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Abstract: This article presents the development of a 
recommender system for recruiting personnel and vacancies 
to improve the efficiency of the hiring process. The proposed 
system has integrated collaborative and hybrid filtering 
methods to provide personalized job recommendations. 
Collaborative filtering model has analyzed historical data, 
identifying patterns by detecting connections between user 
information and job content. Research methodology has 
included literature analysis, dataset preparation, developing 
and training the Alternating Least Squares (ALS) model, 
and effectiveness evaluation of the implemented collaborative 
filtering algorithm by accuracy and performance metrics. 
Another part of the research is focused on integrating the 
recommendation module into an existing job and candidate 
search system built using microservices.  

Index terms: recommendation system, collaborative 
filtering, ALS model, microservices. 

I. INTRODUCTION 
In the context of an ever-evolving business envi-

ronment, the processes of job searching and professional 
talent acquisition continue to gain critical importance. As 
the demands of the labor market grow increasingly dynamic 
and complex, there is a clear need for the development of 
advanced software solutions and algorithmic frameworks 
that can adequately address current market requirements. 
These systems must not only eliminate the limitations of 
existing recruitment platforms but also introduce innovative 
functionality and intuitive tools that facilitate seamless 
interaction between employers and candidates.  

The primary practical issue addressed by this 
research is the inefficiency of conventional methods for 
identifying relevant specialists and the prolonged hiring 
process in the context of today’s labor market. This 
challenge is tackled through the implementation of a 
recommendation system based on machine learning 
algorithms, which can rapidly and accurately analyze 
large volumes of data and perform comparative analysis to 
identify the most relevant matches. This facilitates the 
formation of optimal candidate–position pairs, enhancing 
satisfaction levels among both employers and job seekers. 
The proposed system aims to resolve delays in recruitment 
by offering tailored job recommendations to candidates 
and suggesting potential applicants to recruiters, there by 
simplifying decision-making and improving interactions 

between hiring parties and professionals. The integration 
of artificial intelligence enables the development of a 
comprehensive candidate evaluation system that accounts 
for various skill sets and personal attributes [1]. The core 
business logic involves matching vacancies to the 
candidate, ranking them by relevance, and presenting the 
most suitable options. High scalability and accessibility of 
the software solution are ensured through the adoption of 
a microservice-based architecture. Thus, the project 
enhances the overall efficiency, speed, and accuracy of the 
recruitment process, providing a reliable software tool. 

A key area of technological advancement in this 
domain is the use of collaborative filtering algorithms, 
which play a central role in generating personalized recom-
mendations by analyzing user preferences and behavioral 
patterns. In particular, modern systems increasingly rely on 
implicit feedback – such as clicks, browsing time, 
application submissions, or profile views – rather than 
explicit user ratings, which are often unavailable in 
recruitment platforms [2]. Usually, implicit feedback is 
safer because unregulated feedback loops generate harmful 
side effects that ultimately impact the recommendation 
quality [3]. By leveraging large-scale historical interaction 
data, collaborative filtering enables the system to infer 
latent factors that describe the relationships between users 
and job postings, thereby providing recommendations that 
are both relevant and adaptive to user behavior over time. 

The integration of collaborative filtering methods 
that utilize implicit feedback allows for the creation of 
more responsive and intelligent systems capable of 
continuously learning from user activity. This results in 
enhanced matching accuracy, greater user satisfaction, and 
improved hiring outcomes. Consequently, a thorough 
investigation into these approaches is essential for the 
development of effective recruitment recommendation 
systems that can operate efficiently in real-world 
conditions and at scale. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

The recruitment industry is no exception in the 
application of recommendation algorithms and smart 
search. In recent years, notable advancements in recom-
mender system research have been documented across 
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various academic publications and implemented in 
software solutions. A recommender system functions as 
an automated mechanism that delivers personalized 
suggestions of products or services to users [4]. It operates 
based on a defined set of users (K1...Ki) and a collection of 
recommended items (E1...Ek). Within this context, a user 
refers to any individual or entity interacting with the 
system, while an item represents a physical or digital 
entity – such as a job posting, user profile, or product –
communicated to the user via email, text message, or 
graphical interface. These items are characterized by 
distinct attributes that form the basis of their comparison 
and recommendation production. 

