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The paper considers the task of finite connected graph exploration by a mobile agent. The
mobile agent moves along the graph, reads and changes marks of the graph elements, and
explores the graph based on this information. A new algorithm for finite undirected graph
exploration of time complexity O(n3), space complexity O(n2) and the upper estimate
of the number of transitions along the edges made by the agent O(n3) is proposed. For
the algorithm to work, the agent needs one color. The algorithm is based on depth-first
traversal method.
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1. Introduction

The problem of computer science, the solution of which is paid special attention, is the problem of
interaction between the control and controlled systems, for example, the interaction of the control
machine, its agent and the operating environment of this agent [1]. In the case considered below, the
interaction of these systems is presented as the process of moving the agent through the graph of the
environment [2].

Until a sufficiently complete model of the operating environment is formed, it is impossible to
purposefully move the agent through it. In the issue of modeling of operating environments, a number
of approaches have been identified, one of which is topological [3]. In this case, the agent only has
information about the relationships between the different regions of the environment, and the metric
and algorithmic information about the environment is not available. Often, a similar situation arises
in robotics [4].

2. Review of studies and publications

The beginning of research in this direction is considered to be the work of K. Shannon [5], in which
the task of searching for a given target in the maze with a maze-solving machine was considered.

An active study of the behavior of automata in mazes begins after the appearance of the work of
K.Dopp [6] describing the traversing of chess mazes with end automata. Over time, the conditions
of the problem expanded, and the machine already needed to visit all the nodes and/or edges of the
explored graph (maze). Later, [7] studies were carried out in the field of analyzing the properties
of an unknown environment under various methods of interaction of the machine with the operating
environment, as well as various prior information about it.

Graph analysis includes a number of particular problems. Let us consider the main ones: the prob-
lem of self-localization (determining the node of the graph in which the automat is located initially),
the problem of map control (checking the isomorphism of the explored graph and the standard graph
(map)) and the problem of complete exploration of the graph (constructing the reference graph (map)
of the explored graph). A number of approaches to solving the latter problem have been determined, a
number of algorithms for wandering the agent through the graph and methods for marking the elements
of the graph with colors or stones, which allows us to explore the graph with accuracy to isomorphism,
have been proposed.
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So, in the work [7], a method is proposed in which the agent, when moving, marks only the
incidentors (the point of connection of the edges with the nodes) of the passed edges. To explore the
edges, the agent moves along them, then returns to the starting node in the shortest way. At the same
time, it remembers the marks of the past incidentors, which clearly determine the node into which the
agent fell, passing along the exploring edge.

The work [8] proposes an algorithm based on a depth-first search strategy. The algorithm has a
number of features: firstly, the graph under study is completely unknown to the agent and the agent at
each step has information about the colors of elements from the vicinity of the working node; secondly,
when passing the nodes of the graph, the agent creates implicit numbering (numbers are not applied
to the nodes) of the passed nodes: when the node is first visited, it is colored in red and it is actually
matched with a number equal to the value of a special variable from the agent’s memory. Based on
this numbering, the graph is explored by constructing the graph which is isomorphic to the original.

Since 1993, works have been published on the study of graphs by a swarm of agents [9, 10]. The
algorithm for swarm operation is as follows. All agents (the memory of each agent can accommodate
the full map of the graph under study) begin work from one node. Having agreed in advance on the
time of the next meeting, the agents divide the available edges among themselves and diverge on them.
After traversing a certain part of the graph, the agents return to the start node to combine the received
maps. Then they agree on the next meeting and again diverge and so it continues until the graph is
fully explored. Similar algorithms using swarm of agents were considered in works of H.Wang [11] and
C. Zhang [12]. But, for example, in the work of S.Das [13], a team of agents is used (the memory of
each agent can accommodate the complete map of the graph under study), which begin work from
different nodes of the graph and interact with each other by means of tokens written by agents to the
nodes of the graph. When several agents get the same node, each of them knows how many agents
are at the node and can exchange information with any of them, thus combining the necessary parts
of the maps.

In work [14], the algorithm of work of a team of agents with additional requirements imposed on
the explored graph, used agents and the channel of communication between agents is considered. For
example, each node of the explored graph must have a memory that allows you to write a number
which is equal to the number of nodes of this graph.

Also, each agent has the ability to read and send the numbers of all nodes from the vicinity of the
node in which it is located, which contains the entailed dependence of the memory of the agent on the
dimension of the explored graph. So, one team of agents could only explore those graphs for which he
had enough memory. It is also worth noting that each agent, after explored its subgraph, begins to
look for new subgraphs for exploration.

In work [15], the algorithm of the work of a team consisting of two agents was considered. It is
similar to the algorithm [14], but the memory of the nodes is now reduced to the possibility of storing
two marks and does not depend on the dimension of the graph. Also, agents do not need to pass node
numbers. This makes the memory of the agent independent of the dimension of the explored graph.
So, one team of agents can explore graphs of any dimension.

