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There is presented a numerical solution of the one-dimensional infiltration problem in
bounded profiles. The soil is assumed to have constant water diffusivity and linear de-
pendence between the hydraulic conductivity and the water content. Then, the vertical
infiltration problem is modeled as an initial boundary value problem for a diffusion equa-
tion. We combine the finite difference scheme for the time variable with the fundamental
sequence method for the spatial variable. The derived numerical scheme is applied to both
flooding and rainfall scenarios. The convergence of the numerical approximated solution
to the analytical one justifies the applicability of the method.

Keywords: advection-dispersion equation; Rothe’s method; fundamental sequences
method.

2010 MSC: 35K15, 65M06, 65M80 DOI: 10.23939/mmc2025.01.083

1. Introduction

The problem of infiltration arises when water, from irrigation or rainfall, reaches the soil surface and
begins to penetrate the soil. Understanding this process is crucial for various applications, including
agriculture, environmental science, and water resources management. The mathematical modeling of
infiltration involves describing the complex interactions between soil properties (water diffusivity Dy
and hydraulic conductivity Kj) and the dynamics of water movement within the soil profile. The fun-
damental PDE that describes the movement of water through soil is the Richards’ equation. However
due to its non-linear nature, further assumptions on the soil properties (constant diffusivity and K
linear function of water content) are added to reduce it to the so-called advection-dispersion equation,
a diffusion-type PDE [1,2]. This PDE is considered to model the problem of vertical infiltration in
bounded profiles, meaning the one-dimensional problem in a bounded interval.

Both agricultural engineers and applied mathematicians are studying this problem providing both
analytical and numerical solutions. The analytical solutions are limited and mainly “approximate” since
the complementary error function appears in the formulas. We refer to [3] and [4] where approximate
analytical solutions were presented, using the Laplace transform, for the advection-dispersion equation
for flooding and rainfall with constant flux, respectively. See also the review paper [5]. Recently the
Fokas method was applied to derive an analytical solution as an integral representation evolving the
initial and boundary data for bounded [6] and semi-infinite [7]| profiles.

On the other hand, numerical methods, particularly finite difference, and finite element methods,
have become essential tools for solving the problem of vertical infiltration. These methods allow for the
simulation of soil-water interactions under various conditions, see for example [8-10]. In the last years,
new and advanced numerical schemes were proposed, like adaptive [11], meshless [12| and spectral
methods [13].

In this direction, we propose to solve the infiltration problem numerically using a two-step ap-
proach. First, the time-dependent problem is reduced to a sequence of the stationary problems using
the Rothe’s method [14]. For the second step, where the sequence of elliptic problems is fully dis-
cretized, we consider the Fundamental Sequences Method (FSM). The FSM is inspired by the Method
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of Fundamental Solutions (MFS), being a popular choice for solving unsteady problems having a known
explicit fundamental solution, see [15-17]. In the MFS, the unknown function is approximated by a
linear combination of the fundamental solutions followed by collocation on the boundary for finding
the unknown coefficients in the expansion. The FSM was firstly introduced in [18] for a sequence of
elliptic problems with the recurrent right side, obtained after time discretization of the parabolic and
hyperbolic problems. In this case, the unknown function is approximated by the linear combination of
the functions from the known fundamental sequence.

An outline of the paper is: in section 2 we state the one-dimensional infiltration problem, as well
as substitution for avoiding the first derivative of the spatial variable. Time discretization using the
Rothe’s method is given in section 3. Obtained sequence of elliptic equations is fully discretized using
the FSM in section 4. The results of numerical examples for both flooding and rainfall problems are
given in section 5.

2. Problem statement

There is considered the problem of finding the solution 6 (water content) satisfying

o0 o0 0%

E(z,t) +K0%(ac,t) = Dow(w,t), (x,t) € (0,L) x (0,77, (1a)

0(x,0) = by, z e (0,L), (1b)

0(0,t) = f(t), O(L,t)=g(t), t € (0,71, (1c)
where Ky, Dy > 0, f, g are given smooth functions, 6y € R and 7" > 0 is the final time. Equation (1a)

describes the water propagation in a bounded soil of length L > 0 for all positive times ¢ (T' can be
arbitrary large). The soil is characterized by the water diffusivity Dy and the hydraulic conductivity
Ky. For flooding in the surface £ = 0 we set f to be constant and if f is time-dependent we model
rainfall. In the following examples, g will be either constant or zero.