Among the various approaches employed in recom-
mender systems, collaborative filtering (CF) stands out as 
one of the most prevalent and widely applied methods [5]. 
CF techniques are generally categorized into two main 
types: memory-based and model-based. Model-based 
collaborative filtering leverages machine learning models 
trained on historical interaction data to uncover latent 
patterns and make informed predictions about user 
preferences. In contrast, memory-based methods rely 
directly on the user-item interaction matrix – either in full 
or sampled form – to compute recommendations in real 
time. This latter approach is further divided into user-
based and item-based filtering [6]. User-based filtering 
generates recommendations by identifying users with 
similar behavioral histories, whereas item-based filtering 
focuses on identifying correlations between items based 
on user evaluations. Comparative studies have shown that 
item-based filtering often yields more accurate but less 
tailored recommendations than user-based approaches due 
to features of item similarity metrics [7]. 

A number of studies focus on improving intelligent 
recommender systems. Authors use collaborative algo-
rithms to optimize recommendations in this specific 
domain [8]. There are two different aspects to measuring 
accuracy. The quantitative aspect is based on indicators 
such as the mean absolute error and the root mean square 
error, which is the root of the mean error of all estimates 
obtained by the algorithm used [9]. And the qualitative 
aspect depends on the direct result of the recommen-
dations, and we evaluate it by reviewing the generated 
recommendation.  

Another challenge faced by collaborative filtering is 
the sparsity problem, where there are not enough 
interactions between users and items to generate reliable 
recommendations, which can occur in large datasets or for 
specialized products that are not widely used. Several 
approaches have been proposed to address this problem, 
such as matrix factorization models [10], vector 
decomposition, clustering, and graph-based algorithms. 
For example, singular vector decomposition has been used 
to compact the original user-item matrix, and latent 
semantic models have been used to cluster users and 
items. However, these approaches have the disadvantage 
that the decomposition needs to be updated every time a 
new user or rating is added to the matrix. A more 
advanced approach is based on the analysis of prediction 

errors to improve the accuracy of user-based filtering. The 
drawback of this approach is that computing the errors of 
all estimates during training is quite resource-intensive 
[11]. In addition, the above methods must be modified to 
avoid the cold start problem. The simplest CF process is 
based on three steps, as shown in Fig. 1.  

 
Fig. 1. The process of collaborative recommendation generation 

Before starting the collaborative filtering process, the 
first step is to collect data from users who need 
recommendations [12]. This data (in our case, candidate 
and job ratings) serves as a query to the algorithm. The 
second step of the CF is to build a rating matrix and fill it 
in. Since users do not rate items regularly, the most 
common technique in CF is to replace the empty cells of 
the matrix with the average user ratings. In this step, we 
look for the neighborhood of the most similar users using 
a similarity metric. There are different measures for 
obtaining similarity, but the most common are Pearson’s 
correlation coefficient and cosine similarity [13]. This is 
considered the standard way to measure correlation. 
Values obtained using the equation below range from –1 
to 1 (–1 means that there is an opposite similarity between 
two objects, 0 means that there is no correlation between 
those, and 1 means that they are identical). 
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The cosine similarity (1) between the vectors Pui and 
Vij is used to determine the relevance of element ij to user 
ui, where wl and vl are the coordinates of these vectors, i, j 
and l are counters that lie in the range from 1 to k. 

At the last step, after selecting the closest k-
neighbors for the active user [14], using the degree of 
similarity based on the score matrix (Fig. 2), the CF 
generates predictions for previously missing objects. 

