
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

COLLABORATIVE FILTERING ALGORITHMS
FOR A JOB RECOMMENDATION SYSTEM BUILT WITH

A MICROSERVICE ARCHITECTURE
Yurii Sosnovskyi, Yevdokym Fedorchuk

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
Authors’ e-mails: yurii.sosnovskyi.mnpzm.2023@lpnu.ua, yevdokym.n.fedorchuk@lpnu.ua

https://doi.org/10.23939/acps2025.01.047

Submitted on 20.04.2025

© Sosnovskyi Y., Fedorchuk Y., 2025

Abstract: This article presents the development of a
recommender system for recruiting personnel and vacancies
to improve the efficiency of the hiring process. The proposed
system has integrated collaborative and hybrid filtering
methods to provide personalized job recommendations.
Collaborative filtering model has analyzed historical data,
identifying patterns by detecting connections between user
information and job content. Research methodology has
included literature analysis, dataset preparation, developing
and training the Alternating Least Squares (ALS) model,
and effectiveness evaluation of the implemented collaborative
filtering algorithm by accuracy and performance metrics.
Another part of the research is focused on integrating the
recommendation module into an existing job and candidate
search system built using microservices.

Index terms: recommendation system, collaborative
filtering, ALS model, microservices.

I. INTRODUCTION
In the context of an ever-evolving business envi-

ronment, the processes of job searching and professional
talent acquisition continue to gain critical importance. As
the demands of the labor market grow increasingly dynamic
and complex, there is a clear need for the development of
advanced software solutions and algorithmic frameworks
that can adequately address current market requirements.
These systems must not only eliminate the limitations of
existing recruitment platforms but also introduce innovative
functionality and intuitive tools that facilitate seamless
interaction between employers and candidates.

The primary practical issue addressed by this
research is the inefficiency of conventional methods for
identifying relevant specialists and the prolonged hiring
process in the context of today’s labor market. This
challenge is tackled through the implementation of a
recommendation system based on machine learning
algorithms, which can rapidly and accurately analyze
large volumes of data and perform comparative analysis to
identify the most relevant matches. This facilitates the
formation of optimal candidate–position pairs, enhancing
satisfaction levels among both employers and job seekers.
The proposed system aims to resolve delays in recruitment
by offering tailored job recommendations to candidates
and suggesting potential applicants to recruiters, there by
simplifying decision-making and improving interactions

between hiring parties and professionals. The integration
of artificial intelligence enables the development of a
comprehensive candidate evaluation system that accounts
for various skill sets and personal attributes [1]. The core
business logic involves matching vacancies to the
candidate, ranking them by relevance, and presenting the
most suitable options. High scalability and accessibility of
the software solution are ensured through the adoption of
a microservice-based architecture. Thus, the project
enhances the overall efficiency, speed, and accuracy of the
recruitment process, providing a reliable software tool.

A key area of technological advancement in this
domain is the use of collaborative filtering algorithms,
which play a central role in generating personalized recom-
mendations by analyzing user preferences and behavioral
patterns. In particular, modern systems increasingly rely on
implicit feedback – such as clicks, browsing time,
application submissions, or profile views – rather than
explicit user ratings, which are often unavailable in
recruitment platforms [2]. Usually, implicit feedback is
safer because unregulated feedback loops generate harmful
side effects that ultimately impact the recommendation
quality [3]. By leveraging large-scale historical interaction
data, collaborative filtering enables the system to infer
latent factors that describe the relationships between users
and job postings, thereby providing recommendations that
are both relevant and adaptive to user behavior over time.

The integration of collaborative filtering methods
that utilize implicit feedback allows for the creation of
more responsive and intelligent systems capable of
continuously learning from user activity. This results in
enhanced matching accuracy, greater user satisfaction, and
improved hiring outcomes. Consequently, a thorough
investigation into these approaches is essential for the
development of effective recruitment recommendation
systems that can operate efficiently in real-world
conditions and at scale.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The recruitment industry is no exception in the
application of recommendation algorithms and smart
search. In recent years, notable advancements in recom-
mender system research have been documented across

Collaborative Filtering Algorithms for a Job Recommendation System Built with a Microservice Architecture 48

various academic publications and implemented in
software solutions. A recommender system functions as
an automated mechanism that delivers personalized
suggestions of products or services to users [4]. It operates
based on a defined set of users (K1...Ki) and a collection of
recommended items (E1...Ek). Within this context, a user
refers to any individual or entity interacting with the
system, while an item represents a physical or digital
entity – such as a job posting, user profile, or product –
communicated to the user via email, text message, or
graphical interface. These items are characterized by
distinct attributes that form the basis of their comparison
and recommendation production.