In order to avoid the first derivative of the spatial variable in (1a) and obtain homogeneous initial
condition, the following substitution is applied

K,
0(z,t) = e6 u(z, t) + 0o, (x,t) € (0,L) x (0,T). 2)
As a result, the initial boundary value problem for u is obtained as
1 Ou K? 0*u
D_Oa(xat)—i_@u(xat) = @(‘Tat)a (.Z',t) € (07L) X (07T]7 (3&)
u(z,0) =0, z € (0,L), (3b)
u(0,t) = f(t) — 6o, t e (0,77, (3c)
K,
u(L,t) = (g(t) — Op)e o™, t e (0,T). (3d)

We solve (3) in two steps. First we perform a discretization with respect to ¢ and then apply the
FSM. Then, the approximated w is substituted into (2) to get the value of the water content 6.

3. Semi-discretization with respect to time

Following [14]|, we reduce (3) to a sequence of stationary problems using Rothe’s method. Time
derivative in the equation (3a) is approximated by the backward Euler difference approximation on
the equidistant mesh

tn = (n+1)h, for n=-1,0,...,N—1, h=% NEeN. (4)

The solution u(-,t,) is approximated by a sequence u,, n = 0,..., N — 1 and the elements of this
sequence satisfy the boundary value problems

up(€) = 7Pun(2) = Bup—1(z), € (0,L), (5a)

up(0) = fm un(L) = gn, (5b)
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. K2 -
forn = 0,...,N — 1, with u_; = 0, 72 = —Og—l—DLOh, 5 = —Dioh, fn = f(tn) — 6y and g, =

4D,
_ Ko
(9(tn) —o)e 20",
An alternative approach for time discretization could be the application of the Laguerre transform,
see for example [18]. In the next section the FSM is applied for the discretization of (5).
4. Fundamental sequences method for numerical solution of the stationary problems

We define the fundamental sequence of the elliptic boundary value problems (5).

Definition 1. The sequence of functions ®,, n = 0,1,..., N is the fundamental sequence for the
equations in (5a), provided that
0%*®,, )

where 0 is the Dirac delta function and ®_1 = 0.

In [19] the explicit representation of the elements in the fundamental sequence was found and here
we recall the result.

Theorem 1. The sequence of functions ®,, with
O (x,y) = e Vo (jz —yl), z £y, (7)

forn =0,1,..., N is a fundamental sequence of the elliptic equations (5a) in the sense of Definition 1.

The polynomials v, for n =0,1,..., N are given by

vp(r) = Z At (8)
m=0

with
anp =1, n=0,...,N,
Qpn = —27% Ban—1mn—1, n=1,...,N,
Up fp = %—k(k(k_‘_ Dangs1 — Ban—14-1), n=2,....N, k=n—1,...,L

As in [18,19] the solution to (5) is approximated using a linear combination of functions from the

fundamental sequence
n 2
Un(x) = Uy (x) = Z Zam,k D, (z,yK), x€(0,L), 9)
m=0 k=1

with given source points y; and y9, located outside the (0, L), i.e. y1 < 0 and y3 > L, and unknown
coefficients a1, n = 0,...,N — 1, k = 1,2. By direct differentiation, it can be verified that the
approximation (9) satisfies (5a).

Collocating to match the boundary data in (5b), we generate a recurrent sequence of linear systems
forn =0,1,...,N — 1 to find the coefficients a,, 1,

(2 n—1 2
Z On k (I)()(O, yk) = fn - Z Z Am ¢ (I)n—m(oa yf)a
k=1 m=0 (=1
(10)
2 n—1 2
Z On k (I)()(L, yk) = gn - Z Z A0 cI)n—m(La yf)‘
k=1 m=0 (=1

The systems (10) consist of the same 2 x 2 matrix and recurrent right-hand side vectors, this is
obtained from the observation that only the coefficients ;1 and ay,2 in front of ®; have not been
previously used in (9).

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 83-89 (2025)



86 Borachok 1., Chapko R., Mindrinos L.

Having found solutions to (10), taking into account (2) and (9), we can build the numerical ap-
proximation to the solution of the problem (1) at the mesh points t,,n =10,..., N —1 (4) by

K,

O(z,t,) ~ e300 iy (z) + 00, € (0,L). (11)

5. Numerical examples

In this section we examine the effectiveness and convergence of the numerical solution (11) by comparing
it with given analytical solution. We consider two cases: flooding and rainfall.

5.1. Flooding

In the first example, we assume constant boundary functions f(¢t) = 6, and g(t) = 6p. We set 6; = 2
and 6y = 0 the soil water content at saturation and initially, respectively. An analytical solution was
derived in [20] for the specific case of Dy = 0.5 and Ky = 1. Then, the series representation of the
exact solution is given by

Sh(L =) | 2% S (C1"msin (rrhge) (11o22)

sinh L L? v 1+ "zgz

The final time is chosen as T = 100 and the length L = 140. According to [21], the source points
should be located not too close and not too far from the endpoints of the interval (0, L), so we choose
y1=—-land yo =L+ 1.