 
Fig. 2. An example of a score matrix for data representation 

A number of researchers in their works conclude that 
microservices architecture with autonomous databases is 
well suited for systems with a high user load, which is our 
product. According to this hypothesis, breaking the system 
into small and autonomous microservices will allow for 
reliability enhancement, efficient implementation of new 
features, and easier further software support [15]. 

III. SCOPE OF WORK AND OBJECTIVES 
The main purpose of the work is to improve the 

process of selecting candidates and vacancies by using 
collaborative filtering algorithms. Development of a 
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recommendation system based on the best practices of 
microservice architecture. To achieve this objective, the 
following research tasks have been carried out: 

• Dataset preparation. 
• Building and training an ALS model for 

generating recommendations. 
• Designing and creating a software implemen-

tation of a recommender module as part of a microservice 
platform for job search and recruitment. 

• Conducting an experiment, testing the developed 
software system, and fixing defects. 

• Analyzing the results obtained according to the 
criteria of relevance (RMSE – Root Mean Squared Error, 
MAE – Mean Absolute Error) and performance (com-
puting resource consumption). 

• The final stage involves integrating the selected 
recommendation strategy into the complete software 
solution. 

The expected practical significance of the research is 
to increase the probability of successful hiring, as well as 
to optimize the time and material costs of selecting a 
specialist or a place of work through the implementation 
of personalized recommendations. The potential social 
result of the software product is to reduce pressure on the 
labor market, reduce the unemployment rate and provide 
specialists with an effective new means of employment. 

Potential users of the system are candidates looking 
for a job or are in a passive job search, students, 
freelancers who are open to new opportunities, along with 
recruiters, hiring managers, and HR professionals. 

The research methodology is based on a comp-
rehensive approach that includes the analysis of relevant 
academic sources, market analysis of existing systems, 
development of a functional prototype, and experimental 
validation of the proposed solution. Special emphasis is 
placed on the model optimizing and data preparation, 
which facilitates better accuracy indicators and reduces 
computational costs.  

IV. SYSTEM ARCHITECTURE DESIGN 
Modern high-load recommendation systems 

designed for matching candidates with job opportunities 
require a high level of flexibility, scalability, and efficient 
integration of various components. One of the most 
effective design paradigms for building such systems is 
the microservices architecture. The specified approach 
enables the development of independent software services, 
each responsible for a well-defined and limited set of 
functionalities. These services (or modules) can be 
deployed independently and scaled individually based on 
specific performance demands or load characteristics. 

By decomposing the overall system into smaller, 
modular components, the development and maintenance 
of each service can be conducted in isolation, often by 
separate teams. This leads to enhanced flexibility in 
implementing changes, reduces the risk of unintended 
disruptions due to updates, and ensures more efficient 
allocation and utilization of computing resources. Additio-
nally, the adoption of a microservices-based architecture 

improves system resilience, as a failure in one service 
does not necessarily compromise the functionality of the 
entire platform. 

In the proposed system, the inter-service communi-
cation is realized through Hypertext Transfer Protocol 
(HTTP) requests within the framework of Representa-
tional State Transfer (REST) design. This method 
provides a standardized and technology-agnostic interface 
for service interaction, enabling seamless integration and 
interoperability regardless of the specific implementation 
stack used across different components. The utilization of 
message brokers or alternative message bus architectures 
is deemed suboptimal due to the predominantly 
synchronous nature of operations, obviating the necessity 
for an event-driven paradigm. A detailed representation of 
the recommender subsystem, an integral component of the 
web platform, is provided in the deployment diagram 
illustrated in Fig. 3. 

