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Modeling the behavior of bi-disperse, linearly entangled polymers blends using the Rolie–
Double–Poly constitutive equation is essential for understanding the reliability of the
model in simulating complex flow behaviors. This study examines the extensional response
of polymer blends, particularly the stretching of chains under pure extensional flow along
the centre-line in two flow geometries: hyperbolic contraction flow and cross-slot flow
with hyperbolic corners. Coupled and uncoupled models were implemented within the
OpenFOAM software via the RheoTool toolbox where the simulations use the rheoFoam

solver to model incompressible viscoelastic fluid flow. The effect including the contraction
lengths, blend composition of chain lengths, and chain coupling are the key factors in this
studies. One significant results reveal that the Rolie–Double–Poly model more accurately
captures the extensional behavior of polymer chains compared to the uncoupled model
underscoring its potential applicability for more complex, polydisperse systems.
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1. Introduction

Understanding the behavior of polymeric fluids during processing is crucial for controlling their flow
and optimizing processing parameters. This insight plays a vital role in achieving high-quality and con-
sistent final products. However, a significant challenge in this field, particularly when using numerical
simulations, is selecting an appropriate constitutive model that accurately predicts the flow behavior.
These models must effectively represent the intricate molecular dynamics essential for computational
fluid dynamics simulations.

Over time, the constitutive models describing viscoelasticity have evolved significantly from the
basic Maxwell model [1], which described linear unentangled polymers using a simple spring and
dashpot, to more advanced models that address the polydispersity of entangled polymer chains Boudara
et al. [2] and not limited to linear polymer. Researchers used relevant theories to develop the models.
For instance, a sophisticated GLaMM model [3] was derived based on the tube theory of de Gennes [4]
and Doi and Edwards [5], to describe the monodisperse linear polymer melts. The comparison between
the prediction made by the model has been verify experimentally for polyisoprene melts where the
prediction of the model is align with the observed behavior of the monodisperse melts in nonlinear
shear flows conditions [6]. The GLaMM model also has been used by other researchers for comparison
with the experimental results [7–9]. Likhtman and Graham [10] simplify the GLaMM model to form
Rolie–Poly model that retain the features of the GLaMM model so that it is amenable for computational
fluid dynamics [11,12]. Numerous research work utilizing this model to study the flow behavior under
different conditions [13–16]. Although these models are effective for monodisperse polymer melts,
it fails to capture the blends of different polymer chain lengths typically found in industrial grade
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polymer. The conventional way of defining polydispersity ignores the interactions between polymer
chains that leads to inaccuracy of the prediction. The uncoupled model is based on the principle of
linear superposition, is referred to as the multimode model. The stress of the multimode model is
computed by summing the individual contribution of the polymer chains involved.

Due to the limitations in accurately describing polydispersity in existing multimode model, Boudara
et al. [2] proposed a new model that effectively captures the polydispersity of polymers using a dou-
ble reptation framework [17]. This approach accounts for the interactions between different polymer
species, better mimicking real polymer behavior. The Rolie–Double–Poly (RDP) model defines stress
contributions as the sum of the individual polymer species, incorporating entanglements specific to
each species within the blend and their respective volume fractions. However, a key challenge of
this model arises as the number of components in the blend increases, significantly complicating the
computational process.

Geometrical flows are commonly used to study the viscoelastic response of the models considered.
The abrupt 4:1 contraction geometry is one of the benchmark geometrical flows that has been used
to study the viscoelastic response under complex flow, the mixture between shear near the wall and
pure elongational flow at the centre–line. However, the disadvantage of the device is the formulation
of the flow recirculation near the edges of the upstream corner before the fluid accelerating through
the constriction region under fast flow. Understanding the extensional response in this configuration is
quite challenging due to abrupt geometrical changes which trigger the intense elongational flow as the
fluid moves through the downstream. This implies a uniform extension-rate fail to be obtained [18].
In 1978, Cogswell [19] investigated various converging geometries to examine the fluid response under
elongational flow and found that a uniform extension-rate was observed within the converging region
for the hyperbolic contraction configuration. This discovery suggests that the hyperbolic contraction
profile is an effective alternative device for measuring extensional viscosity, aiding in the prediction of
extensional viscosity within the contracting region. Consequently, many researchers have utilized this
device to study the elongational flow behavior of viscoelastic models [20] and commercial polymers [21,
22].

Although the hyperbolic contraction configuration is effective for measuring extensional viscosity,
the amount of strain experienced by the fluid during stretching flow may be limited compared to
other configurations. The cross-slot geometry is another useful setup for studying how viscoelastic
fluids respond to strong stretching flow. It helps provide a clearer picture of the fluid’s behaviors
under intense elongational flow. In 2014, Cruz et al. [23] suggested the cross-slot device as a new
benchmark flow for viscoelastic fluids. Many researchers have utilized cross-slot device to investigate
various aspects of fluid behavior, demonstrating its versatility in studying different phenomena [24–28].

