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Abstract: This paper presents the development and inves-
tigation of a speech-to-text conversion and speaker identi-
fication system based on a Raspberry Pi microcomputer, 
designed for local audio data processing in environments 
with limited network connectivity. The system integrates 
Silero and WebRTC models for voice activity detection, 
SpeechBrain for speaker identification, and the Whisper 
family of models for speech recognition. In particular, a 
comparative analysis has been conducted on the efficiency of 
local speech processing using Whisper Tiny and Whisper 
Large 2 models versus cloud-based processing through the 
Whisper-1 and Whisper-1-en APIs (the latter applied exclu-
sively to English-language speech). The study evaluates the 
impact of sentence length, processing time, memory consum-
ption, and recognition accuracy on system performance. The 
advantages and resource-related limitations of the models in 
local and cloud-based IoT environments has been analyzed, 
and the feasibility of their application in real-time and data 
privacy contexts has been determined. Performance metrics 
of the models under various conditions has been used for the 
analysis.  

Index terms: Raspberry Pi, IoT, speech-to-text conversion, 
speaker identification, Whisper models, SpeechBrain. 

I. INTRODUCTION 
The current state of development in electronics and 

information technologies enables significant advance-
ments in modeling natural perception processes such as 
vision, hearing, and speech processing. Intelligent systems 
for sound and natural language recognition take a central 
place in the tasks of automation, analytics, and big data 
processing. Their key applications include security sys-
tems [1], smart homes [2], voice-controlled devices, 
automated assistants, as well as applications in healthcare, 
education, and adaptive technologies [3, 4]. The demand 
for accuracy and operational speed of such systems 
continues to grow, which defines the relevance of research 
focused on optimizing speech recognition algorithms. 

In most contemporary solutions, speech processing 
is performed via cloud-based platforms. On the one hand, 
this approach makes it possible to leverage powerful 
computational resources for analyzing large volumes of 
speech data. On the other hand, the use of cloud services 
has several limitations, including data transmission delays, 
risks of privacy violations [5], dependence on stable 
Internet connectivity, and increasing costs related to data 
transmission and storage [6]. Local speech processing 
(edge computing) performed directly on IoT devices 

addresses these challenges. This approach not only re-
duces data transmission latency but also minimizes energy 
consumption and enhances data confidentiality [7]. In this 
context, an important task is evaluating the performance 
of modern speech models within resource-constrained IoT 
devices such as the Raspberry Pi. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Recent speech recognition models based on deep 
learning, particularly the Whisper family by OpenAI [8], 
have established themselves as effective solutions for 
multilingual audio processing, even in complex acoustic 
conditions. These models offer flexible integration 
opportunities due to their scalable architecture. Whisper 
Tiny is designed for low-power, resource-limited devices, 
such as single-board computers like the Raspberry Pi, 
while Whisper Large 2 is intended for high-accuracy 
processing because of its significantly larger model size. 
Whisper-1 and Whisper-1-en, developed for cloud-based 
processing via API, provide additional resources for multi-
lingual processing (Whisper-1) and specialized tasks 
limited to the English language (Whisper-1-en) [9,10]. 
Performance analysis of these models enables the 
determination of which configuration is the most effective, 
depending on the specific task. 

The necessity to process large volumes of voice 
commands or speech data in real time requires a detailed 
investigation of such parameters as processing time, 
memory consumption, and text recognition accuracy, 
depending on sentence length, lexical complexity, and 
pronunciation variability. Particular interest is also direc-
ted toward the influence of local and cloud-based pro-
cessing architectures, as each of them is suited for 
different types of IoT tasks and scalable voice processing 
systems [11, 12]. 

III. SCOPE OF WORK AND OBJECTIVES 
Within the context of the IoT, a constant trade-off 

exists between device resource consumption, task exe-
cution speed, and result accuracy, which requires an 
objective comparison of the efficiency of models of dif-
ferent scales. Therefore, this study is focused on compa-
ring the performance of local speech processing (Whisper 
Tiny and Whisper Large 2) with cloud-based processing 
via the Whisper-1 and Whisper-1-en APIs to identify 
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optimal approaches for implementing real-time IoT 
systems. In particular, the study provides a systematic 
assessment of key performance metrics (processing time, 
memory consumption, and recognition accuracy) for local 
and cloud-based computations, offering a foundation for 
designing IoT solutions. 

IV. RESEARCH METHODS 
Two audio processing architectures were developed: 

local and cloud-based. Each architecture implements its 
approach to real-time speech analysis, offering different 
usage conditions based on device resources, required 
accuracy, and processing speed.  