 
Fig. 3. Microservices web platform deployment diagram 

A typical usage scenario involves the Vacancy-
Service receiving user requests, subsequently either 
performing direct vacancy searches or dispatching a 
request to the Recommendation-Service endpoint for 
personalized suggestions. Concurrently, the Recommen-
dation-Service processes HTTP GET requests, leverages a 
pre-trained model to generate a recommendation list, and 
transmits these recommendations back to the Vacancy-
Service. The Vacancy-Service then augments these 
identifiers with supplementary vacancy details for pre-
sentation on the user interface. Notably, the recom-
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mendation microservice operates without direct database 
interaction. An analogous workflow is employed by the 
Specialist-search-service to procure candidate recom-
mendations. The deployment diagram (see Fig. 3) 
delineates the system’s physical architecture, exemplified 
by the Amazon Web Services (AWS) Elastic Container 
Service (ECS) cluster and a Relational Database Service 
(RDS) instance for the PostgreSQL database, illustrating 
the distribution and interrelation of software and hardware 
components. The serialized model file is persisted in AWS 
Simple Storage Service (S3). Furthermore, the Retrain-
service is a candidate for migration from AWS ECS to the 
AWS Lambda serverless compute service, with its 
execution scheduled via the integrated Cron job 
mechanism, triggered by periodic events from Amazon 
CloudWatch Events. 

V. DATASET PREPARATION AND PROCESSING 
The development of the recommendation system 

begins with the preparation of a dataset about candidates – 
for this, we will use the existing Structured Query 
Language (SQL) database of the web platform for 
searching specialists. The Spring Data toolkit was used to 
read the data from tables. We have access to repository 
abstraction, which allows us to easily work with domain 
entities using various data access technologies, in 
particular the Hibernate framework, the JPA interface and 
tools for SQL databases. For aggregation, a utility has 
been written that writes flatly structured data about 
specialists to a CSV file, which is easy to work with 
Python Pandas Data frame. 

The same data persistence sequence was also 
implemented for existing vacancy records and view 
history. During the dataset analysis, categorical and 
numerical data were identified. Empty or incorrect values 
were detected and handled. If the percentage of such 
columns for a record exceeded 40%, that entry was 
removed from the resulting dataset. Among the obtained 
dataset of candidate-vacancy interactions, outliers were 
identified in the “reviews” column (number of views), 
which we will use to generate recommendations based on 
implicit feedback. A total of 615 such rows were found, 
which is approximately 5.5 % of all data (Fig. 4). Such a 
quantity is considered uncritical, and these records are 
removed to improve model accuracy. 

For the analysis of user behavior on the job search 
platform, the data are structured as a collection of distinct 
files, each encapsulating unique aggregated information. 
These files undergo continuous updates during the 
periodic model retraining performed by the Retrain-
service, wherein novel information is appended and 
obsolete, non-pertinent records are purged. 

The underlying data source is a PostgreSQL 
database; complex aggregated queries directed at this 
relational database can exhibit comparatively protracted 
execution durations. Therefore, a decision was made to 
execute these queries asynchronously in a background 
process, thereby circumventing the latency associated with 
synchronous, real-time result retrieval characteristic of a 
memory-based recommendation system. 

 
Fig. 4. Boxplot for the “reviews” category 

VI. ALS MODEL TRAINING 
A highly prevalent and efficacious method for the 

realization of collaborative filtering is the Alternating 
Least Squares (ALS) algorithm. This algorithm optimizes 
the factorization of the interaction matrix by iteratively 
updating the latent parameters of users and vacancies. The 
implementation of this approach within the recommen-
dation system ensures a high level of precision in 
forecasting pertinent vacancies for candidates, a cardinal 
objective of the present investigation. 

The ALS algorithm is predicated on the principle of 
matrix factorization, which entails the decomposition of 
the interaction matrix into two lower-rank matrices [16]. 
One matrix embodies the latent factors characterizing 
users, while the other represents the latent factors 
associated with vacancies. This methodology facilitates 
the identification of latent interrelationships between can-
didates and employment opportunities, even in instances 
of limited historical interaction data. In its conventional 
form, this algorithm optimizes parameters such as the 
dimensionality of the latent space, regularization coef-
ficients, and the number of iterative steps to incrementally 
improve predictive accuracy. 