The RDP constitutive equation [2], a recently introduced model, effectively describes polydispersity.
However, limited research has explored its application, leaving a gap in understanding. This paper aims
to fill this gap by investigating the behavior of the bi-disperse model in complex geometrical flows, with
a focus on its extensional behavior. The study compares this model to traditional methods of defining
bi-dispersity, particularly in terms of elastic response under pure elongational flow. Specifically, the
paper examines the behavior of bi-disperse blends described by the RDP model in one-dimensional 4:1
hyperbolic contraction flow and two-dimensional cross-slot flow with hyperbolic corners.

2. The Rolie–Poly and Rolie–Double–Poly constitutive equation

Rolie–Poly model was originally proposed by Likhtman and Graham [10] delineates shear-thinning fluid
based on molecular and tube theory [5] and a simplification of the GLaMM model that characterizes the
monodisperse linear entangled polymer [3]. The polymeric stress, σ is defined based on conformation
stress, A as σ = GA, where G is the elastic modulus and for A for Rolie–Poly model is described as

▽

AAA = −
1
τd
(A− I)

︸ ︷︷ ︸

Reptation

−
2
τs
(1− λ−1)

[

A+ β∗λ2δ(A− I)
]

︸ ︷︷ ︸

Retraction and CCR

, (1)
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where
▽

AAA is the upper-convected time derivative, β∗ is convective constraint release, (CCR) coefficient,

δ = −0.5 is the fitting parameter and λ =

√
tr (A)

3 is the molecular stretch of the polymer chain, τd is
the reptation relaxation time and τs is the stretch relaxation time. As for the multimode Rolie–Poly
(mRP) model, the total polymeric stress is based on the summation of the stresses from the individual
mode and neglects the interaction of the polymeric chains involved in the blends. The total polymeric
stress of the mRP model is calculated as σσσ =

∑N
M=1σσσM , where σσσM is the polymeric stress of mode

M and N is the total number of modes. Note that, each mode has a different elastic modulus and
relaxation time. For comparison purposes between mRP and RDP, the parameters considered are
calculated based on the same linear viscoleastic envelope.

In this work, the bi-disperse blends is considered involving two different molecular weights, the short
chain, S and the long chain, L from the same polymer with respective to ensure the proportionality of
the elastic modulus to volume fraction, φS and φL.

The original total polymeric stress of RDP model defined by Boudara et al. [2] involving finite
extensibility function and assume as one in this work. The stress is then defined as

σσσ = G(φSAAAS) + (φLAAAL), (2)

where AS and AL denote the mean conformation stress tensors from the interactions of the short and
long chains, with the respective stretches defined as λS =

√

trAS/3 and λL =
√

trAL/3. The mean
conformation tensors are given as

AAAS = φLAAASL + φSAAASS , (3)

AAAL = φSAAALL + φSAAALS , (4)

where AIJ represents the conformation of type I chains resulting from entanglements with type J
chains. In general, each tensor can be described as

▽

AAA = −
1

τd,I
(AAAIJ − III)

︸ ︷︷ ︸

Reptation

−
2

τs,I
(1− λ−1

I )AAAIJ
︸ ︷︷ ︸

Retraction

−
βth

τd,J
(AAAIJ − III)

︸ ︷︷ ︸

Thermal contraint release

−
2β∗λ2δ

I

τs,I
(1− λ−1

J )(AAAIJ − III)
︸ ︷︷ ︸

Convective constraint release

. (5)

The coupling effect between the chain interaction is examined using RDP model with 5% long chain
having the orientation relation time, τd,L = 10 and stretch relaxation time, τs,L = 0.2 in arbitrary units
blended with 95% of short chain with τd,S = 0.1 and τs,S = 0.05. The results presented in this paper
considering the parameters with respective values and β∗ = 0 and βth = 1.

Utilizing a two-mode RP model, which is based on the contributions from the short and long chains
is insufficient to produce comparable results for comparison purposes. This effect is compared with
the mRP model for the uncoupled version of bi-dispersity. To achieve comparable results that match
the linear rheology as the RDP, a three-mode RP is selected to study the coupling effect. Therefore,
the corresponding relaxation times for the three-mode RP model are defined as

τd,1 =
τd,L
2 , τd,2 =

(
1

τd,L
+ 1

τd,S

)−1
, τd,3 =

τd,S
2 (6)

and the stretch relaxation times for the modes are given as

τs,1 = τs,L, τs,2 = 2
(

1
τs,L

+ 1
τs,S

)−1
, τs,S = τs,S, (7)

with respective moduli as G1 = Gφ2
L, G2 = 2GφLφS and G3 = Gφ2

S . These parameters set for three-
mode RP model give the same predictions as the RDP model in the linear viscoelastic limit. The first
mode can be viewed as representing the long-long configuration, the second mode as representing the
configuration made by long-short and short-long and the third mode with short-short configuration.
One significant difference between the RDP and mRP models is that the ability of the model to capture
strain hardening below the extension-rate below 1/τs,L due to the enhanced stretch relaxation [29] of
the polymer chain with higher molecular weight of the polymer chain in the blends. This affect the
increment of the effective stretch relaxation time of the long chain and the phenomenon has been
investigated and confirmed this behavior experimentally [30] and explained theoretically [29].
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3. OpenFOAM simulations

