
ADVANCES IN CYBER-PHYSICAL SYSTEMS 
Vol. 10, No. 1, 2025 

EVALUATING SMALL QUANTIZED LANGUAGE MODELS  
ON APPLE SILICON 
Oleh Chaplia, Halyna Klym 

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine 
Authors’ e-mails: oleh.y.chaplia@lpnu.ua, halyna.i.klym@lpnu.ua  

https://doi.org/10.23939/acps2025.01.034 

Submitted on 15.03.2025 

© Chaplia O., Klym H., 2025 

Abstract: This study examines the capabilities and 
limitations of small, 4-bit quantized language models that 
run locally on Apple Silicon. Four models have been 
benchmarked on a dataset of natural language prompts, with 
runtime metrics including inference time, memory usage, 
and token throughput, as well as output behavior. The study 
provides an empirical assessment of the feasibility of 
deploying language models on resource-constrained devices. 
The results highlight trade-offs of small language models and 
underscore the importance of model size, quantization, and 
prompt tuning in balancing performance, efficiency, and 
usability. Building on these insights, future work will extend 
evaluations to multi-turn agentic dialogues, analyze the 
semantic quality of output, and pursue further optimizations 
to enhance local inference performance. 

Index terms: cloud computing, microservices, software 
architecture, small language models, Apple Silicon, MLX, 
MLX-LM. 

I. INTRODUCTION 
Large Language Models (LLMs) have rapidly 

transformed modern AI systems and tools. They can 
automate complex knowledge tasks, provide expert-level 
insights, assist decision-making processes, and enhance 
human productivity at scale. Their ability to process and 
generate highly accurate natural language content makes 
them essential for next-generation applications, from intel-
ligent virtual assistants to automated document analysis 
and domain-specific systems [1]. 

Their adaptability across domains has made them 
indispensable tools in the healthcare, finance, law, soft-
ware development, and other industries [2]. However, the 
growing reliance on LLMs also introduces significant 
risks, particularly around data privacy, confidentiality, and 
security. 

Most LLMs are traditionally deployed through cloud 
services, where sensitive user data, prompts, and model 
outputs can be exposed to third parties. This external 
dependency creates potential vulnerabilities: unauthorized 
access, data breaches, compliance violations, and intellec-
tual property leakage are real concerns when handling 
proprietary or regulated information [3]. Even minor 
cloud security or model inference handling lapses could 
have serious financial and reputational consequences. 

Therefore, balancing LLMs’ transformative potential 
with the need for privacy is critical. Moving toward local 

execution and privacy-preserving architectures ensures 
organizations can fully harness LLMs’ power while 
safeguarding sensitive data. 

Running large language models (LLMs) on 
consumer devices is appealing for privacy and security 
[4]. However, the user’s device limits model size and 
performance. Recent open models and quantization 
techniques have made it feasible to deploy LLMs with 
hundreds of millions of parameters on devices like 
Apple’s M1 chip (16GB RAM) [5].  Smaller LLMs often 
struggle with complex tasks that larger models easily 
handle. Enabling a model to use tools (such as calling 
external APIs) is challenging for small LLMs [6]. These 
models may lack the capacity for robust reasoning and 
often hallucinate facts instead of invoking a tool for up-to-
date information. Prior work has shown that allowing 
LLMs to call tools (e. g., calculators, search engines, or 
weather services) can significantly expand their capa-
bilities. On the other hand, smaller LLMs tend to be weak 
tool learners, exhibiting performance limitations unless 
specialized approaches are used. 

Model quantization, such as 4-bit weight comp-
ression, offers a promising strategy for efficiently deplo-
ying smaller models on constrained hardware [7]. Howe-
ver, it may introduce additional challenges by slightly 
degrading precision and tool-calling reliability. Therefore, 
careful calibration and instruction tuning are essential to 
preserve functional accuracy after quantization. 

Specialized frameworks like Apple MLX, optimized 
for Apple Silicon hardware, provide a solution by 
enabling efficient, low-latency LLM execution directly on 
local devices [8]. MLX leverages native neural processing 
units, reducing dependency on external servers while 
delivering high inference performance and energy 
efficiency [9]. 