The work [16], it is proposed a decentralized approach to the graph exploration by a team of agents,
in which agents can avoid collisions without having a direct connection with each other. Information
exchange between robots takes place by means of beacons installed in previously visited nodes of the
graph. It is worth noting that in this algorithm, decision-making lies directly on each agent and
does not depend on the actions of other agents. The proposed decentralized method ensures that
the unknown environment exploration is completed in a finite number of steps. The structure of the
explored environment is built gradually during the work of agents.

But, for example, in the work [17], agents exchange information about the work done with the base
station through a special network. This network has some restrictions on data exchange. That is, in
order to coordinate actions between agents, it is first necessary to form a network that satisfies these
conditions. In other words, communication with the base station takes place at predetermined loca-
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tions. The peculiarity of the article is asynchronous strategies working with arbitrary communication
models. Asynchronism refers to the ability to give instructions to subgroups of agents when they are
ready to accept them.

The article [18] attempts to develop general concepts and requirements for the graph exploration
by multi-agent systems. The proposed representation for a multi-agent system is aimed at providing
general conditions for declaring the completion of a graph exploration and the completion of such
an exploration in the finite time. The paper proposes modifications of the incident matrix for the
organized exchange of information between agents. The general algorithm of work of the team of
agents researching the graph is also presented. The algorithm is based on the proposed generalized
structure and the modified incident matrix.

The work [19] considers the algorithm of work of the team of agents consisting of two research
agents and one experimental agent. The algorithm is based on the depth-first traversal method. When
the algorithm works, the research agents build implicit numbering on their nodes (numbers are not
applied to the nodes) on the basis of which the experimental agent builds a graph in its memory that
is isomorphic to the explored one. Each node of the graph must have the same memory for the graph
of any dimension, sufficient to store the inks applied (no more than two colors at a time). The memory
of research agents does not depend on the dimension of the graph, which allows one team to explore
a graph of any dimension.

3. Problem statement

As it can be seen from the publications, the problem of graphs exploration is relevant. This is not
surprising, taking into account that an infinite number of unexplored environments remain around
us [20]. All this makes the tasks of conducting a systematic research of graph exploration experiments,
that is, creating agent routes along an unknown graph, marking its elements, collecting and processing
local graph information and methods of constructing a graph on this information, accurate to the
marks on graph elements, relevant. As well as tasks aimed at finding methods for optimizing resource
consumption, time consumption, load on the communication channel, etc., when graphs exploring.

The purpose of the work is to create an effective method and to build an appropriate algorithm
for unknown graphs exploration using a wandering agent. As well as a study of temporal complexity,
capacitive complexity and an estimate of the number of transitions along the edges made by the agent
for the graph exploration.

4. Basic definitions and symbols

The paper considers simple finite undirected connected graphs. Let G = (V,E) be a connected finite
undirected graph without loops and multiple edges, where V is the set of nodes, E is the set of edges
(two-element subsets (u, v), where u, v ∈ V ). The three ((u, v), v) we shall call the incidentor (a contact
point) of the edge (u, v) and the node v. Through I we denote a lot of all the incidentors of the graph.
A set L = V ∪ E ∪ I is called a set of graph G elements. A surjective map µ : L → {w, b}, where w

is interpreted as white, and b is black, we call the coloring function of the graph G. A pair (G,µ) is
called a colored graph. A sequence u1, u2, . . . , uk of pairwise adjacent nodes of the graph G is called a
length path of k. The vicinity Q(v) of the node v we call the set of elements of the graph, consisting
of a node v, all nodes u adjacent to v, all edges (v, u) and all the incidentors ((v, u), v), ((v, u), u).
The cardinality of the sets of nodes V and edges E we shall denote through n and m, respectively. It
is clear that m 6

n(n−1)
2 . We call the isomorphism of the graph G and the graph H such a bijection

ϕ : VG → VH that (v, u) ∈ EG exactly when (ϕ(v), ϕ(u)) ∈ EH . Thus, isomorphic graphs are equal to
within the designation of nodes and the coloring of their elements.

To graph exploration, one mobile agent is used, which can move around the graph, color the graph
elements and read marks on the graph elements, as well as build a representation of the explored graph
in its memory. The agent has a finite, unrestricted growing internal memory, in which the result of
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functioning at each step is fixed and, in addition, a representation of the graph G, initially unknown
to the agent, is built with lists of edges and nodes. The agent has one black paint.

At the beginning of work, the agent is placed in an arbitrary node of the graph G, colors this node
black and places it in a set of nodes VH . The agent moves along the graph from node v to node u

along the edge (v, u), can change the color of the nodes v, u, edges (v, u) and incidentors ((v, u), v),
((v, u), u). Being at the node v, the agent perceives the marks of all elements of the vicinity Q(v) and
based on this information determines along which edge the agent will move further, and how it will
color the elements of the graph.

