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Abstract: This study explores indoor positioning in enc-
losed environments using Bluetooth Low Energy technology. 
A system based on two Thunderboard Sense 2 beacons and a 
Nordic nRF52840-DK device has been proposed. The 
positioning method relies on signal characteristics to estimate 
the location of an object. Related research has been reviewed, 
and the technical implementation of the preliminary system 
has been presented. The results demonstrate the potential of 
Bluetooth Low Energy for accurate and energy-efficient 
indoor positioning and provide a basis for further 
experimental validation. 

Index terms: indoor positioning, Bluetooth low energy, 
BLE, RSSI, Beacon, SiLabs Thunderboard Sense 2, Nordic 
nRF52840-DK. 

I. INTRODUCTION 
The demand for accurate indoor positioning has 

grown rapidly with the proliferation of location-based 
services across sectors such as healthcare, logistics, retail, 
and smart buildings. While Global Navigation Satellite 
Systems (GNSS), including GPS and Galileo, have 
revolutionized outdoor navigation, they fall short in indoor 
environments where signal attenuation, multipath pro-
pagation, and obstructed line-of-sight to satellites hinder 
reliable localization [1, 2]. These limitations have spurred 
the development of alternative indoor positioning systems 
(IPS) based on wireless technologies. 

Among the various wireless technologies inves-
tigated for IPS – such as Wi-Fi [3], Ultra-Wideband 
(UWB) [4], Zigbee [5], and Bluetooth Low Energy (BLE) 
[6] – BLE has attracted significant attention. Its appeal lies 
in its low energy consumption, widespread support across 
smartphones and IoT devices, and straightforward 
infrastructure requirements. BLE beacons periodically 
transmit advertising packets, and a mobile device can 
estimate its distance from the beacon by measuring the 
Received Signal Strength Indicator (RSSI). 

However, the relationship between RSSI and phy-
sical distance is non-linear and highly sensitive to 
environmental conditions, including the presence of 
obstacles, device orientation, and signal reflections [7]. 
These factors introduce instability in RSSI-based distance 
estimation and can lead to inaccurate positioning. To 
mitigate these issues, signal processing methods such as 
averaging, moving averages, and more sophisticated 
techniques like the Kalman filter [8], [9] are employed to 

smooth fluctuations and produce more reliable distance 
estimates. 

Recent research efforts have explored hybrid 
approaches combining BLE with other sensor modalities 
(e. g., inertial measurement units, magnetometers) or 
incorporating machine learning techniques to improve 
accuracy [10]. Nevertheless, many of these solutions 
require additional hardware or complex models, limiting 
their accessibility and scalability in practical deployments. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Indoor environments present a unique set of 
challenges for positioning systems. Unlike outdoor spaces 
where GNSS signals are readily available, indoor spaces 
often cause severe signal degradation due to structural 
obstacles and multipath reflections [1, 11]. These 
phenomena result in non-line-of-sight (NLOS) conditions 
that complicate distance estimation and lead to inaccu-
racies. As a consequence, indoor positioning systems must 
incorporate robust algorithms to mitigate such effects and 
provide reliable location estimates. 

BLE is a wireless personal area network technology 
designed for short-range communication and low power 
consumption. Introduced as part of the Bluetooth 4.0 
specification, BLE has evolved to support a variety of 
applications, including health monitoring, asset tracking, 
and indoor navigation [12]. 

One of the main advantages of BLE is its widespread 
adoption in modern smartphones and IoT devices, which 
facilitates large-scale deployments without significant 
additional infrastructure costs. However, the simplicity of 
RSSI-based ranging also introduces uncertainties. Envi-
ronmental conditions, device heterogeneity, and inter-
ference from other wireless signals can result in signi-
ficant fluctuations in RSSI measurements [13]. Resea-
rchers have proposed various solutions, including 
fingerprinting, Kalman filtering, and machine learning 
approaches, to enhance accuracy and robustness [14]. 

