0}, µ = {1, 2, 4}. The calculation results are
presented in Figures 1, 2.

N = 2, µ = 2.0, ω = 0.5 N = 2, µ = 2.0, ω = 1.0 N = 2, µ = 4.0, ω = 1.0

N = 4, µ = 2.0, ω = 0.5 N = 4, µ = 4.0, ω = 0.5 N = 4, µ = 4.0, ω = 1.0

Fig. 1. One-body electron density profiles ρ(x, y) for N = 2, 4, µ = 2, 4 and ω = 0.5, 1.0.

The results show that for high-frequency quantum dots ω = 0.5 with an ellipticity parameter greater
than 1 (µ = 2, µ = 4), potential asymmetry significantly affects electron density. However, when the
frequency is increased to ω = 1.0 for the same values of µ, the effect of ellipticity decreases, which can
be explained by the fact that the increase in ω leads to an increase in the energy of particles that move
freely in the field of the asymmetric oscillatory well.
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N = 6, µ = 4.0, ω = 1.0 N = 12, µ = 2.0, ω = 1.0 N = 12, µ = 4.0, ω = 1.0

Fig. 2. One-body electron density profiles ρ(x, y) for N = 6, 12, µ = 2, 4 and ω = 0.5, 1.0.

5. Conclusions

The paper considers the use of artificial neural networks for modeling two-dimensional multi-particle
quantum systems. We considered methods and techniques for modeling the energy of such systems in
an oscillatory field.

We investigated the possibility of using a neural network as a means of calculating part of the trial
wave function for two-dimensional Coulomb systems in an asymmetric oscillatory field. This approach
allows us to study quantum systems for which conventional methods of constructing wave functions
require significant understanding and physical intuition. For simulation we considered three ansatzes,
two of which are based on the discrete distribution of the restricted Boltzmann machine.

The results were obtained using the variational method with different trial wave functions. To
take into account the asymmetry of the system, an ellipticity parameter µ was introduced, which
specifies the relationship between the corresponding oscillator frequencies. As a result, we investigated
the behavior of electrons in an asymmetric wavepoint model, more closely resembles experimental
conditions.
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Енергiя та розподiл густини скiнченної кiлькостi
взаємодiючих електронiв у квантових точках

Костробiй П. П., Польовий В. Є., Тринога М. Т., Пiц О. Й.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У роботi розглянуто модель двовимiрного взаємодiючого електронного газу, що зна-
ходиться в асиметричнiй осциляторнiй ямi. Дослiджено енергiю основного стану сис-
теми та розподiл густини електронiв, використовуючи обмежену машину Больцмана.

Ключовi слова: обмежена машина Больцмана; квантовi точки; багатоелектрон-

на система.
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