The OpenFOAM software [31] is used in this study to simulate the results presented. This open-
source software, written in the high-level C++ is based on finite-volume solver developed to solve
various computational fluid dynamic problems. The viscoelastic solver, viscoelasticFluidFoam was
first introduced by Favero et al. [32] within the foam-extend library. However, due to stability issue
under certain conditions, Pimenta and Alves [33] developed a more robust solver called rheoFoam,
available in a RheoTool toolbox. This solver is specifically used for simulating single-phase, transient,
incompressible flows of the Generalized Newtonian and viscoelastic fluids.
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Fig. 1. Comparison for velocity distribution at the centre-
line towards the contracting region between rheoFoam

(current work) and the finite element solver [35].

RheoFoam solver utilizes the SIMPLEC al-
gorithm [34] for the pressure-velocity cou-
pling and employs the CUBISTA scheme for
discretizing the convective terms which en-
sures second-order accuracy in both time and
space. Pimenta and Alves [33] validated
the rheoFoam solver by comparing the per-
formance on the Oldroyd-B flow through an
abrupt 4:1 contraction with their in-house fi-
nite volume code for Deborah numbers up to
12. The study found good agreement between
the two approaches demonstrating the accu-
racy and stability of the solver under chal-
lenging flow conditions. This comparison sup-
ports the reliability of the rheoFoam code for
modeling complex viscoelastic flows.

The RheoTool toolbox has been extended
to include the three-mode mRP and RDP
models within the software. The implementation of the mRP model was validated against the fi-
nite element algorithm developed by Tenchev et al. [35] through comparisons of results from 4:1 planar
contraction flow simulations for the commercial-grade polystyrene, PS2 as shown in Figure 1.
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Fig. 2. Validation of the implemented RDP model by comparing the transient uniaxial extensional viscosity
from the published results by (a) Boudara et al. [2] (LHS) with (b) current work (RHS) for 5% long chain blend

with 95% short chain having relaxation times of λD,L = 200, λR,L = 1.0, λD,S = 0.1, λR,S = 0.01).

The validation of the implemented RDP model was conducted by comparing the transient uniaxial
extensional calculation given by Boudara et al. [2]. Figure 2 shows the agreement between the results
obtained using rheoTestFoam solver shown in Figure 2b and the results from Figure 2a available in [2].
This demonstrates the reliability of the RDP implementation within RheoTool toolbox.
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4. Result

4.1. Hyperbolic contraction flow

The abrupt contraction flow is commonly used as the benchmark geometrical flows to study the ex-
tensional response of the viscoelastic fluid flow flowing in one-dimensional. The strain-rate history of
the stretching flow through the constriction is depends on the rheological characteristics of the fluid
considered that affect the formation of the fluid pattern in the upstream region especially near the
vertex of the converging region.

One of the disadvantages of abrupt contraction device is the formulation of the flow recirculation
near the edges of the corner before the fluid flowing through the constriction with high rates depending
on the contraction ratio. The hyperbolic contraction geometry as an alternative device can be used
to study the extensional behavior of the fluid at the centre-line within the contracting region. This is
because, hyperbolic contraction geometry can be considered as a tool to generate a constant extension-
rate at the centre-line that can be used to measure the extensional viscosity which an important
stretching fluid property [19].

In this study, we examine a 4:1 planar hyperbolic contraction to analyze the behavior of fluid flow
under controlled extensional and shear conditions. The flow transitions from a wider upstream inlet
channel to a narrower downstream outlet channel, creating a contraction ratio of 4:1. To achieve
a smooth flow profile through the contraction, a hyperbolic design is implemented, which ensures
a gradual decrease in cross-sectional area within the constriction region. This design generates a
controlled acceleration of fluid as it enters the contraction, resulting in a uniform velocity gradient
along the centre-line of the geometry and promoting a constant extension-rate in the central flow
region. Close to the channel walls, shear stress dominates, while a combination of shear and extensional
stresses occurs across the contraction, producing a complex flow profile. This hyperbolic contraction
geometry is particularly effective for studying the extensional response of fluids, making it valuable in
experimental investigations involving viscoelastic and other complex fluids.

As a consequence of the symmetry with the upstream and downstream at the centre-line of the
geometry, only half of geometry with the contraction ratio of the upstream to downstream, 4:1 is
considered as shown in Figure 3. This reduced the computational cost during the simulation,

H(x) =







H0, x 6 0,
H0L

L+(H0/H1−1)x , 0 < x < L,

H1 x > L.

Fig. 3. The computational domain for the upper half of the hyperbolic contraction used for simulating the
HCF using the RDP model with symmetry imposed on y = 0. The contraction length shown by the schematic

is L = 5.