This work presents a detailed empirical evaluation of 
small, 4-bit, quantized instruction-tuned language models 
running natively on Apple M1 hardware using the MLX-
LM framework. Our study benchmarks four representative 
models (Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, 
Mistral-7B-Instruct-v0.3, and Qwen2.5-1.5B-Instruct) 
across the dataset with prompts. Key runtime metrics are 
measured, such as inference latency, peak memory usage, 
token throughput, and execution stability under real-world 
conditions. Furthermore, we investigate how model size, 



Oleh Chaplia, Halyna Klym 35 

instruction tuning, and prompt complexity impact local 
resource demands and response generation behavior. 
Visualized in plots, results highlight how model scale, 
instruction tuning, and quantization impact output 
behavior in constrained, on-device environments. This 
work offers a broader perspective on LLM deployment for 
local and secure systems. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

While LLMs offer advanced capabilities across 
many fields, their deployment in privacy- and security-
critical environments presents substantial challenges that 
must be addressed with technical rigor. 

LLMs are inherently prone to data leakage. Models 
trained on large corpora may inadvertently memorize rare 
or sensitive information from their training data [2]. 
Carefully crafted prompts can trigger training data 
extraction attacks at inference time, where adversaries 
recover private information (e. g., user credentials, 
confidential documents) from the model outputs. Even 
without direct leakage, model inversion attacks can 
reconstruct sensitive input queries based on output 
patterns. Prompt injection attacks can also manipulate 
LLM behavior, causing models to generate unintended 
responses that may reveal system internals or breach 
access control policies. 

Cloud-based LLM deployments exacerbate these 
vulnerabilities. When using external services, sensitive 
input data must be transmitted over public networks, 
where it becomes susceptible to interception, man-in-the-
middle attacks, or side-channel analysis unless end-to-end 
encryption is flawlessly implemented [10]. Even assuming 
secure transport, once the data reaches the cloud provider, 
it may be logged, cached, or subjected to operational data 
monitoring practices beyond the organization’s control. 
Attack surfaces increase due to multi-tenancy risks (i. e., 
different users sharing the same hardware), hypervisor 
vulnerabilities, and possible insider threats at the provider 
level. In jurisdictions with aggressive surveillance laws, 
cloud-hosted data may be subject to access requests 
without user notification. Additionally, cloud services 
often rely on complex orchestration layers (e. g., 
Kubernetes, serverless runtimes) that introduce further 
complexity and potential misconfiguration risks. 

Adopting a microservice architecture can help isolate 
critical components and minimize the impact of potential 
breaches. Achieving meaningful security benefits requires 
careful architectural design and strict boundary enfor-
cement [11]. Without a thoughtfully structured archi-
tecture, even local or containerized deployments may 
remain vulnerable to lateral movement attacks and data 
leakage within the system. 

Governance and compliance become difficult in 
external environments [12]. Regulatory frameworks such 
as GDPR, HIPAA, or PCI-DSS require strict guarantees 
about data locality, access auditing, data deletion, and 
consent management – guarantees that cloud providers 
may not fully support without extensive, costly 

contractual customizations. Maintaining audit trails, ensu-
ring provable deletion of data after processing, and mee-
ting “right-to-be-forgotten” obligations are significantly 
more onerous when data is processed remotely. 

Local and on-premises LLM deployment is a tech-
nically superior solution for addressing these challenges 
[13]. Running inference pipelines within trusted hardware 
boundaries ensures user data never leaves the controlled 
environment. In local deployments, embeddings, retrieval 
contexts (for RAG pipelines), and inference results can be 
stored entirely on encrypted local disks and processed 
using trusted runtime environments without external 
exposure. Further, running quantized models (e. g., 4-bit 
precision) with frameworks such as MLX on Apple 
Silicon hardware leverages hardware-accelerated encryp-
tion, trusted boot environments, and memory protection 
features such as pointer authentication (PAC) and data-
independent timing, mitigating side-channel leakage risks. 