Among the various approaches employed in recom-
mender systems, collaborative filtering (CF) stands out as
one of the most prevalent and widely applied methods [5].
CF techniques are generally categorized into two main
types: memory-based and model-based. Model-based
collaborative filtering leverages machine learning models
trained on historical interaction data to uncover latent
patterns and make informed predictions about user
preferences. In contrast, memory-based methods rely
directly on the user-item interaction matrix – either in full
or sampled form – to compute recommendations in real
time. This latter approach is further divided into user-
based and item-based filtering [6]. User-based filtering
generates recommendations by identifying users with
similar behavioral histories, whereas item-based filtering
focuses on identifying correlations between items based
on user evaluations. Comparative studies have shown that
item-based filtering often yields more accurate but less
tailored recommendations than user-based approaches due
to features of item similarity metrics [7].

A number of studies focus on improving intelligent
recommender systems. Authors use collaborative algo-
rithms to optimize recommendations in this specific
domain [8]. There are two different aspects to measuring
accuracy. The quantitative aspect is based on indicators
such as the mean absolute error and the root mean square
error, which is the root of the mean error of all estimates
obtained by the algorithm used [9]. And the qualitative
aspect depends on the direct result of the recommen-
dations, and we evaluate it by reviewing the generated
recommendation.

Another challenge faced by collaborative filtering is
the sparsity problem, where there are not enough
interactions between users and items to generate reliable
recommendations, which can occur in large datasets or for
specialized products that are not widely used. Several
approaches have been proposed to address this problem,
such as matrix factorization models [10], vector
decomposition, clustering, and graph-based algorithms.
For example, singular vector decomposition has been used
to compact the original user-item matrix, and latent
semantic models have been used to cluster users and
items. However, these approaches have the disadvantage
that the decomposition needs to be updated every time a
new user or rating is added to the matrix. A more
advanced approach is based on the analysis of prediction

errors to improve the accuracy of user-based filtering. The
drawback of this approach is that computing the errors of
all estimates during training is quite resource-intensive
[11]. In addition, the above methods must be modified to
avoid the cold start problem. The simplest CF process is
based on three steps, as shown in Fig. 1.

Fig. 1. The process of collaborative recommendation generation

Before starting the collaborative filtering process, the
first step is to collect data from users who need
recommendations [12]. This data (in our case, candidate
and job ratings) serves as a query to the algorithm. The
second step of the CF is to build a rating matrix and fill it
in. Since users do not rate items regularly, the most
common technique in CF is to replace the empty cells of
the matrix with the average user ratings. In this step, we
look for the neighborhood of the most similar users using
a similarity metric. There are different measures for
obtaining similarity, but the most common are Pearson’s
correlation coefficient and cosine similarity [13]. This is
considered the standard way to measure correlation.
Values obtained using the equation below range from –1
to 1 (–1 means that there is an opposite similarity between
two objects, 0 means that there is no correlation between
those, and 1 means that they are identical).

() 1

22
1 1

,
i j

k
l ll

u i
k k

l ll l

w v
sim P V

w v

=

= =

= ∑
∑ ∑

. (1)

The cosine similarity (1) between the vectors Pui and
Vij is used to determine the relevance of element ij to user
ui, where wl and vl are the coordinates of these vectors, i, j
and l are counters that lie in the range from 1 to k.

At the last step, after selecting the closest k-
neighbors for the active user [14], using the degree of
similarity based on the score matrix (Fig. 2), the CF
generates predictions for previously missing objects.