The principal merit of the adopted algorithm resides 
in its ability to efficiently handle sparse datasets, a 
prevalent issue in recruitment platforms where a subs-
tantial proportion of user interactions remains implicitly 
represented. In contradistinction to gradient descent 
algorithms, which concurrently update all parameters, 
ALS employs an alternating update scheme for the latent 
factors of candidates and vacancies, solving a system of 
linear equations at each iterative step. This approach 
guarantees robust convergence, even in the presence of a 
large cardinality of users and vacancies. Prior to the 
initiation of model training, a rigorous preprocessing and 
cleansing of the input data is imperative – procedures 
elucidated in the preceding section. Subsequent to 
successful data generation, the training phase of the neural 
network model can be undertaken. For this purpose, 
Python version 3.11, the pip3 package manager, and the 
Implicit, Scipy, and Scikit libraries were deployed. 

A pivotal stage comprises the formulation of a 
candidate-vacancy interaction matrix, incorporating data 
on views, applications, and other parameters indicative of 
user engagement. Recognizing the prevalence of implicit 
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feedback in recruitment platforms, an implicit collabo-
rative filtering strategy was implemented. Consequently, 
each user query, vacancy view, or application submission 
was transformed into a corresponding numerical rating, 
allowing the ALS algorithm to precisely quantify the 
relevance of a vacancy for a given candidate. 

Given the substantial dimensions and inherent 
sparsity of the original matrix, the Implicit library was 
utilized for its manipulation. This library offers an 
efficient implementation of the ALS algorithm, providing 
scalability for extensive datasets and adhering to a Model-
Based paradigm. All computations were executed in a 
sparse matrix format via the Sparse submodule of the 
Scipy library, thereby significantly reducing computa-
tional resource demands and expediting model training. 

Model training was conducted in a multi-stage 
process. The initial phase involved the determination of 
the optimal latent dimensionality, representing the number 
of latent factors within the factorized matrices. Empirical 
studies demonstrated that selecting a value within the 
range of 50 to 100 factors achieves a judicious equilibrium 
between model performance and recommendation pre-
cision. The subsequent phase entailed the calibration of 
the regularization coefficient, which serves to prevent 
model overfitting and enhance its generalization capacity. 

The model was trained on historical user-vacancy 
interaction data (number of views), and its predictive 
efficacy was assessed on a distinct test dataset. Standard 
recommendation system evaluation metrics, specifically 
Root Mean Squared Error (RMSE) and Mean Absolute 
Error (MAE), were employed to quantify the accuracy of 
the predictions. 

VII. MODEL SERIALIZATION AND ITS 
INTEGRATION INTO A MICROSERVICE 

PLATFORM 
Model serialization and its deployment via an 

Application Programming Interface (API) are founda-
tional elements of modern machine learning architectures. 
These processes enable the efficient persistence, trans-
mission, and retrieval of models across heterogeneous 
execution environments. The primary objective is to 
facilitate the seamless deployment of a model trained in 
one environment to another, thereby obviating the 
necessity for redundant retraining. This ensures solution 
agility, scalability, and accessibility for a wide array of 
applications and end-users, including other software 
system modules. 

Serialization entails the transformation of a model 
object into a byte stream, which can be readily stored on 
persistent storage, transmitted across network infra-
structure, or archived in cloud-based repositories. This 
process is of paramount importance for distributed sys-
tems wherein machine learning models necessitate dep-
loyment across disparate servers or environments (deve-
lopment, quality assurance, production). For the pre-
servation of the trained model’s state to enable its 
subsequent utilization, Pickle, a standard Python seria-
lization utility, was adopted. Periodic model retraining is 

proposed on a bi-hourly schedule to maintain the currency 
of the recommendation repository. 