Moreover, local execution eliminates the need for 
data egress monitoring, inter-region compliance valida-
tion, or cloud-specific key management. Developers can 
implement fine-grained access control at the file system, 
API layer, or memory segmentation level, significantly 
reducing attack surfaces compared to internet-exposed 
endpoints. Updates to models and retrieval databases can 
be tightly audited and version-controlled, ensuring 
complete transparency and rollback capability without 
external dependencies. 

Local, privacy-preserving LLM microservices offer 
the strongest foundation for secure, compliant, and 
reliable AI, reducing technical vulnerabilities and 
governance overhead compared to traditional cloud-based 
approaches.  

III. SCOPE OF WORK AND OBJECTIVES 
The primary goal of this study is to investigate the 

capabilities and limitations of small, quantized language 
models deployed on resource-constrained consumer 
hardware. Specifically, we aim to evaluate these models’ 
behavior, performance, and robustness when executed lo-
cally on an Apple M1 device using the MLX-LM frame-
work. As the demand for on-device AI assistants grows, 
assessing whether small models, typically under 2–5 GB 
in size, can deliver both responsiveness and accuracy 
under real-world usage conditions becomes critical. 

A central objective of this work is to benchmark and 
compare the performance of several representative 4-bit 
quantized models: Llama-3.2-1B-Instruct, Llama-3.2-3B-
Instruct, Mistral-7B-Instruct-v0.3, and Qwen2.5-1.5B-
Instruct. All models are deployed within the same local 
environment and evaluated extensively across synthetic 
task templates and natural prompt datasets. Key metrics 
such as input / output token distribution, inference latency, 
and execution reliability are recorded. Visualizations 
generated from the combined results highlight how mode 
scale, instruction tuning, and quantization affect system 
behavior in constrained on-device settings, providing a 
broader perspective on privacy-preserving LLM 
deployment for secure, local microservices. 



Evaluating Small Quantized Language Models on Apple Silicon 36 

Beyond measuring performance, an important goal is 
to explore the effects of linguistic distribution on model 
behavior. To this end, models are evaluated on two input 
types: narrowly structured, synthetically generated queries 
and naturally occurring prompts from real-world datasets. 
This comparison enables a deeper understanding of each 
model’s robustness to input variation and reveals how 
training data distribution impacts tool-use behavior and 
generalization. 

Another critical objective is to assess the practicality 
of 4-bit quantization as an enabler for efficient, real-time 
LLM inference on consumer-grade hardware. We aim to 
determine whether small, quantized models can operate 
within acceptable latency thresholds while maintaining 
tool-use accuracy and contextual fidelity – requirements 
for deploying responsive, reliable AI assistants. 

Ultimately, this work seeks to provide actionable 
insights for engineers and researchers focused on compact 
LLM deployment. By identifying the strengths and 
limitations of current small-model approaches and 
shedding light on key trade-offs in architecture design, 
quantization strategies, and instruction tuning, we aim to 
inform future efforts toward more efficient, privacy-
centric, and robust tool-using AI systems. 

IV. MLX-LM COMPATIBILITY  
AND MODEL SELECTION 

Apple Silicon processors, starting with the M1 
generation, have redefined the architecture of consumer 
hardware by tightly integrating CPU, GPU, and Neural 
Engine components into a unified system-on-chip (SoC) 
design. Built on an energy-efficient instruction set, Apple 
Silicon chips offer high memory bandwidth, low latency 
interconnects, and powerful matrix multiplication 
capabilities essential for modern AI workloads. The 
dedicated Neural Engine, optimized for machine learning 
tasks, provides substantial acceleration for operations such 
as matrix multiplications and tensor processing. At the 
same time, the unified memory architecture allows rapid 
data sharing between processing units. This architecture 
makes Apple devices well-suited for on-device AI 
inference, supporting high-throughput and low-latency 
computations without relying on external servers. 