Local audio data processing was performed using the 
Whisper Tiny and Whisper Large 2 models, which were 
implemented directly on a Raspberry Pi 4 device (Fig. 1). 
The audio data was processed in real time through voice 
activity detection (VAD) algorithms, namely Silero and 
WebRTC. When speech was detected, the audio batch 
was sent to the model for transcription, while speaker 
identification was simultaneously performed using the 
pre-trained SpeechBrain ECAPA-TDNN model. 

A key feature of the local architecture is that all 
operations are executed without transmitting data over the 
network. This ensures high processing speed and data 
confidentiality. The main limitations of this approach 
include the dependence on computational resources and 
the high memory requirements for large machine learning 
models. 

Cloud-based audio processing was implemented 
using the Whisper-1 and Whisper-1-en models. The audio 
signal was stored as a .wav file, and a segment was then 
sent via the OpenAI API for speech-to-text transcription 
(Fig. 2). Transcription results were supplemented with 
speaker information determined using SpeechBrain, as in 
the case of local processing. 

The cloud-based architecture enables the use of 
powerful language models that provide high accuracy 
even for complex texts. A distinctive feature of this 
approach is the dependence on internet connection quality 
and data transmission delays, which can negatively affect 
processing speed. 

Four Whisper models differing in architectural 
features, parameter count, and integration method were 
selected for the study. Table 1 demonstrates key charac-
teristics of the models, such as the number of parameters, 
language support, and data processing type.  

Table 1 

Characteristics of Whisper-based Models 

Models Model 
size 

Language 
support 

Data 
processing 

Whisper Tiny 37.8 M English Local 
Whisper Large 

2 1.54 B Multilingual Local 

Whisper-1 1.54 B Multilingual Cloud-based 
Whisper-1-en 1.54 B English Cloud-based 

 

 
Fig. 1. Local real-time speech processing architecture using Whisper Tiny and Whisper Large 2 models 

 
Fig. 2. Cloud-based speech processing architecture  

via the Whisper-1 and Whisper-1-en API using .wav file format  
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The Whisper Tiny and Whisper Large 2 models are 
integrated locally and executed directly on the device, 
reducing dependence on network stability but limiting 
processing power due to hardware constraints. Whisper-1 
and Whisper-1-en are cloud-oriented, utilizing an API that 
offers stable performance for large text volumes by 
leveraging server-side hardware. 

Three main types of text, namely everyday 
vocabulary, technical vocabulary, and literary vocabulary, 
were used to evaluate the performance of systems. The 
everyday vocabulary simulated simple voice commands to 
test basic recognition capabilities in daily scenarios. 
Technical vocabulary involved texts with complex 
terminology and multi-level structures, allowing an 
assessment of the system’s ability to understand context 
and specific terms. Literary vocabulary tested the ability 
of models to correctly interpret complex syntactic 
constructions, figurative expressions, and lexical nuances. 
Sentence length varied from 10 to 101 words, allowing an 
examination of the impact of text volume on accuracy, 
processing time, and memory usage. Special emphasis 
was placed on tests involving accented speech. The data 
included recordings with regional English accents and 
pronunciations by non-native English speakers. This 
enabled testing of the models’ adaptability to multicultural 
environments and real-world language variations. So, the 
created text sets covered a wide range of use cases, 
ensuring representativeness and thorough analysis of 
Whisper model performance in both local and cloud-based 
processing contexts. 

V. RESULTS AND DISCUSSION 
The experimental sample for testing each of the four 

language models consisted of 100 audio fragments. This 
approach ensured reproducibility of experimental condi-
tions and enabled a comparative analysis of transcription 
results based on a single dataset. The sample was repre-
sentative and accounted for several critically important 
parameters: varying audio fragment lengths (from 10 to 
101 words), thematic diversity (everyday, technical, and 
artistic vocabulary), as well as pronunciation variability 
(including accented speech). This made it possible to 
assess the models’ adaptability under conditions of 
changing linguistic characteristics within the audio stream. 

A classical metric, which determined the corres-
pondence between the output and the reference text, was 
applied to evaluate transcription accuracy. The accuracy 
indicator for each audio fragment was calculated using the 
formula 

100 %,matched

total

N
accuracy

N
= ⋅                (1) 

where Nmatched and Ntotal refer to the number of words 
reproduced identically by the model and in the original 
text, respectively. 