Fig. 2. An example of a score matrix for data representation

A number of researchers in their works conclude that
microservices architecture with autonomous databases is
well suited for systems with a high user load, which is our
product. According to this hypothesis, breaking the system
into small and autonomous microservices will allow for
reliability enhancement, efficient implementation of new
features, and easier further software support [15].

III. SCOPE OF WORK AND OBJECTIVES
The main purpose of the work is to improve the

process of selecting candidates and vacancies by using
collaborative filtering algorithms. Development of a

Yurii Sosnovskyi, Yevdokym Fedorchuk 49

recommendation system based on the best practices of
microservice architecture. To achieve this objective, the
following research tasks have been carried out:

• Dataset preparation.
• Building and training an ALS model for

generating recommendations.
• Designing and creating a software implemen-

tation of a recommender module as part of a microservice
platform for job search and recruitment.

• Conducting an experiment, testing the developed
software system, and fixing defects.

• Analyzing the results obtained according to the
criteria of relevance (RMSE – Root Mean Squared Error,
MAE – Mean Absolute Error) and performance (com-
puting resource consumption).

• The final stage involves integrating the selected
recommendation strategy into the complete software
solution.

The expected practical significance of the research is
to increase the probability of successful hiring, as well as
to optimize the time and material costs of selecting a
specialist or a place of work through the implementation
of personalized recommendations. The potential social
result of the software product is to reduce pressure on the
labor market, reduce the unemployment rate and provide
specialists with an effective new means of employment.

Potential users of the system are candidates looking
for a job or are in a passive job search, students,
freelancers who are open to new opportunities, along with
recruiters, hiring managers, and HR professionals.

The research methodology is based on a comp-
rehensive approach that includes the analysis of relevant
academic sources, market analysis of existing systems,
development of a functional prototype, and experimental
validation of the proposed solution. Special emphasis is
placed on the model optimizing and data preparation,
which facilitates better accuracy indicators and reduces
computational costs.

IV. SYSTEM ARCHITECTURE DESIGN
Modern high-load recommendation systems

designed for matching candidates with job opportunities
require a high level of flexibility, scalability, and efficient
integration of various components. One of the most
effective design paradigms for building such systems is
the microservices architecture. The specified approach
enables the development of independent software services,
each responsible for a well-defined and limited set of
functionalities. These services (or modules) can be
deployed independently and scaled individually based on
specific performance demands or load characteristics.

By decomposing the overall system into smaller,
modular components, the development and maintenance
of each service can be conducted in isolation, often by
separate teams. This leads to enhanced flexibility in
implementing changes, reduces the risk of unintended
disruptions due to updates, and ensures more efficient
allocation and utilization of computing resources. Additio-
nally, the adoption of a microservices-based architecture

improves system resilience, as a failure in one service
does not necessarily compromise the functionality of the
entire platform.

In the proposed system, the inter-service communi-
cation is realized through Hypertext Transfer Protocol
(HTTP) requests within the framework of Representa-
tional State Transfer (REST) design. This method
provides a standardized and technology-agnostic interface
for service interaction, enabling seamless integration and
interoperability regardless of the specific implementation
stack used across different components. The utilization of
message brokers or alternative message bus architectures
is deemed suboptimal due to the predominantly
synchronous nature of operations, obviating the necessity
for an event-driven paradigm. A detailed representation of
the recommender subsystem, an integral component of the
web platform, is provided in the deployment diagram
illustrated in Fig. 3.

Fig. 3. Microservices web platform deployment diagram

A typical usage scenario involves the Vacancy-
Service receiving user requests, subsequently either
performing direct vacancy searches or dispatching a
request to the Recommendation-Service endpoint for
personalized suggestions. Concurrently, the Recommen-
dation-Service processes HTTP GET requests, leverages a
pre-trained model to generate a recommendation list, and
transmits these recommendations back to the Vacancy-
Service. The Vacancy-Service then augments these
identifiers with supplementary vacancy details for pre-
sentation on the user interface. Notably, the recom-

Collaborative Filtering Algorithms for a Job Recommendation System Built with a Microservice Architecture 50

mendation microservice operates without direct database
interaction. An analogous workflow is employed by the
Specialist-search-service to procure candidate recom-
mendations. The deployment diagram (see Fig. 3)
delineates the system’s physical architecture, exemplified
by the Amazon Web Services (AWS) Elastic Container
Service (ECS) cluster and a Relational Database Service
(RDS) instance for the PostgreSQL database, illustrating
the distribution and interrelation of software and hardware
components. The serialized model file is persisted in AWS
Simple Storage Service (S3). Furthermore, the Retrain-
service is a candidate for migration from AWS ECS to the
AWS Lambda serverless compute service, with its
execution scheduled via the integrated Cron job
mechanism, triggered by periodic events from Amazon
CloudWatch Events.