To exploit these hardware capabilities, Apple 
introduced the MLX framework – a lightweight machine 
learning library designed specifically for Apple Silicon. 
MLX offers a NumPy-like API that seamlessly integrates 
tensor operations with hardware-accelerated execution 
paths, abstracting away the complexity of directly 
managing GPU or Neural Engine resources. On top of 
MLX, the MLX-LM package provides specialized tools 
for loading, quantizing, and running Large Language 
Models locally. MLX-LM supports efficient quantization, 
allowing LLMs to fit within the memory constraints of 
consumer devices while maintaining high inference speed. 
It also facilitates rapid model loading, dynamic memory 
management, and optimized matrix operations tailored for 
Apple hardware. By operating entirely within the local 
system, MLX-LM ensures that all user queries, model 

states, and intermediate computations remain private and 
confined to the device, eliminating data exposure risks 
associated with cloud-based inference services. These 
features make MLX and MLX-LM an ideal foundation for 
building private, responsive AI assistants on modern 
macOS and iOS platforms. 

In selecting models for this study, several key criteria 
were considered: model size, instruction-tuning 
capabilities, compatibility with 4-bit quantization, and 
general availability for local deployment. Llama-3.2-1B-
Instruct and Llama-3.2-3B-Instruct were selected to 
balance small parameter counts and strong instruction-
following behavior, which is critical for responsive AI 
applications on resource-constrained hardware. Mistral-
7B-Instruct-v0.3 represents a slightly larger model 
focusing on high-quality instruction tuning and 
multilingual capabilities, offering a comparison point for 
assessing how scaling model size impacts latency and 
memory use in local inference scenarios. Qwen2.5-1.5B-
Instruct was selected as a mid-range model optimized for 
efficient reasoning and conversation tasks, providing 
insights into trade-offs between output quality and 
hardware constraints. All models were tested in their 4-bit 
quantized variants, ensuring the memory footprint 
remained compatible with Apple Silicon devices equipped 
with 16 GB of unified memory. 

Llama-3.2-1B-Instruct-4bit uses about 1.42 GB on 
disk, while its 3B-parameter sibling takes 1.82 GB. 
Mistral-7B-Instruct-v0.3-4bit has the most significant 
footprint at 4.08 GB, and Qwen2.5-1.5B-Instruct-4bit is 
the smallest on disk at 880 MB. Note that, during testing, 
each model stays resident in memory between prompts, so 
load times are only incurred once at startup. In practice, if 
one model isn’t fully unloaded before loading the next, 
you may see overlapping memory usage from the previous 
model while the new one executes. 

Together, these models offer a diverse and 
representative sample for evaluating the feasibility and 
performance of local LLM deployment under realistic 
conditions. 

V. DATASET 
 For this study, a dataset was prepared to evaluate the 
behavior and performance of the selected quantized 
models. Each record in the dataset captures a whole model 
interaction, including the input prompt, the generated 
output, and detailed inference statistics. Specifically, the 
dataset includes the following fields: the input prompt 
provided to the model, the output generated by the model, 
the name of the model variant used, the number of tokens 
in the input, the input token processing speed (TPS), the 
number of tokens in the output, the output TPS, the peak 
memory usage during inference measured in gigabytes, 
the total execution time in seconds, and the final execution 
status (success or failure). 
 A synthetic dataset was carefully constructed to 
evaluate the performance of small language models. The 
prompts were synthetically generated to follow an 
approximated near-normal distribution based on word 



Oleh Chaplia, Halyna Klym 37 

count, ensuring that the dataset would emulate the typical 
structure and length of real-world queries. The corpus 
comprises 200 unique prompts (2262 words) that cover a 
diverse range of computer science and artificial 
intelligence topics.  
 Examples of the generated prompts include concise 
queries around computer science topics, such as “Describe 
linear regression,” “Why is cloud data mining important?” 
and “When to use a neural network?” More detailed 
prompts were also included to simulate more complex 
information requests, such as “Can multithreading imp-
rove the performance of reinforcement learning?” “Why is 
garbage collection critical for runtime memory mana-
gement?” and “What challenges arise when implementing 
real-time embedded systems security?” This variety 
ensured that models were tested on succinct, factual 
queries and more open-ended, context-driven prompts. 
 The most frequently used words in the dataset include 
“How” (79 occurrences), “in” (69), “What” (65), and 
“for” (40), reflecting the question-driven nature of the 
prompts. 
 The question generation process is aimed at centering 
the word count distribution around 11 words (89 
characters) per prompt, reflecting the natural variation 
observed in human-written sentences. The frequency 
gradually increases from 1 sentence with 1 word to a peak 
of 21 sentences, each with 11 words. Counts remain high 
near the peak – 20 at 12 words, 19 at 10, and 18 at 13 – 
then steadily decline to just 1 sentence at 21 words. 
 This design intentionally mirrors real world input 
length variation, providing a balanced challenge for the 
evaluated language models. Very short prompts (fewer 
than eight words) and long (more than 19 words) occur 
infrequently, ensuring that most evaluations reflect typical 
user query complexity. 