Pressure ramping protocol is used to evolve the flow with the smooth onset at the inlet in the
upstream with no slip boundary condition set up at the wall and linearExtrapolation utility as a
boundary condition to extrapolate the stress at the wall. The following pressure formula is used in
the simulation, P = α(1 − e−βt), where α is the target pressure drop value and β is set to 1 and t is
time. It is worth noting that the pressure ramping protocol had no effect to the prediction of the final
steady-state.

The effect of the contraction length, the coupling effect between the Rolie–Double–Poly (RDP)
and multimode Rolie–Poly (mRP) and the effect of blend composition are studied to understand the
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behavior of the geometrical changes towards the extensional components, the consideration of the
interaction between the polymer chains described by the RDP model through coupling effect and the
existence of different volume fractions for the long and the short chains in the blend.

4.1.1. Effect of contraction length

In this paper, two contraction lengths, L = 1 and L = 5 are considered to observe to generate a
constant extension-rate within the contracting region along the centre-line. A good meshing strategy
is required especially when dealing with the short contracting region to avoid the high skewness issue
that complicate computations during simulations. Figure 4 illustrates the generated extension-rate
along the centre-line for contraction length L = 1 and L = 5 at an upstream volumetric flow-rate,
(VFR) of approximately, VFR ≈ 3.12. The results shows that the shorter contraction length (L = 1)
generated higher but non-uniform extension-rate comparing to longer extension-rate. The contraction
length, L = 5 is considered long enough to generate high extension-rate and preserve the extensional
flow characteristics. At the end of the contraction that is the beginning of the downstream channel,
negatives extension-rate are observed due to elastic recoil.

A hyperbolic contraction length of L = 5 in this study is considered optimal, as it achieves a
uniform and sufficient extension-rate along the centre–line. However, extending the contraction length
beyond reduces the extension–rate and for sufficient long hyperbolic contraction length leads to highly
shear–dominated flow near the walls, which interferes the formation of the purely elongational flow
at the centre-line of the geometry. Therefore, selecting an optimal contraction length is essential
to investigate the elastic behavior of the polymeric model without inducing elastic instabilities or
shear-dominated flow. This optimal length should enhance the quality of extensional flow and allow a
better understanding of the stretching behavior of the polymeric model considered. Another significant
geometric factor influencing extensional flow in hyperbolic contraction geometry is the contraction ratio.
For a given extension-rate and contraction length, a higher contraction ratio is believed to give greater
extensional strain due to the increased residence time within the contraction region.
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Fig. 4. The extension-rate of the bi-disperse RDP
model with different contraction lengths of the hyper-

bolic contraction flow.

As a consequence of the extension-rate gen-
erated in Figure 4, the stretches for both the
long-long chain entanglement, or so called the
fat tube and the thin tube formed from both
short and long chain entanglement are depicted
in Figure 5. The design of the shorter con-
traction length (L = 1) of the geometry allow
the flow to experience intense elongational flow
through the constriction region that generates
higher stretch comparing to longer contraction
length (L = 5). The abrupt changes of the ge-
ometry downstream generates higher extension-
rate that spikes the stretch. However, for the
longer contraction length (L = 5), the changes
of the geometry is smoother allowing the flow
to accelerate through the converging region gradually and create uniform extension-rate along the
centre-line within the converging region.

The contraction length within the constricting region is an important aspect of the geometry
to ensure the uniform extension-rate can be achieved. However, the geometrical flow behavior is a
complex interplay between shear and elongational response. Therefore, to prevent the shear effects
from dominating the flow especially away from the centre-line, a balance must be achieved between
having sufficiently long contraction region contraction with sufficiently high extension-rate that gives
high enough extension-rate. This compromise helps to preserve the elongational flow characteristics
without being overshadowed by shear.
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Fig. 5. Centre-line plot for different contraction length, L = 1 and L = 5 of the hyperbolic contraction flow
with VFR ≈ 3.12 predicted by bi-disperse RDP model. (a) Left-hand figure shows the fat-tube stretches.

(b) Right-hand figure shows the thin tube stretches.

4.1.2. Coupling effect

Table 1. The respective parameters for the three-
mode mRP model based on the RDP parameters.

Parameters Mode 1 Mode 2 Mode 3
ηp,j 0.0125 0.009406 0.045125
τd,j 5.0 0.0990099 0.05
τp,j 0.2 0.08 0.05

Investigating the effect of the interaction between the
polymer chains in blends is crucial to ensure that nu-
merical predictions accurately reflect the real poly-
mer behavior. This section compares two models,
the mRP model that neglects the chains interaction
and RDP model that considers the interaction be-
tween the chain involved. Both models describes the

bi-dispersity with the same prediction in the linear viscoelastic limit. The equivalent parameters for 3
mode mRP model based on RDP parameter are displayed in Table 1, where j in Table 1 is j = 1, 2, 3.