Analysis of the obtained results demonstrated a 
direct correlation between audio processing time and the 
volume of linguistic content (Fig. 3). Short sentences 
required fewer computational resources and were pro-

cessed significantly faster, whereas increases in text length 
resulted in proportionally longer processing times. The 
best performance was demonstrated by the Whisper-1-en 
model, which provided the lowest audio data processing 
times among all tested architectures (within a few 
seconds). The Whisper-1 and Whisper Tiny models 
displayed slightly inferior time characteristics compared to 
Whisper-1-en. For short language fragments, processing 
times remained stable, with only a moderate increase as 
the word count grew. This suggests Whisper Tiny is 
suitable for real-time use on low-power IoT platforms 
with limited hardware resources. In contrast, the Whisper 
Large 2 model exhibited a significant increase in proces-
sing time, directly correlated with its resource-intensive 
architecture. For fragments exceeding 60 words, proces-
sing times surpassed 70 seconds, making this model 
impractical for real-time applications in resource-
constrained computational environments.  

 
Fig. 3. Dependence of audio data processing time on sentence 

length for various Whisper-based models  

Local models demonstrated a pronounced depen-
dency of performance on the hardware platform charac-
teristics. Processing time remained stable with short texts 
due to relatively low memory and processor load. Howe-
ver, as the length of the language fragment increased, 
processing time grew exponentially, particularly for mo-
dels with large parameter counts, substantially increasing 
the system’s overall load. 

At the same time, cloud-based models Whisper-1 
and Whisper-1-en provided more stable processing times 
even for lengthy audio fragments, owing to the use of 
server-grade hardware with high computational capacity. 
Under the examined conditions, the average processing 
time remained within 1.5 to 5 seconds, enabling the use of 
such models in most scenarios where stability, accuracy, 
and rapid result acquisition are critical. It is important to 
note that network latency can significantly affect total 
processing time in real-world conditions with unstable 
connectivity. 

Preliminary analysis indicated that models with 
fewer parameters consume less RAM than large-scale 
models containing billions of parameters. Nonetheless, 
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this metric cannot be considered an independent efficiency 
indicator for such integrated systems. This is due to the 
specifics of the software architecture, which involves the 
simultaneous operation of several interacting 
components – Silero and WebRTC for voice activity 
detection and SpeechBrain for speaker identification. Each 
of the modules processes the same audio data in parallel 
with the main Whisper language model, resulting in a 
proportional increase in total resource consumption. 

Since system load is formed by the combined 
operation of these processes, memory consumption grows 
linearly with the length of the processed language 
fragment, regardless of the selected language model 
(Fig. 4). Even minor advantages of compact architectures 
in terms of memory usage are neutralized under con-
ditions of integrated system operation. Therefore, absolute 
memory consumption values of individual models lose 
priority significance as a criterion for determining sui-
tability for use on low-power devices. 

 
Fig. 4. Dependence of memory consumption on sentence length 

for various Whisper-based models  

The decisive factor is not the RAM volume 
consumed by a specific algorithm but the system’s 
capacity to maintain stable operation under predictably 
linear load growth conditions. This parameter eventually 
determines the appropriateness of a given configuration, 
both for embedded IoT solutions and hybrid systems with 
partial reliance on cloud resources for data processing. 

The results of the experimental study established that 
all models exhibited a stable increase in the number of 
correctly recognized words as text length increased, 
ensuring high accuracy rates for short and medium-length 
language fragments (Fig. 5). However, a gradual decline 
in recognition accuracy was observed for longer sentences 
when using the Whisper Tiny model, caused by its limited 
capacity to maintain extended context and process 
complex syntactic constructions. 

In contrast, the Whisper Large 2, Whisper-1, and 
Whisper-1-en models demonstrated higher and com-
parable accuracy levels when recognizing long language 
fragments. This is attributed to a larger number of 
parameters, extended contextual processing capabilities, 

and the ability to effectively retain long word sequences, 
enabling correct handling of syntactically complex 
sentences regardless of their length. These advantages 
became particularly evident in fragments with a high word 
count, where accuracy rates of less resource-intensive 
models declined. 

 
Fig. 5. Relationship between the number of correctly recognized 

words and sentence length for various Whisper-based models  

As illustrated in Fig. 6, compact language models 
achieve high recognition accuracy on short text fragments 
with average values exceeding 80–90 %. However, as 
message length increases beyond 80 words, accuracy rates 
significantly drop to approximately 67 %, particularly in 
the presence of specialized terminology and non-standard 
syntactic structures. This limits their practical application 
to handling simple, short queries in voice control systems.  