VI. EXPERIMENTAL SETUP 
 The local environment was created to enable 
benchmarking of the selected quantized models on Apple 
Silicon hardware. The first step involved creating a 
software project with the UV package manager. The next 
step involved installing the MLX-LM framework and 
project dependencies. Then, a Python script was 
developed to automate the download and initialization of 
the target models. Following the model setup, additional 
Python scripts were implemented to manage the 
benchmarking workflow. A test runner script was 
developed to automate inference calls on the models, 
submitting synthetic prompts while recording detailed 
runtime statistics. Data collection scripts were built to 
capture and store key metrics such as input / output token 
counts, token processing speeds (TPS), peak memory 
usage, execution time, and inference status into structured 
datasets. Datasets with prompts and results are stored in 
CSV format. Visualization scripts were created to 
generate plots, including word count histograms and 
scatter diagrams.  
 These modular scripts formed a comprehensive 
testing framework that enabled repeatable, transparent 

experimentation, significantly streamlining the end-to-end 
benchmarking process. All evaluations were performed 
locally, leveraging the MLX-LM backend to ensure data 
confidentiality was strictly preserved during inference and 
analysis. 

VII. RESULTS 
 The evaluation of the selected models revealed 
several important trends in local inference behavior, 
including differences in execution time, memory 
consumption, and token generation efficiency. Evaluated 
models were Qwen2.5-1.5B-Instruct (Qwen2.5-1.5B), 
Llama-3.2-1B-Instruct (Llama-3.2-1B), Llama-3.2-3B-
Instruct (Llama-3.2-3B), Mistral-7B-Instruct-v0.3 
(Mistral-7B). 
 The models were evaluated across twelve 
performance metrics: minimum, maximum, and average 
values for input tokens, output tokens, peak memory 
usage, and execution time. Across all metrics, Llama-3.2-
1B-Instruct-4bit demonstrates the most efficient profile 
overall, with consistently low memory consumption 
(average: 0.99 GB) and fast execution (average: 10.33 s) 
while maintaining competitive token throughput. 
Qwen2.5-1.5B-Instruct-4bit also performs well, 
particularly in low memory usage (average: 1.07 GB) and 
faster execution (average: 13.46 s), though with lower 
output token counts compared to Llama models. 
 Llama-3.2-3B-Instruct-4bit shows moderately 
increased memory use (average: 2.05 GB) and execution 
time (average: 20.74 s), indicating a trade-off for its higher 
model capacity. In contrast, Mistral-7B-Instruct-v0.3-4bit, 
while offering strong generation capabilities (average 
output: 444 tokens), requires significantly more memory 
(average: 4.32 GB) and slower response times (average: 
30.55 s), confirming it is best suited for higher-end 
devices with larger memory capacity. 
 The peak memory and execution time values indicate 
that the 7B model (Mistral) exceeds 4 GB of memory and 
takes over 90 seconds in worst-case scenarios. In contrast, 
the 1B and 1.5B models remain under 1.5 GB and 
complete within 15 seconds under average conditions. 
This highlights the practical feasibility of running 1–3B 
models even on MacBooks with 16GB of RAM. In 
comparison, larger 7B models require more capable Apple 
Silicon hardware. 
 Fig. 1 shows a scatter plot of input and output tokens 
for LLMs. Each point represents a single inference run, 
with the number of input tokens on the x-axis and output 
tokens on the y-axis.  
 The distribution reveals several key patterns. Firstly, 
output length is generally positively correlated with input 
length across all models, though the slope and variance 
differ significantly. The Mistral-7B model (triangles) 
maintains a relatively narrow range of output sizes (~400–
800 tokens) despite varying input sizes. In contrast, 
Qwen2.5-1.5B (diamonds) and Llama-3.2 models (circle 
and crosses) show more variance in output length, with 
some examples producing up to 4000 tokens, hitting the 
configured generation limit (4096 tokens). Notably, 