It is worth noting that the value of the τd,j and τs,j obtained in Table 1 is calculated using Eqs. (6)
and (7). The viscosity for each mode is defined as follow

ηp,1 =
Gφ2

Lτd,L
2 = ηp,L

φL

2 , (8)

ηp,2 = 2GφLφS

(
1

τd,L
+ 1

τd,S

)−1
= 2ηp,L

φS

τd,L

(
1

τd,L
+ 1

τd,S

)−1
, (9)

ηp,3 =
Gφ2

Sτd,S
2 = ηp,S

φS

2 . (10)
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Fig. 6. Centre–line plot between RDP and mRP
for the 4:1 hyperbolic contraction flow, with L = 5
for the stretch for the fat tube composed only of L-
chains, λLL =

√

trALL/3 predicted by the (cou-
pled) RDP model compare to (uncoupled) mRP

model.

Figure 6 shows the comparison between the
stretch for the long-long chain component. In mRP,
the stretch of the long-long chain configuration is rep-
resented by the first mode of the model. From the
figure, it is observed that the prediction of the fat
tube stretch made by the RDP model flowing in 4:1
contraction ratio is approximately λLL ≈ 2.17 which
is about 1.4 times higher than the prediction made
by the mRP that neglect the interaction between the
polymer chains in blends.

These results reveal the significant predictive ca-
pability of the RDP (coupling) model, highlighting
its ability to distinguish differences between the RDP
and mRP models. The coupling effect in the RDP
model leads to higher stretch within the contracting
region compared to the mRP model, primarily due

to the enhanced stretch relaxation captured by the RDP model. The contrasting predictions of both
models demonstrate their accuracy in modeling the behaviors and interactions of polymer blends in
complex flow conditions. This validates the effectiveness of the RDP (coupling) model in accurately
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predicting the complex interactions among polymer species within the blends. On the other hand,
neglecting the interaction between the polymer chains, as described by the mRP model, may result
in less accurate predictions of the polymer behavior particularly under conditions such as elongational
flow that is generated when the flow moves through the converging region of the hyperbolic geometry.

4.1.3. Effect of blend composition

Exploring the blend composition effects by varying the volume fraction of short and the long in the
blends helps to enhance the knowledge in understanding polymer behavior. Figure 7 shows the results
for the fat tube stretch and thin tube stretch with the 5%, 10% and 20% of long chain species blended
with 95%, 90% and 80% of the short species respectively. From Figure 7a, the stretch in the fat tube
is the highest when φL = 0.05 and the lowest when φL = 0.2. This means the stretch decreases as φL

increases. As reported in Boudara et al. [2], as the fraction of the long chain decreases, the effective
stretch relaxation time along the fat tube increases. This explain the trend in Figure 7a.
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Fig. 7. Centre-line plot of the hyperbolic contraction flow with contraction length, L = 5 predicted by bi-
disperse RDP model for different blend compositions, 5%, 10% and 20% of the long chain in blends flowing with
the same VFR of 4.8. (a) Left-hand figure shows the fat-tube stretches. (b) Right-hand figure shows the thin

tube stretches.

In Figure 7b, the opposite trend is observed. The stretch in the thin tube increases as the long chain
contribution increases. This is because adding more long-chain components to the blends increases the
likelihood of polymer chain entanglement, which restricts movement and promotes alignment along the
flow direction, thereby enhancing stretching.

4.2. Cross–slot flow

The cross–slot geometry is another versatile tool and popular choice used to study extensional flow,
primarily due to the central stagnation point, where significant fluid stretching occurs, allowing for
the analysis of extensional properties such as extensional viscosity. In a cross–slot setup, fluid enters
through two opposite inlet arms and exits through two perpendicular outlet arms, as shown in Figure 8.
The inlet streams converge at the center of the device, creating a significant elongational flow along the
centre-line and generates high-stress stretching at the intersection due to the presence of stagnation
point at the centre point of the device.

The hyperbolic corner design promotes a gradual increase in flow velocity, resulting in a uniform
extension-rate along the centre-line, which is ideal for studying viscoelastic fluid behavior. While
extensional stress dominates along the centre-line, shear stress becomes more pronounced near the
channel walls. This geometry provides a unique combination of controlled extensional and shear flows
that is suitable for investigating complex fluid behavior. In this research, the aim is to study the
stretching behavior of polymeric fluids using the selected constitutive models, the mRP and RDP,
and the focus is on examining the behavior along the centre-line, where a pure elongational flow is
established.

The hyperbolic corner of the geometry shown in Figure 8 is defined based on the quadrant. With
the stagnation point at the origin, the definition is divided into two distinct regions: one for positive
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Fig. 8. The geometrical definition for two-dimensional cross-slot with hyperbolic corner and the fluid flow
direction. The stagnation point is at the origin of the axes.

y-values and another for negative y-values. For the positive y-value, y = H(x) is defined according to
the following piecewise function:

H(x) =







0.5H, x < −(L+ 0.5),
−0.5H(L+0.5)

x , −(L+ 0.5) 6 x 6 −0.5,
0.5H(L+0.5)

x , 0.5 6 x 6 (L+ 0.5),

0.5H, x > L+ 0.5.