The Kalman filter is a recursive algorithm designed 
to estimate the state of a dynamic system from a series of 
noisy measurements [8]. In the context of BLE-based 
indoor positioning, the Kalman filter is applied to smooth 
the RSSI readings obtained from the mobile node. By 
predicting the expected RSSI value and then updating this 
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prediction with the actual measured value, the Kalman 
filter effectively reduces measurement noise and provides 
a more stable input for distance estimation. 

This filtering is especially critical when using RSSI-
based techniques, as the raw RSSI values can be highly 
erratic due to multipath effects and other interference. The 
filtered RSSI data are then used in the distance estimation 
formula:  = 10(      ) (    )⁄ .                    (1) 

Equation (1) calculates the estimated distance in 
meters (d). RSSI is the Received Signal Strength 
Indication in dBm, A is the RSSI value at 1 meter from the 
transmitter, often referred to as the RSSI intercept or 
reference value. Also, equation contains n – the path loss 
exponent, which depends on the environment and is 
typically between 2 and 4 for indoor environments. 

Several studies have investigated BLE as a medium 
for indoor positioning. Liu et al. [11] provided a 
comprehensive survey of indoor positioning techniques, 
highlighting the benefits and limitations of using wireless 
signals in enclosed spaces. Subsequent research by 
Faragher and Harle [13] examined the accuracy of BLE-
based positioning systems and identified key factors 
affecting signal stability. Other works have proposed 
hybrid solutions that combine BLE with other sensor 
modalities (e. g., inertial measurement units or Wi-Fi) to 
improve localization accuracy in complex environments 
[14, 15].  

These studies underscore the potential of BLE for 
indoor positioning while also illustrating the need for 
improved algorithms and hardware calibration. Our work 
builds on these insights by proposing a simple yet 
effective system architecture that leverages two BLE 
beacons (Thunderboard Sense 2) and a mobile node 
(nRF52840-DK). This configuration is intended to serve 
as a testbed for developing and validating enhanced posi-
tioning algorithms, with the goal of addressing the inhe-
rent challenges of indoor localization.  

III. SCOPE OF WORK AND OBJECTIVES 
A. PRELIMINARY SYSTEM DESIGN 

This article aims to review the foundational concepts 
behind BLE-based indoor positioning and outline a 
preliminary system design using commercially available 
development kits. The proposed system architecture is 
based on a dual-beacon setup combined with a mobile 
node for position estimation: the two Thunderboard Sense 
2 are configured to act as the BLE beacon, while the 
nRF52840-DK serves as the mobile node or “searching 
object”. In this section, we briefly outline the system 
components and their roles in the indoor positioning 
framework. 

Hardware Components:  
• BLE Beacons – Thunderboard Sense 2. The 

Thunderboard Sense 2 is a versatile development kit 
equipped with multiple sensors and BLE connectivity. In 
our system, these devices are configured to operate as 
beacons that broadcast advertising packets at predefined 

intervals. Their low power consumption and ease of 
configuration make them ideal candidates for indoor 
positioning applications.  
• Mobile Node – nRF52840-DK. The nRF52840-
DK from Nordic Semiconductor serves as the mobile unit 
or “searching object” in our setup. This development kit 
features a powerful multi-protocol system-on-chip (SoC) 
that supports BLE 5.0, enabling it to scan for BLE 
advertisements and measure the corresponding RSSI 
values. The collected signal data forms the basis for 
subsequent distance estimation and positioning algo-
rithms. 

B. SIGNAL PROCESSING AND DISTANCE 
ESTIMATION 

Given the inherent variability and noise in RSSI 
measurements due to environmental factors and inter-
ference, robust signal processing is crucial for accurate 
distance estimation. In our system, we first apply a 
Kalman filter to the raw RSSI data to reduce noise and 
provide a more stable estimate before converting these 
values into distances. 

The Kalman filter is a recursive algorithm that 
estimates the state of a dynamic system – in this case, the 
true RSSI value – based on a series of noisy mea-
surements. For our application, we assume a simplified 
model where the state variable хk/k represents the true 
RSSI value at time step Kk. The basic equations governing 
the Kalman filter are as follows next. 