Evaluating Small Quantized Language Models on Apple Silicon 38 

Qwen2.5-1.5B exhibits several high-output cases with 
relatively modest input sizes, potentially indicating 
aggressive sampling or differences in prompt structure. 
Meanwhile, Llama-3.2-3B and 1B models exhibit more 
proportional growth between input and output. 
 This visualization illustrates how different models 
respond to varying prompt lengths under identical 
conditions, reinforcing the importance of tuning 
generation parameters (e. g., max tokens, temperature, 
top_p) per model to achieve consistent output behavior in 
real-world applications.  
 Fig. 2 presents a set of scatter plots comparing key 
performance metrics. The four subplots analyze the 
relationships between input/output token counts, peak 
memory usage, and execution time. 
 Fig. 2, a shows input tokens vs. peak memory (GB). 
Here, models cluster along distinct memory bands 
corresponding to their size. Mistral-7B consistently 
consumes over 4 GB, while Qwen-1.5B and Llama-3.2-
1B models remain under 1 GB. Llama-3.2-3B ranges 
between 1.8 and 2.1 GB. This clear stratification 
demonstrates the effectiveness of 4-bit quantization while 
reflecting the inherent memory demands of each model’s 
parameter count.  
 Fig. 2, b plots input tokens vs. execution time. 
Execution time increases with input size, but larger 
models such as Mistral-7B exhibit notably higher latencies 
even for short prompts. In contrast, Qwen-1.5B and 
Llama-3.2-1B remain under 20 seconds on average, 
suggesting their suitability for responsive local inference, 
especially in resource-constrained or interactive 
applications. 

 Fig. 2, c examines output tokens vs. peak memory 
usage. Mistral-7B again shows the highest memory 
footprint regardless of output size, indicating high baseline 
memory consumption independent of sequence length. 
Meanwhile, the memory curves for smaller models 
(Qwen-1.5B, Llama-3.2-1B) remain flat across a wide 
range of output tokens, which is beneficial for 
predictability in low-memory environments.  
 Fig. 2, d shows output tokens vs. execution time. All 
models show a roughly linear relationship, though the 
slope varies with model size. Mistral-7B and Llama-3.2-
3B require significantly more time per output token than 
their smaller counterparts. Notably, Qwen-1.5B and 
Llama-3.2-1B exhibit tight, linear trends with low 
variance, further supporting their efficiency for low-
latency inference tasks. 
 These plots highlight the memory and latency trade-
offs inherent in model selection for local inference. While 
larger models like Mistral-7B offer richer outputs, they 
come with high computational costs, making them more 
suitable for high-performance machines. In contrast, 1B–
1.5B models deliver a strong balance of performance and 
efficiency, confirming their viability for on-device appli-
cations where responsiveness and memory constraints are 
key considerations. 

VIII. LIMITATIONS AND FUTURE WORK 
 While this study provides detailed insights into the 
performance of small, quantized language models on 
consumer-grade Apple Silicon hardware, several 
significant limitations must be acknowledged. 

Fig. 1. Input vs output tokens 



Oleh Chaplia, Halyna Klym 39 

 Firstly, the evaluation focused primarily on runtime 
performance metrics such as memory consumption, 
execution time, and token throughput. The semantic 
quality of the generated outputs, including accuracy, 
factual correctness, coherence, and relevance, was not 
systematically assessed or benchmarked against human-
labeled ground truth. As such, conclusions about the 
models’ practical effectiveness for real-world tasks like 
summarization, question answering, or tool use remain 
open. Additionally, the evaluation was limited to single-
turn, stateless, prompt-response interactions. Multi-turn 
conversational capabilities, context retention, and model 
behavior over more extended dialogues were not 
investigated. Only 4-bit quantized models were tested 
without direct comparison to higher-precision (e. g., 8-bit 
or 16-bit) variants that might offer different trade-offs 
between latency and quality. Finally, all experiments were 
conducted on a single type of Apple Silicon device, and 
broader hardware diversity was not explored. 
 Building on these findings, several directions for 
future work are evident. A critical next step is to evaluate 
output quality involving automated metrics and human 
expert annotation. This would allow a more complete 
assessment of the models’ practical utility in knowledge-
intensive applications. Expanding the evaluation to multi-
turn dialogue settings and tool-augmented reasoning tasks 