The proposed algorithm is based on a depth-first search strategy [21], has cubic temporal complexity
and quadratic capacitive complexity, while the upper estimate of the number of transitions along the
edges performed by the agent is estimated as O(n3).

5. Algorithm of the agent operation

At the beginning of the operation of the algorithm, all elements of the graph are colored white. During
the operation, the graph elements can be colored by the agent. The elements of the graph, depending
on their color, will be called white or black.

Let us consider in more detail the algorithm of functioning of the agent. At the beginning of the
operation, the agent enters an arbitrary node of the graph, which is immediately colored black by it and
added to the list of visited nodes, which is stored in the agent’s memory. Then the agent moves along
the white nodes, coloring these nodes, edges (which connect these nodes) and the distant incidentors
black. At each step, node and edge lists are updated in the agent’s memory.

Algorithm 1 Algorithm of the agent operation

1: initialization: ct := 1, i := 0, EH := ∅, t := 1, work(t) := ct, VH := {1};
2: begin

3: µ(v) := b;
4: if ∃(v, u) ∈ Q(v) | (µ(v, u) = w) and (µ(u) = µ(v) = b) then do

5: EXPL_IE (v);
6: if ∃(v, u) ∈ Q(v) | (µ((v, u), v) = w) and (µ ((v, u), u) = b) and (µ(u) = b) then do

7: FORWARD_IE (v);
8: go to 6;
9: end do;

10: else do

11: ADD_IE (v);
12: go to 3;
13: end do;
14: end do;
15: else if ∃(v, u) ∈ Q(v) | (µ(v, u) = w) and (µ(u) = w) then do

16: FORWARD(v);
17: go to 3 ;
18: end do;
19: else if ∃(v, u) ∈ Q(v) | (µ ((v, u), v) = b) and (µ ((v, u), u) = w) then do

20: BACK (v);
21: go to 3;
22: end do;
23: else STOP(v);
24: print VH , EH ;
25: end.

If, in the process of moving forward along the white nodes, the agent meets the back edge (a white
edge with white near and far incidentors, which leads to the already visited node), then it moves along
this edge, coloring it and the far incidentor black. Then the agent returns to the node from which
it began the exploration of the back edge, along the previously traveled path, counting the number
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of steps taken. The steps are counted to determine the number of the node in which the agent got,
making a transition along the back edge. Returning to the node from which the transition on the back
edge was made, the agent determines the number of the far node of the back edge, adds it to the list
of edges and colors the near incidentor of this edge black.

When an agent enters a node in the vicinity of which there are no white nodes or unexplored back
edges, it begins to move back along a previously explored path in search of unexplored edges and
nodes. When moving back, the agent colors black the distant incidentors of the edges along which it
makes the transition. If when moving back, the agent returned to the initial node and did not find
unexplored nodes and edges, then this means that the entire graph is explored. The agent finishes the
operation and at that moment its memory already contains a list of nodes and a list of edges of the
graph.

EXPL_IE (v):

1. The agent selects from Q(v) the edge (v, u) which has (µ(v, u) = w) and (µ(u) = µ(v) = b);
2. The agent moves along the edge (v, u) to the node u coloring µ((v, u), v) := b, µ(v, u) := b,

µ((v, u), u) := b;
3. v := u.

FORWARD_IE (v):

1. The agent selects from Q(v) the edge (v, u) which has (µ((v, u), v) = w) and (µ((v, u), u) = b) and
(µ(u) = b);

2. The agent moves along the edge (v, u) to the node u;
3. v := u;
4. i := i+ 1.

ADD_IE (v):

1. EH := EH ∪ {(work(t), work(t − i))};
2. i := 0.

FORWARD(v):

1. The agent selects from Q(v) the edge (v, u) which has (µ(v, u) = w) and (µ(u) = w);
2. The agent moves along the edge (v, u) to the node u coloring µ(v, u) := b, µ((v, u), u) := b,

µ(u) := b;
3. v := u;
4. ct := ct+ 1;
5. t := t+ 1;
6. work(t) := ct;
7. VH := VH ∪ {ct};
8. EH := EH ∪ {(work(t − 1), work(t))}.

BACK (v):

1. The agent selects from Q(v) the edge (v, u) which has (µ((v, u), v) = b) and (µ((v, u), u) = w);
2. The agent moves along the edge (v, u) to the node u coloring µ((v, u), u) := b;
3. v := u;
4. delete work(t);
5. t := t− 1.