Following serialization, the model can be deployed 
as an integral module of a web application, accessible via 
an API that functions as an interface between the machine 
learning model and end-users. In this specific implemen-
tation, communication is mediated through a REST API 
leveraging the Flask framework. RESTful API constitutes 
an architectural paradigm for the development of web 
services, predicated on the HTTP protocol and employing 
its methods (GET, POST, PUT, DELETE, et cetera) for 
interaction with server-side resources. Each resource is 
uniquely identified by a Uniform Resource Identifier 
(URI), enabling client access. 

A key attribute of RESTful APIs is their stateless 
nature. This implies that each request encapsulates all 
necessary information for its processing, and the server 
does not maintain any client-specific state between 
successive requests. This characteristic facilitates system 
scalability and enhances reliability. Integration with the 
developed recommendation retrieval API was imple-
mented using Feign Client, a library facilitating simplified 
interaction with external REST-based web services. It is a 
constituent of the Spring Cloud ecosystem and is realized 
through a declarative programming paradigm. 

VIII. TESTING OF THE RECOMMENDATION 
MODULE AND ANALYZING THE RESULTS 
A critical phase in the implementation and eva-

luation process of the developed predictive model is 
validation. The initial step involves a preliminary 
functional verification of the model’s capacity to return a 
valid list of recommendations, commonly referred to as 
Smoke-testing. This aims to assess the end-to-end 
functionality of the software application, focusing on core 
business logic and essential operational capabilities. 

The subsequent phase entails rigorous API testing. 
This stage is paramount in verifying the correct ope-
rational behavior of the Recommendation-Service and its 
seamless integration with other system components, 
notably the Vacancy-Service and Specialist-Search-Ser-
vice. Automated REST API testing was conducted 
utilizing Postman and pytest in conjunction with the 
Python’s Requests Library. Key validation procedures inc-
luded assessing the accurate processing of recommen-
dation retrieval requests, HTTP method adherence, 
parameter validation, conformity of input and output data 
formats (JSON schema compliance), as well as the 
handling of boundary conditions, such as requests with 
absent or malformed parameters. Test scenarios confirmed 
the API’s ability to correctly process client requests, 
returning personalized recommendations with a mean 
response latency of 160ms under standard load conditions. 

An analytical evaluation of the developed software 
module was performed based on accuracy metrics (Mean 
Absolute Error, Mean Squared Error, Root Mean Squared 
Error) and performance metrics (computational resource 
utilization). During evaluation on a sequestered test 
dataset (approximately 2760 vacancies), the error metric 
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values obtained were MAE = 0.831, RMSE = 1.063, and 
MSE = 1.129. These results indicate a high degree of 
congruence between the model’s predictions and 
empirical data, although residual deviations suggest 
potential avenues for further optimization. The findings 
demonstrate that the adapted collaborative filtering 
methodology employing the Alternating Least Squares 
algorithm yielded a consistent improvement ranging from 
1.8 % to 3.2 % across varying training and testing set sizes 
for MAE, and from 2.0 % to 4.1 % for RMSE. 

Laboratory-based efficiency testing of the model was 
executed on a compute-optimized medium AWS 
c7i.2xlarge instance featuring 16 GB of Random Access 
Memory (RAM) and 8 virtual Central Processing Units 
(vCPUs), powered by an Intel Xeon Platinum 8488C 
processor with a base clock frequency of 2.4 GHz 
(3.8 GHz peak), operating under the Amazon cloud 
computing infrastructure. Analysis of performance 
indicators (RAM and CPU utilization) revealed a 
significant advantage of the model-based recommendation 
algorithm. Local testing on an Intel Core i7-9750H 
processor at 2.6 GHz with 16 GB of DDR4 RAM yielded 
substantially similar results. Peak memory and central 
processing unit resource consumption reached 91 % and 
84 %, respectively, for the memory-based approach, 
whereas the model-based approach exhibited maximum 
utilization levels of 67 % for RAM and 58 % for CPU 
(Fig. 5). Load testing was conducted utilizing Apache 
JMeter software with 50 concurrent threads, at an 
aggregate throughput of 200 requests per second over a 
duration of 100 seconds. Recommendations were 
generated for a randomly selected candidate from a cohort 
of 11,000 existing candidates for each request. 