On the other hand, for a negative y-axis, y = −H(x), H(x) is defined as

H(x) =







−0.5H, x < −(L+ 0.5),
0.5H(L+0.5)

x , −(L+ 0.5) 6 x 6 −0.5,
−0.5H(L+0.5)

x , 0.5 6 x 6 (L+ 0.5),

−0.5H, x > L+ 0.5.

Conversely, along the negative y-axis, y = −H(x).
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The flow is evolved by the pressure ramping protocol at the inlet and no-slip boundary condi-
tions is set up at the walls, and the stress is linearly extrapolated at the walls by setting up the
linearExtrapolation utility available in the rheoTool toolbox [33] is used to extrapolate the stress
at the walls. The influence of geometrical effect, coupling, and blend composition are studied to bet-
ter understand the extensional behavior of the bi-disperse blends flowing in cross-slot geometry with
hyperbolic corners.

4.2.1. Effect of hyperbolic corner length
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Fig. 9. Centre-line plot for the thin-tube stretch and
fat-tube predicted by bi-disperse RDP model for a cross-

slot with sharp corner flowing with VFR ≈ 3.65.

Geometrical configuration plays an important
role in capturing the extensional behavior of the
viscoelastic fluid. In this paper, three hyper-
bolic contraction lengths corners are considered,
L = 2, 3 and 4. The comparison of the stretch
is made against the cross-slot with sharp cor-
ner. The inlet pressure for different lengths are
adjusted so that the volumetric flow-rate for all
simulations are the same for comparable results.

Figures 9 and 10 display the centre-line plots
for fat and thin tubes stretches near the inter-
section arms of the cross-slot flow device, fea-
turing both sharp and hyperbolic corners with
varying lengths, respectively. The predictions
made by the cross-slot show significantly higher
value when compared to the hyperbolic corner, leading to a clear separation between the plots for
the sharp and hyperbolic corners. As the flow approaches the stagnation point of the sharp corner, it
undergoes abrupt changes in direction, which strongly induces an extensional component in the region.
The extension-rate, particularly at the stagnation point, is high, leading to a significant increase in the
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Fig. 10. Centre-line plot for different length of the hyperbolic corner flowing with VFR ≈ 3.65 predicted by
bi-disperse RDP model. (a) Left-hand figure shows the fat-tube stretches. (b) Right-hand figure shows the

thin tube stretches.

stretch of the tubes, especially those made of long-chain polymers. Comparing the stretch values for
the both tubes, the stretch in the fat tube is approximately four times greater than that in the thin
tube.

The extension-rates vary for cross-slot geometries with different hyperbolic corners, ranging from
1.5 to 3 within the hyperbolic region. Given that τR,L = 0.2, it follows that τR,Lε̇ < 1. In steady
extensional flow, the expected stretch of the thin tube is λL = (1− τR,Lε̇)

−1. On the other hand, the

stretch of the fat tube is approximately φ
−1/2
L times greater.

To sum up, the geometrical changes significantly influence the velocity gradient (the extension-rate).
A cross-slot with sharp corners creates steep velocity gradients due to the rapid acceleration of the
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fluid toward the stagnation point. In contrast, a longer hyperbolic corner produces a more moderate
velocity gradient because the flow experiences less intense changes and moves gradually through the
hyperbolic zone. This implies that the stretches of the thin and fat tubes reduces as the hyperbolic
corner length of the cross-slot device increases.

4.2.2. Coupling effect

The effect of coupling between the polymer chains in bi-disperse blends within a cross-slot device
having a hyperbolic corner with L = 2 can be observed by comparing the coupled RDP model with
the equivalent mRP model that shares the same linear rheology. Figure 11 shows the extension-rate
with the stretch for the fat tube measured by RDP and mRP models. The predicted extension-rates
shown in Figure 11a are nearly identical, except at the stagnation point, where the RDP model predicts
slightly lower values compared to the mRP model due to higher resistance to stretching flow.

In Figure 11b, a significant difference is observed between the predictions of the RDP model and
the mRP model. The RDP model predicts a much higher stretch for the interaction between long
chains, despite both models experiencing similar extension-rates within the hyperbolic region. Even
though the mRP model has a slightly higher extension-rate at the stagnation point compared to the
RDP model, the stretch predicted by the RDP model is about three times greater. The difference
is due to the enhanced stretch relaxation time in the RDP model, which captures the more complex
dynamics of polymer chain relaxation by accounting for interactions between entangled polymer chain
interactions that are not fully captured by the mRP model. Additionally, the onset of the fat tube
stretch predicted by the RDP model is observed to begin in the upstream region even before the flow
accelerates through the hyperbolic corners.
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Fig. 11. Centre-line plot for different length of the hyperbolic corner flowing with VFR ≈ 3.65 predicted by
bi-disperse RDP model. (a) Left-hand figure shows the fat-tube stretches. (b) Right-hand figure shows the

thin tube stretches.
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Fig. 12. Fat tube stretch contour of the RDP and mRP at extension-rate, ε̇ = 2.5. (a) Left-hand figure shows
the stretch contour for the fat tube composed only of L-chains, λLL =