would provide further insight into real-world assistant 
capabilities. Investigating mixed-precision quantization 
schemes, adaptive loading strategies, and fine-tuning 
techniques on-device could improve the balance between 
model size and output quality. Furthermore, testing on a 
wider range of Apple Silicon generations and 
configurations would help generalize the results to broader 
edge deployment scenarios. Lastly, integrating privacy-
preserving features such as secure enclaves, encrypted 
embedding stores, or trusted execution environments 
could enhance the security profile of local LLM deplo-
yments, addressing even stricter regulatory requirements 
for sensitive domains.  

IX. CONCLUSION 
 This study evaluated small, quantized language 
models deployed locally on consumer-grade Apple Silicon 
hardware using the MLX-LM framework. By 
benchmarking Llama-3.2-1B-Instruct, Llama-3.2-3B-
Instruct, Mistral-7B-Instruct-v0.3, and Qwen2.5-1.5B-
Instruct models, we assessed key performance metrics, 
including execution time, peak memory usage, token 
throughput, and output behavior under real-world prompt 
distributions. The results demonstrated that smaller 
quantized models, particularly Llama-3.2-1B-Instruct and 

Fig. 2. Performance metrics across four quantized models 



Evaluating Small Quantized Language Models on Apple Silicon 40 

Qwen2.5-1.5B-Instruct, strike a favorable balance 
between responsiveness, memory efficiency, and 
deployment feasibility, making them highly suitable for 
privacy-preserving, real-time AI assistants operating 
directly on local consumer devices. 
 While larger models such as Mistral-7B-Instruct 
exhibited the ability to generate richer and more verbose 
outputs, they incurred significantly higher computational 
costs and memory demands, limiting their practicality for 
lightweight on-device applications without further 
optimizations. Our findings emphasized the importance of 
model size, instruction tuning quality, and quantization 
strategies in enabling efficient and secure edge AI 
deployments. 
 However, several limitations remain. Semantic output 
quality was not formally assessed, and evaluations were 
limited to single-turn interactions without a broader 
conversational context. Future work will evaluate output 
accuracy, expand to multi-turn dialogue benchmarks, and 
explore optimizations such as adaptive quantization and 
model fine-tuning for edge environments. 
 Overall, this work contributes a foundational analysis 
toward enabling private, efficient, and scalable 
deployment of language models on local Apple Silicon 
hardware. This supports the growing demand for AI 
systems prioritizing user data sovereignty, low-latency 
responsiveness, and resource-conscious operation. The 
insights gained from this study provide a practical 
reference for engineers, researchers, and organizations 
building next-generation on-device AI solutions. 
 

References 

[1]  Patil, R. & V. Gudivada (2024). A Review of Current 
Trends, Techniques, and Challenges in Large Language 
Models (LLMs). Applied Sciences, 14(5), 2074. DOI: 
10.3390/app14052074. 

[2]  Yao, Y., J. Duan, K. Xu, Y. Cai, Z. Sun, & Y. Zhang (2024). 
A survey on large language model (LLM) security and 
privacy: The Good, The Bad, and The Ugly. High-Confidence 
Computing, 4(2), 100211. DOI: 10.1016/j.hcc.2024.100211. 

[3]  Gallagher, S., B. Gelman, S. Taoufiq, T. Vörös, Y. Lee, A. 
Kyadige, & S.  Bergeron (2024).   Phishing   and    Social  

Engineering in the Age of LLMs. Large Language Models 
in Cybersecurity: Threats, Exposure and Mitigation, 81–
86. DOI: 10.1007/978-3-031-54827-7_8. 