 
Fig. 6. Dependence of audio recognition accuracy on sentence 

length for various Whisper-based models  

Large-scale architectures maintain consistently high 
accuracy rates, reaching up to 98 % even on long texts. 
Nevertheless, their sensitivity to accented or regional 
pronunciations was identified, which may slightly affect 
the overall level of performance in specific cases. 

Cloud-based models demonstrated the highest ver-
satility, maintaining stable accuracy above 95 % regar-
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dless of text length or lexical and grammatical charac-
teristics. Specifically, specialized English-language cloud 
architectures achieved up to 100 % accuracy when proces-
sing texts without pronounced accents or phonetic 
deviations. 

In general, when employing speech transcription 
models based on Whisper, there is a noticeable variation 
in accuracy and efficiency depending on the selected 
model and the characteristics of the involved hardware 
resources (Table 2). 

Table 2 

Average values of accuracy, processing time,  
and memory usage for Whisper-based models 

Models Accuracy,  
%  

Processing 
time,  s  

Memory 
usage,  MB  

Whisper Tiny 82.31 2.62 355.14 

Whisper Large 
2 88.99 43.36 355.51 

Whisper-1 90.54 2.25 358.05 

Whisper-1-en 89.73 1.83 345.55 

 
The Whisper-1 model demonstrates the highest 

transcription accuracy (90.54 %), combined with mode-
rate memory consumption (358 MB) and an optimal 
processing time (2.25 seconds). This makes it the most 
appropriate option for cloud-based data processing sys-
tems, where it is essential to maintain high accuracy 
without compromising processing speed. However, in 
specific scenarios such as processing English-language 
audio segments, the Whisper-1-en model has shown a 
faster processing time (1.83 seconds) with a slightly lower 
accuracy rate (89.73 %). This characteristic may be 
advantageous for systems with stricter requirements for 
processing speed while still ensuring high transcription 
quality. 

On the other hand, the Whisper Large 2 model, 
despite demonstrating high accuracy (88.99 %), requires 
significantly more processing time (43.36 seconds), 
rendering it unsuitable for real-time applications where 
speed is critical. Nevertheless, this model can be 
effectively utilized in offline processing scenarios, such as 
for processing large-scale data batches or pre-processing 
data intended for subsequent analysis. 

The Whisper Tiny model demonstrates the lowest 
transcription accuracy (82.31 %), which limits its appli-
cability in tasks with stringent accuracy requirements. 
However, its use can be justified in resource-constrained 
environments or on devices with limited computational 
capabilities, where rapid processing of audio fragments is 
prioritized, even at the expense of some degradation in 
transcription quality. 

The optimal usage of these models can be achieved 
through adaptive model selection based on the task 
specifications and hardware resources available. For 
example, in real-time processing or sensor systems where 
rapid response is critical, Whisper-1 or Whisper-1-en 

would be advisable. Conversely, for large-scale batch 
transcriptions where processing speed is not a primary 
concern, deploying Whisper Large 2 could be considered, 
accepting a minor reduction in accuracy in favor of 
improved handling of data volumes.  

VI. CONCLUSION 
This study presented a comparative analysis of the 

efficiency of different Whisper-based models for speech 
transcription. The Whisper-1, Whisper-1-en, Whisper 
Large 2, and Whisper Tiny models were assessed based 
on three key parameters: transcription accuracy, 
processing time, and memory consumption. The Whisper-
1 model demonstrated the highest transcription accuracy 
(90.55 %) with an optimal processing time (2.25 seconds) 
and moderate memory usage (358 MB), making it the 
most effective solution for tasks where both speed and 
accuracy are critical. The Whisper-1-en model showed 
slightly lower accuracy (89.74 %) but achieved a faster 
processing time (1.83 seconds), positioning it as a 
preferable option for systems where processing time is a 
decisive factor. Although the Whisper Large 2 model 
delivered high accuracy (89.00 %), its substantial 
processing time (43.36 seconds) makes it less suitable for 
real-time applications requiring prompt responses. The 
Whisper Tiny model recorded the lowest transcription 
accuracy (82.32 %), which limits its use in cases of high 
precision required. However, it remains a viable option for 
devices with limited hardware resources, where 
processing speed takes precedence. The analysis of the 
model metrics allows concluding that the optimal model 
choice depends on specific requirements for processing 
time, transcription accuracy, and hardware capabilities. In 
particular, the Whisper Tiny model is the most practical 
choice for real-time IoT devices where platform resources 
are the primary constraint. 
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