√

trALL/3 predicted by RDP model.
(b) Right-hand figure shows the stretch contour of the first mode (with the longest relaxation time) predicted

by uncoupled mRP model.
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Figure 12 shows color contours captured near the centre of the device, including the four arms.
The contours are plotted with the same extension-rate along the centre-line as shown in Figure 11a.
Throughout the domain in Figure 12, it is evident that no significant stretch is observed in the inlet
arms for either model, particularly in the predictions made by the mRP model. The fluid accelerates
toward the opposite direction of the outlet arms, creating elongational flow along the horizontal centre-
line.

This flow elongates the stretching component of the fluid near the neighbouring stagnation point
and reaches a maximum at the stagnation point. The stretching component is observed to gradually
diminish as the fluid flows into the downstream region.

4.2.3. Effect of blend composition

Bi-disperse polymer blends demonstrate the complex extensional rheology as a result of the interactions
between the polymer chains with different molecular weights. Investigating the impact of various
polymer chain lengths in these blends is crucial for understanding flow behavior, particularly under
stretching conditions. Utilizing a cross-slot device is a valuable method for studying the behavior of
these blends under near-pure elongational flow conditions at the centre-line.
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Fig. 13. Centre-line plot of the cross-slot with hyper-
bolic corner (L = 2) for extension-rate predicted by
bi-disperse RDP model for different blend compositions

flowing with the same VFR of 4.8.

Three different blends are examined to study
the influence of blend composition on elonga-
tional flow along the horizontal outlet centre-
line. In each case, pressure drops are adjusted to
achieve the same volumetric flow rate for com-
parison purposes. Figure 13 shows the centre-
line plots for blends with 5%, 10%, and 20% long
polymer chain contributions. Within the hy-
perbolic corner, the extension-rate loses its uni-
formity for the 20% long chain polymer. This
occurs because a higher concentration of long
polymer chains leads to greater modification of
the flow, resulting in enhanced resistance to ex-
tensional flow.

Figure 14 shows the stretching behavior of
the fat and thin tubes at the horizontal outlet
centre-line for different concentration of the long chain polymer flowing with the same volumetric flow
rate. The RDP model predicts demonstrate the opposite trend of the stretch for the thin and fat tubes
along with the increment of the long polymer chains in the blend.
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Fig. 14. Centre-line plot for different blend composition flowing with VFR ≈ 4.8 predicted by bi-disperse RDP
model. (a) Left-hand figure shows the fat-tube stretches. (b) Right-hand figure shows the thin tube stretches.

The fat tube stretch decreases as the long chain concentration increases. This is because, as the
long chain contribution increases, the effective stretch relaxation time increases as noted in Boudara et
al. [2]. A longer relaxation time means the polymer will experience a greater resistance to stretching and
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restrict the ability of the polymer to stretch effectively. In contrast, the thin tube stretch is increases
with the increment of the long chain concentration. The higher density of long chains enhances the
likelihood of these chains becoming entangled with each other and increases the proportion of long
chain entanglements, which more than compensates for the reduced stretchability of this portion.

4.3. Hyperbolic contraction flow versus cross–slot flow

This section presents the comparison between two geometrical flows discussed in the previous section.
While the hyperbolic contraction geometry is flowing in one-dimensional, the cross-slot geometry with
hyperbolic corners is flowing in two-dimensional. For a comparable result, the extension-rate for both
flows within the hyperbolic region were adjusted to give the same extension-rate that is ε̇ = 2.5.
The hyperbolic contraction length for the corner of Cross–Slot Flow (CSF) is set to L = 2 and
contraction length, L = 5 for Hyperbolic Contraction Flow (HCF) as these give equivalent distance of
the extensional flow created along the geometrical centre-line of the contraction region for both devices.

Chain stretch in the cross–slot flow. Figure 15 shows the chain stretch for the fat tube and
thin tube with the maximum extension-rate along the centre-line is about 2.5 in both geometrical flow.
It is worth noting that, the value X = 0 from Figure 15 marks the onset of the contraction for the HCF
whereas in CSF it represents the centre of geometry where the stagnation point is located. Figure 15a
reveals the stretch within the tube that form by the entanglement of the same species for the long
chains (that is sometimes called the fat tube), λLL =

√

trALL/3. It is pronounced from the figure
that the stretch for the tube made up by entirely long chain shows a significant increase of stretch as a
consequence of the enhanced stretch relaxation effect that is captured by the RDP model. Compared
to Figure 15b, the blends is dominated by 95% short-chain and only 5% of the long chain, thus the
stretch in a thin tube that shows a slight stretch of the melt within the contraction region. This trend
shows the same in both devices as expected.
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Fig. 15. Graphs showing the extension of the L-chain component along the centre-line of the 4:1 hyperbolic
contraction flow and cross-slot flow for the RDP model. (a) Left-hand figure shows the stretch in the fat
tube composed only of L-chains, λLL =

√

trALL/3. (b) Right-hand figure shows the stretch in the thin tube

composed only of L and S chains, λL =
√

trAL/3.