[4]  Piccialli, F., D. Chiaro, P. Qi, V. Bellandi, & E. Damiani 
(2025). Federated and edge learning for large language 
models. Information Fusion, 117, 102840. DOI: 
10.1016/j.inffus.2024.102840. 

[5]  Lamaakal, I., Y. Maleh, K. El Makkaoui, I. Ouahbi, P. 
Pławiak, O. Alfarraj, M. Almousa, & A. A. Abd El-Latif 
(2025). Tiny Language Models for Automation and 
Control: Overview, Potential Applications, and Future 
Research Directions. Sensors, 25(5), 1318. DOI: 
10.3390/s25051318. 

[6]  Jay, R. (2024). Building Different Types of Agents. 
Generative AI Apps with LangChain and Python:  
A Project-Based Approach to Building Real-World LLM 
Apps, 345–414. DOI: 10.1007/979-8-8688-0882-1_9. 

[7]  Chitty-Venkata, K. T., S. Mittal, M. Emani, V. Vishwanath, 
& A. K. Somani (2023). A survey of techniques for optimi-
zing transformer inference. Journal of Systems Architecture, 
144, 102990. DOI: 10.1016/j.sysarc.2023.102990. 

[8]  Kassinos, S. & A. Alexiadis (2025). Beyond language: 
Applying MLX transformers to engineering physics. 
Results in Engineering, 26, 104871. DOI: 
10.1016/j.rineng.2025.104871. 

[9]  Kasperek, D., P. Antonowicz, M. Baranowski, M. So-
kolowska, & M. Podpora. (2023). Comparison of the 
Usability of Apple M2 and M1 Processors for Various 
Machine Learning Tasks. Sensors, 23(12), 5424. DOI: 
10.3390/s23125424. 

[10]  Berardi, D., S. Giallorenzo, A. Melis, M. Prandini,  
J. Mauro, & F. Montesi (2022). Microservice security: a 
systematic literature review. PeerJ Computer Science, 7. 
DOI: 10.7717/PEERJ-CS.779. 

[11]  Chaplia, O. & H. Klym (2023). Node.js project 
architecture with shared dependencies for microservices. 
Measuring Equipment and Metrology, 84(3), 53–58. DOI: 
10.23939/istcmtm2023.03.053. 

[12]  Bližnák, K., M. Munk, & A. Pilková (2024). A Systematic 
Review of Recent Literature on Data Governance (2017–
2023). IEEE Access, 12, 149875–149888. DOI: 
10.1109/ACCESS.2024.3476373. 

[13]  Josa, A. D. & M. Bleda-Bejar (2024). Local LLMs: 
Safeguarding Data Privacy in the Age of Generative AI. A 
Case Study at the University of Andorra. ICERI2024 
Proceedings, 7879–7888. DOI: 10.21125/iceri.2024.1931. 

 
 

 

Oleh Chaplia was born in 
Lviv, Ukraine. He is a PhD student 
in the Specialized Computer 
Systems Department at Lviv Poly-
technic National University. Since 
earning his master’s degree in 
2015, he has been working in the 
software engineering field. He has 
extensive commercial experience in 
technical leadership, cloud archi-
tecture, software design, research,  
 

and development of modern software and cloud solutions, 
including those with artificial intelligence. His academic 
research focuses on emerging technologies, cloud computing, 
and artificial intelligence. Oleh’s experience also includes 
authoring articles participating in international conferences, 
working as a lecturer, mentoring, and delivering guest lectures 
at universities. 

 

Halyna Klym – doctor of 
technical sciences, professor, pro-
fessor of the department of Spe-
cialized Computer Systems at 
Lviv Polytechnic National Univer-
sity. In 2008, she received the 
degree of Doctor of Philosophy in 
the specialty: physical and 
mathematical sciences at Ivan 
Franko Lviv National University. 
In 2016, she  received a  Doctor of  

Science degree in Physical and Mathematical Sciences at 
Lviv Polytechnic National University. She conducts lecture 
courses on the design of ultra-large integrated circuits and 
methods and means of automated design of computer 
systems. She is an author of more than 170 scientific articles 
in international publications. 
 

 