STOP(v):

1. The agent finishes the operation.

6. Analysis of the exploration algorithm

The procedure FORWARD(v) is performed when the agent visits the white nodes of the explored
graph G. This procedure creates one new node of the graph H. Thus, the process of executing the
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described algorithm induces the mapping ϕ : VG → VH . Moreover, ϕ(v) = ct. The specified mapping
ϕ is a bijection because in the connected graph G all nodes are reachable from the starting node.

When performing the procedure FORWARD(v), the agent explores the tree edge (v, u) and numbers
the node u in such a way, that the edge (v, u) uniquely corresponds to the edge (ϕ(v), ϕ(u)) of the
graph H. When performing the procedure ADD_IE (v), the agent explores the back edge (v, u) of the
graph G and perfectly matches it the edge (ϕ(v), ϕ(u)) of the graph H. Therefore, ϕ is an isomorphism
of the graph G to the graph H.

Theorem 1. By performing an exploration algorithm on the graph G, the agent explores the graph

with accuracy to isomorphism.

Now we define the time and space complexity of the algorithm in a uniform scale [22]. We shall
also assess the number of agent transitions along the edges. From the description of the algorithm, it
follows that at each step of the algorithm, the working path is a simple path connecting the starting
node v with the number ϕ(v) = 1 to the node u with the number ϕ(u) = ct. Therefore, the length of
the working path does not exceed n.

Note that for a single moving forward or backward (procedures: FORWARD(v), BACK (v)), the
agent spends one move and passes one edge. When single exploration of back edges (procedures:
EXPL_IE (v), FORWARD_IE (v), ADD_IE (v)), the agent passes one back edge, and no more than
n− 1 edges of the working path. By exploring the back edge, the agent, in fact, goes through a cycle
consisting of the back edge and some final segment of the working path connecting the nodes which
are incident to the back edge.

When calculating the time complexity of the algorithm, we assume that the initialization of the
algorithm and the choice of one of the possible procedures take a certain constant number of units of
time. We also consider that the moving along the edge by the agent is carried out in a time equal
to some constant. Moreover, the total time spent on the analysis of the vicinity of the working node
Q(v) and the selection of the necessary edges is estimated as O(n2). Then the time complexity of the
algorithm is determined by the ratios:

1. Initialization is performed once and its asymptotic complexity is O(1);
2. The procedure FORWARD(v) is executed no more than n− 1 times and the total execution time

is evaluated as O(n).
3. The procedure BACK (v) is executed no more than n − 1 times and the total execution time is

evaluated as O(n).
4. The procedure EXPL_IE (v) is executed no more than m times and the total execution time is

evaluated as O(n2).
5. The procedure FORWARD_IE (v) is executed no more than n · (n− 1) · O(n) times and the total

execution time is evaluated as O(n3).
6. The procedure ADD_IE (v) is executed no more than m times and the total execution time is

evaluated as O(n2).
7. The procedure STOP(v) is executed once and its asymptotic complexity is O(1).

Therefore, the upper estimate of the number of edge M(n) transitions performed by the agent
satisfies the ratio: M(n) = O(n3).

The total time complexity T (n) of the algorithm satisfies the ratio: T (n) = O(n3).
The space complexity S(n) of the algorithm is determined by the complexity of the lists VH , EH ,

work(1), . . . , work(t), whose complexity is accordingly determined by the magnitudes O(n), O(n2),
O(n). Therefore S(n) = O(n2).

Theorem 2. The time complexity of the exploration algorithm is O(n3), the space complexity is

O(n2), and the upper estimate of the number of transitions along the edges made by the agent is

O(n3). In this case, the algorithm uses 1 color.

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 75–82 (2025)



Finite graph exploration by a mobile agent 81

7. Conclusions

The paper proposes a new algorithm for finite undirected connected graph exploration of time com-
plexity O(n3), space complexity O(n2) and the upper estimate of the number of transitions along the
edges made by the agent O(n3). The agent has finite memory at each step, an unlimitedly growing
internal memory overall, and uses one color.
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Розпiзнавання скiнченого графу мобiльним агентом

Стьопкiн А. В.

ДВНЗ “Донбаський державний педагогiчний унiверситет”,

вул. Наукова, 13, 49020, Днiпро, Україна

В роботi розглядається завдання розпiзнавання скiнчених зв’язних графiв мобiльним
агентом. Мобiльний агент пересувається по графу, зчитує та змiнює мiтки елементiв
графа та на пiдставi цiєї iнформацiї розпiзнає дослiджуваний граф. Запропоновано
новий алгоритм розпiзнавання скiнчених неорiєнтованих графiв часової складностi —
O(n3), ємнiсної складностi — O(n2) i верхньою оцiнкою кiлькостi переходiв по ребрам
здiйснюваних агентом — O(n3). Для роботи алгоритму агенту потрiбна одна фарба.
Алгоритм грунтується на методi обходу графа в глибину.

Ключовi слова: мобiльний агент; скiнчений граф; розпiзнавання графiв.
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