Comparing the stretches in both tubes and both geometrical flows, it is observed that a rapid
increase of the stretches is captured by the cross-slot flow approaching the stagnation point gives
the maximum stretch at the stagnation point, and relaxes downstream. This is primarily due to
the nature of the CSF, where the stagnation point is centrally located within the geometry, ensuring
that the surrounding residence time is adequate to achieve equilibrium stretch. However, in HCF,
the transient growth of stretch is observed. It is worth reemphasizing that the main difference that
distinguishes the two flows is the presence of the stagnation point at the center of the cross slot which
significantly affects the residence time of the melt. This explains the reason for the difference in transit
time of the flowing polymer in the two devices.
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5. Conclusion

Understanding the behavior of the bi-disperse blend through one-dimensional and two-dimensional
through the hyperbolic contraction and cross-slot geometry provides valuable insight into the ex-
tensional response of the bi-disperse polymer that can be captured by the new constitutive model
introduced by Boudara et al. [2], the RDP model which was developed to describe a more realistic
description of the polydispersity capturing the complex behavior effectively. This work focuses on the
interaction of the polymer blend composed of two different molecular weights, simplifying the model
to 2 components which requires 4 modes to be computed in each computational cell and time step.

In this paper, the results reveal that the RDP model predicts a higher stretch of the long chain
component compared to the mRP model, even though both models share the same linear rheology.
This is due to the enhanced stretch relaxation time in the RDP model, which allows for significant
stretching at the stagnation point of the device because of the increment of the residence time in
that region. In contrast, the mRP model lacks a detailed representation of entanglement dynamics,
leading to an underestimation of the stretching effect. Therefore, The RDP model provides more
reliable predictions than the mRP model due to its inclusion of interactions between all modes, a
feature absent in the mRP formulation. During the melting process of a polymer blend, physical and
molecular transformations occur, including interactions between polymer chains of different molecular
weights. The RDP model accounts for these interactions through its constitutive equations, while the
mRP model does not. Consequently, the predictions of the RDP model are expected to more accurately
reflect the realistic behavior of polymer blends compared to those of the mRP model. The effect of
the blend composition shows opposite trends in the stretch predicted by the fat and thin tube as the
concentration of the blends of the long chains increases in both devices.

Comparing the two geometrical flows in section 4.3, the CSF is more effective in capturing the
extensional fluid properties which make it a valuable tool in numerical simulations studies and ex-
periments to investigate the phenomena such as flow instabilities and the stretching effects of the
polymer melts under complex flow conditions. The existence of the stagnation point at the centre of
the cross-slot device enhances the stretching behavior due to strong extensional flow generated near
the stagnation point.

Exploring higher coupling modes between polymer chains presents an interesting direction for future
work. However, extending the model to more complex polydisperse systems would require solving N2

coupling equations, leading to significant computational demands. To mitigate this, potential strate-
gies include employing parallel computing and adaptive meshing within the computational domain to
enhance efficiency and reduce computational costs.
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Чисельне моделювання течiї бiдисперсних полiмерiв у складних
геометрiях з використанням моделi Rolie–Double–Poly

у програмному забезпеченнi OpenFOAM
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Моделювання поведiнки бiдисперсних, лiнiйно переплетених полiмерних сумiшей за
допомогою конститутивного рiвняння Rolie–Double–Poly має важливе значення для
розумiння надiйностi моделi при моделюваннi поведiнки складних потокiв. У цiй стат-
тi дослiджується реакцiя на розтягування полiмерних сумiшей, зокрема розтягнен-
ня ланцюгiв пiд дiєю чистого розтягувального потоку вздовж центральної лiнiї в
двох геометрiях потоку: гiперболiчний скорочувальний потiк i поперечний потiк з
гiперболiчними кутами. Зв’язанi та незв’язанi моделi були реалiзованi в програм-
ному забезпеченнi OpenFOAM за допомогою набору iнструментiв RheoTool, де мо-
делювання використовує вирiшувач rheoFoam для моделювання потоку нестисливої
в’язкопружної рiдини. Ефект, включаючи довжину скорочення, склад сумiшi довжин
ланцюга та зв’язок ланцюга, є ключовими факторами в цьому дослiдженнi. Один iз
важливих результатiв показує, що модель Rolie–Double–Poly точнiше фiксує поведiн-
ку розтягування полiмерних ланцюгiв порiвняно з незв’язаною моделлю, пiдкреслю-
ючи її потенцiйну застосовнiсть для складнsiих полiдисперсних систем.

Ключовi слова: Rolie–Double–Poly; Rolie–Poly; гiперболiчний скорочувальний по-

тiк; перехресний потiк; OpenFOAM; RheoTool.
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