First goes State Transition (Prediction) step. We 
assume that the RSSI value changes slowly over time  
(I e. g., a nearly constant process model). The state 
prediction is given by:   |   =      |   ,                         (2) 
and the predicted error covariance is updated as:   |   =   +     |   .                     (3) 

At equation (2)   |    is the predicted state at time 
k given the previous state. At equation (3)   |    is the 
predicted error covariance and Q is the process noise 
covariance, which reflects the uncertainty in the state 
transition. 

Next step is Measurement Update. When a new 
RSSI measurement zk is obtained, the Kalman gain Kk is 
computed as:   =    |     |     .                            (4) 

At equation (4) R is the measurement noise 
covariance, representing the variance in the RSSI 
measurements due to environmental noise and hardware 
limitations. 

The state is then updated using the measurement:   | =    |   +   (  −   |   ),           (5) 
and the error covariance is revised as:   | = (1 −  )  |   .                     (6) 



Indoor Positioning with Bluetooth Low Energy: a Preliminary System Design and Results 30

In this application, the Kalman filter smooths the raw 
RSSI values, yielding a more reliable signal strength 
estimate that better reflects the underlying trend despite 
rapid fluctuations. The effectiveness of this filter depends 
on appropriate tuning of the covariance parameters Q and 
R, which are typically chosen based on empirical 
observations of the RSSI behavior in the deployment 
environment. 

After obtaining the filtered RSSI value, the next step 
is to estimate the distance between the mobile node and 
each BLE beacon. This is achieved using a widely 
adopted log-distance path loss model. The conversion is 
performed using the formula (1). This equation is derived 
from the logarithmic nature of signal attenuation in a 
multipath environment and forms the basis for estimating 
the distance. It is important to note that the accuracy of 
this model depends heavily on proper calibration to 
determine the correct values of A and n for the specific 
environment in which the system is deployed. 

C. INTEGRATION IN THE SIGNAL 
PROCESSING PIPELINE 

The overall signal processing pipeline on the mobile 
node (nRF52840-DK) is as follows: 

1. Data Acquisition. The mobile node continuously 
scans for BLE advertising packets from the beacons and 
records the raw RSSI measurements. 

2. Pre-processing. Raw RSSI values are collected 
and temporarily stored. 

3. Kalman Filtering. The raw RSSI measurements 
are processed through the Kalman filter to obtain a 
smoothed RSSI estimate. 

4. Distance Estimation. The filtered RSSI values 
are converted into distance estimates using the log-
distance path loss formula. 

5. Localization. The estimated distances from 
multiple beacons are then used in positioning algorithms 
such as triangulation or multilateration to infer the mobile 
node’s location. In our case, we use triangulation with 
only two beacons because we know on which side of the 
beacons the mobile node is located. 

The integration of the Kalman filter into the 
processing pipeline is particularly advantageous for 
tracking dynamic changes in signal strength when the 
mobile node is in motion. Its recursive nature allows for 
real-time updates with minimal computational overhead –
a critical feature for resource-constrained devices. 

By combining effective RSSI smoothing with a 
robust distance estimation model, the system is better 
equipped to handle the noisy and fluctuating nature of 
indoor radio signals, thereby improving the overall 
accuracy of the indoor positioning system. 

IV. RESULT IN STATIC SYSTEM 
The results of proposed method in static system is 

described in Figs. 1–6. The first experiment is shown in 
Fig. 1 and 2. In Fig. 1, “original” refers to the distance 
obtained from raw RSSI, while “filtered” shows the result 

after applying the Kalman filter. In Fig. 2 we have red dot – 
real object position and cluster of calculated positions. 

 

 

Fig. 1. First experiment, distances to anchors 

 

Fig. 2. First experiment, coordinates 

The average distance error from the real object 
position is 0.41 m, with a minimum of 0.37 m and a 
maximum of 0.47 m. 

Experiment 2 is shown in Fig. 3 and Fig. 4. The 
figures are constructed in the same manner as in the first 
experiment. Real coordinates of object (2.2 m; 3 m). 