  

 
Fig. 5. Performance comparison graphs of memory-based  

and model-based approaches 

The service demonstrated stable performance with a 
mean response latency of 215 ms, which remains within 
an acceptable threshold for real-time systems. Analysis of 
the service’s log data confirmed the absence of critical 
errors or anomalous operational delays in the API, thereby 
validating its suitability for scalable web service dep-
loyment. 

These results substantiate the rationale for a sub-
sequent experimental investigation aimed at evaluating the 

effectiveness of the developed recommendation system 
within authentic operational environments. Specifically, 
the efficacy of the generated recommendations, system 
performance under realistic load conditions, and the 
potential for enhancing the recruitment process through 
automated candidate and vacancy matching may be 
assessed in the scope of further research. 

The investigation will be conducted on a live, 
deployed system integrated within a functional job search 
web platform. The experimental cohort will consist of two 
distinct user categories: recruiters, who will receive 
automatically generated lists of prospective candidates, 
and candidates, who will receive personalized vacancy 
recommendations predicated on their skill sets, profes-
sional experience, and historical interactions with the 
platform. 

Over a longitudinal period of two months, statistical 
data pertaining to user engagement with the recommen-
dation system will be collected, and a comprehensive 
analysis of its effectiveness will be performed. The 
accuracy of the generated recommendations will be 
quantified using Click-Through Rate (CTR) and Con-
version Rate (CVR) metrics. It is hypothesized that the 
CTR for recommended vacancies will exhibit a sta-
tistically significant increase of 15–20 % in comparison to 
vacancies identified through standard search functio-
nalities. Furthermore, the CVR (defined as the number of 
applications submitted for recommended vacancies) is 
projected to increase by 10–15 %. The mean time 
expenditure by users on manual vacancy searches will 
also be quantified and compared against the time allocated 
to interacting with recommended vacancies. A statistically 
significant reduction of 25–30 % in the mean vacancy 
search time is anticipated. Load testing will be executed 
under authentic operational conditions, simulating an 
estimated daily active user base of 10,000. Analysis of 
computational resource utilization (CPU, RAM, API 
response latency) will be conducted. The anticipated mean 
response latency of the Recommendation-Service is 
within the range of 150–300 milliseconds. 

IX. CONCLUSION 
This research investigated several pivotal facets in 

the creation of effective recommendation systems 
leveraging collaborative filtering, model serialization, and 
API integration. These components are critically signi-
ficant for the design of modern, scalable, and performant 
machine learning systems that can be deployed across a 
diverse range of services. 

Particular attention was directed towards the Alter-
nating Least Squares (ALS) method, a widely adopted 
iterative algorithm for the decomposition of the interaction 
matrix into the product of two lower-rank matrices 
representing user factors and item factors. It was functioned 
by minimizing the mean squared error of ratings to achieve 
dimensionality reduction and the extraction of latent factors 
from the data. In the context of this study, this enabled the 
modeling of relationships between users and vacancies, 
even in the absence of direct observed interactions. 



Yurii Sosnovskyi, Yevdokym Fedorchuk 53 

It was determined that the development of the 
software product employing a microservice architecture 
ensures high scalability and fault tolerance. This 
architectural paradigm facilitated the facile updating and 
extension of the system, thereby enhancing its perfor-
mance and reliability characteristics. A demonstration of 
machine learning model deployment via a REST API was 
conducted, enabling users to interact with the model 
without requiring knowledge of its internal structure or 
implementation specifics. The concluding phase of the 
research involved the validation of the developed model, 
the analysis of relevant performance metrics, and 
experimentation. In summary, the proposed system 
exhibits potential for implementation in the automation of 
personnel and vacancy matching processes, which could 
exert a positive impact on the contemporary labor market. 
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