Exact and numerical solutions at time points 40, 70, 100 for different values of N are given in
Figure 1.

O(x,t) = (61 — o) €” 246 (12)

0 0
0 0.5 1 15 9 0 0.5 1 15 2
0 0
20 |
40 |
60
80 |
100 —
=40 — =40
120 | -7 120 | 0
Lo b =100 m =100
a (N = 100) b (N = 150)
0 0
0 0.5 1 15 9 0 0.5 1 15 9
0 ‘ ‘ 0 ‘ ‘
20
40
60
= 8
80
=10 1001 — =10
120 | =70 120 | =70
=100 =100
140 | 140 ¢
¢ (N = 200) d (N = 250)

Fig. 1. Comparison of numerical (dashed line) and exact (solid line) solutions
at various times for the flooding problem.
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5.2. Rainfall

In this example, we model the constant flow rainfall through the boundary function f(t) = 0.044 (1 —
e73!), resulting in a constant zero value at t = 0 and reaches the value 0.044 at saturation. We set
Dy = 1400 and Ky = Dy/1000 the soil parameters. We set homogeneous Dirichlet condition at the
bottom surface g(t) = 0 and initial soil water content #y = 0.025. The final time is chosen as T' = 1
and length L = 100.

The analytical solution for this problem is given by [6, Equation (35)]. In Figure 2 we compare it
with the numerical solution at ¢ = 1/15, 1/10 and 1/8 for different values of N.

0 0
0005 001 0015 002 0025 0.005 001 0015 002 0025
i S : =
20 20
40 | 401
60 | 60 |
—t=0.067 —t=0.067
| —t=0.100 | —t=0.100
80 £=0.125 80 £=0.125
100 - 100 ©
a (N =120) b (N = 240)
0 0
0.005 001 0015 002 002 0.005 0.0l 0015 002 0025
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
20 | 20 |
40 | 40
60 | 60 |
—t=0.067 —t=0.067
| —t=0.100 | t=0.100
ST =025 SO =025
100 - 100 -
¢ (N = 360) d (N = 480)

Fig. 2. Comparison of numerical (dashed line) and exact (solid line) solutions
at various times for the rainfall problem.

6. Conclusions

We examined the problem of vertical infiltration in a bounded domain with length L. The mathematical
model is described by a diffusion PDE together with appropriate initial and boundary conditions
referring to either flooding or rainfall at the soil surface (to be placed at x = 0). We applied the
simple and efficient two-step method, that involves the semi-discretization with respect to time using
the Rothe’s method and the FSM to solve the problem numerically. This is the first time, to our
knowledge, that this method is used to approximate the water content in a bounded profile and it can
be seen as an initial step to examine in the future the two-dimensional problem.
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YucenbHe po3B’si3yBaHHA 3a4a4i BEPTUKAIbHOI iH(iNbTpay,il
B obme>xeHnx npodpinsix

Bopauok 1.}, Xamxo P.', Minapinoc J1.2

LTvsiscoruti nayionaavrut yrisepcumem imens Isana @panxa,
8ys. Ynuieepcumemcora, 1, 79000, Jlveis, Yrpaina
2 Aincoruti aepaprut ynisepcumem,
eyn. Iera Odos, 75, 11855, Aginu, 'peyisn

V miit poboTi PO3IISIAETHCH YUCEIbHE PO3B’I3yBaHHs 3aati OJHOBUMIPHOL iH(LIbTpAI]
B obmexxennx npodissx. [lepenbadaerses, Mo rpyHT Ma€ MOCTifHY BOJIONPOHUKHICTD i
JHHIIHY 3aJIe2KHICTh MiXK TiIponpoBigHicTIO Ta BMicToM Boau. Tosi 3ajada BepTUKATIBLHOL
iHdibTpallil MOIETIOETHCS K MOYATKOBO-KpaiioBa 3ajada i piBHAHHA audy3il. s
9HUCEIbHOTO PO3B’I3yBAHHS PO3TJISTHYTOI 38/1a491 MU MTOETHYEMO METOJ CKIHI€HHUX PI3HUI
10 9acoBit 3MiHHIN 3 MeToI0M DYHIAMEHTAIBHAX IMOCIJOBHOCTE IO IPOCTOPOBIN 3MiH-
miit. HaBe/ieHO pe3yIbTaT YuceIbHIX €KCIIEPUMEHTIB JIJIsT BUTIAIKIB 3aTOIIEHHS T, JOIIIIB,
0 TITBEPIKYIOTH e(DEKTUBHICTD 3aIIPOTIOHOBAHOIO aJrOPUTMY.

Kntouosi cnosa: pisnanns adsexuyii—ducnepcii; memod Pome; memod gyndamenmans-
HUT Nocaidosrocmer.
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