 

 

Fig. 3. Second experiment, distances to anchors 

The average distance error for experiment 2 from the 
real object position is 0.25 m, with a minimum of 0.18 m 
and a maximum of 0.48 m. 
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Fig. 4. Second experiment, coordinates 

Experiment 3 is shown in Fig. 5 and Fig. 6. The 
figures are constructed in the same manner as in the first 
two experiments. Real coordinates of object (1.8 m; 4 m). 

 

 
Fig. 5. Third experiment, distances to anchors 

 
Fig. 6. Third experiment, coordinates 

The average distance error for experiment 3 from the 
real object position is 0.85 m, with a minimum of 0.67 m 
and a maximum of 1.34 m. We have large error from device 

1 that produce general error (0.84 m), and error from device 
2 is only 0.1 m. 

V. RESULT IN DYNAMIC SYSTEM 
In dynamic system we have object that is moving and 

static anchors. 
Experiment 4 is shown in Fig. 7 and Fig. 8. We have 

moving object that moves with stale speed. Start point 3 m 
from Device 1, 2 m from Device 2. Finish point 3 m from 
Device 1, 1 m from Device 2. 

 

 
Fig. 7. Fourth experiment, distances to anchors 

Let’s assume that Device 1 has coordinates (0;0) and 
Device 2 (0; 2) distance between them 2 m. To calculate 
coordinates of object we need to find intersection of two 
circles – first one with center in Device 1, second – Device 
2. Some of our distance measurement can`t move to 
coordinates, because circles build on calculated distances 
don`t intersect. For example, first measurement – distance 
to Device 1 – 8 m, distance to Device 2 – 4.1, according to 
devices coordinates we can`t find coordinates of object at 
that time. On Fig. 8 shown all coordinates that can be 
calculated. 

As we can see from Fig. 8, the calculated coordinates 
do not correspond to the actual movement of the object. But 
we can observe a clear movement pattern in the coordinate 
graph. 

 

 

Fig. 8. Fourth experiment, coordinates 
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Experiment 6 is shown in Fig. 9 and Fig. 10. We have 
moving object that moves with stale speed. Start point 3 m 
from Device 1, 2 m from Device 2. Finish point 4 m from 
Device 1, 3 m from Device 2. On Fig. 9 displayed only 
filtered value for better view. 

 

 
Fig. 9. Fifth experiment, distances to anchors 

  

Fig. 10. Fifth experiment, coordinates 

As we can see from Fig. 10, the calculated coordinates 
do not correspond to the actual movement of the object, and 
we can’t observe a clear movement pattern in the coordinate 
graph. But we can observe pattern from filtered data (Fig. 9). 

VI. RESULT IN DYNAMIC SYSTEM WITH 
OBSTACLE 

Let’s introduce an obstacle into the static system. The 
obstacle, 1.5 m wide, is placed between the object and the 
devices (anchors). The calculated distances to the anchors 
in this scenario are shown in Fig. 11. 

 
Fig. 11. Sixth experiment, distances to anchors 

As we can see from Fig. 12, the calculated coordinates 
do not correspond to the actual position of object. 
Difference between real / expected coordinates is major – 
12.2 m is average error. 

 

 
Fig. 12. Sixth experiment, coordinates 

When there are obstacles between the Bluetooth 
transmitter and receiver, the signal strength (RSSI) is 
affected in the following ways: absorption, reflection, 
diffraction and scattering. 

VII. CONCLUSION 
The proposed method for indoor positioning using 

BLE-based distance estimation demonstrated potential in 
a static system, where both the anchors and the object of 
interest remain stationary. The average error across 
different experiments was 0.5 m, with a minimum of 
0.25 m in Experiment 2 and a maximum of 0.85 m in 
Experiment 3. The integration of BLE technology for 
distance estimation, enhanced by the use of a Kalman 
filter, improved accuracy by mitigating noise and 
smoothing RSSI values. However, when an obstacle was 
introduced, the average error increased significantly to 
12.2 m. In a dynamic system – where the object of 
interest is moving while the anchors remain static – the 
error becomes substantial, and even the movement 
patterns are difficult to observe in the resulting data. 
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