V. DATASET PREPARATION AND PROCESSING
The development of the recommendation system

begins with the preparation of a dataset about candidates –
for this, we will use the existing Structured Query
Language (SQL) database of the web platform for
searching specialists. The Spring Data toolkit was used to
read the data from tables. We have access to repository
abstraction, which allows us to easily work with domain
entities using various data access technologies, in
particular the Hibernate framework, the JPA interface and
tools for SQL databases. For aggregation, a utility has
been written that writes flatly structured data about
specialists to a CSV file, which is easy to work with
Python Pandas Data frame.

The same data persistence sequence was also
implemented for existing vacancy records and view
history. During the dataset analysis, categorical and
numerical data were identified. Empty or incorrect values
were detected and handled. If the percentage of such
columns for a record exceeded 40%, that entry was
removed from the resulting dataset. Among the obtained
dataset of candidate-vacancy interactions, outliers were
identified in the “reviews” column (number of views),
which we will use to generate recommendations based on
implicit feedback. A total of 615 such rows were found,
which is approximately 5.5 % of all data (Fig. 4). Such a
quantity is considered uncritical, and these records are
removed to improve model accuracy.

For the analysis of user behavior on the job search
platform, the data are structured as a collection of distinct
files, each encapsulating unique aggregated information.
These files undergo continuous updates during the
periodic model retraining performed by the Retrain-
service, wherein novel information is appended and
obsolete, non-pertinent records are purged.

The underlying data source is a PostgreSQL
database; complex aggregated queries directed at this
relational database can exhibit comparatively protracted
execution durations. Therefore, a decision was made to
execute these queries asynchronously in a background
process, thereby circumventing the latency associated with
synchronous, real-time result retrieval characteristic of a
memory-based recommendation system.

Fig. 4. Boxplot for the “reviews” category

VI. ALS MODEL TRAINING
A highly prevalent and efficacious method for the

realization of collaborative filtering is the Alternating
Least Squares (ALS) algorithm. This algorithm optimizes
the factorization of the interaction matrix by iteratively
updating the latent parameters of users and vacancies. The
implementation of this approach within the recommen-
dation system ensures a high level of precision in
forecasting pertinent vacancies for candidates, a cardinal
objective of the present investigation.

The ALS algorithm is predicated on the principle of
matrix factorization, which entails the decomposition of
the interaction matrix into two lower-rank matrices [16].
One matrix embodies the latent factors characterizing
users, while the other represents the latent factors
associated with vacancies. This methodology facilitates
the identification of latent interrelationships between can-
didates and employment opportunities, even in instances
of limited historical interaction data. In its conventional
form, this algorithm optimizes parameters such as the
dimensionality of the latent space, regularization coef-
ficients, and the number of iterative steps to incrementally
improve predictive accuracy.

The principal merit of the adopted algorithm resides
in its ability to efficiently handle sparse datasets, a
prevalent issue in recruitment platforms where a subs-
tantial proportion of user interactions remains implicitly
represented. In contradistinction to gradient descent
algorithms, which concurrently update all parameters,
ALS employs an alternating update scheme for the latent
factors of candidates and vacancies, solving a system of
linear equations at each iterative step. This approach
guarantees robust convergence, even in the presence of a
large cardinality of users and vacancies. Prior to the
initiation of model training, a rigorous preprocessing and
cleansing of the input data is imperative – procedures
elucidated in the preceding section. Subsequent to
successful data generation, the training phase of the neural
network model can be undertaken. For this purpose,
Python version 3.11, the pip3 package manager, and the
Implicit, Scipy, and Scikit libraries were deployed.

A pivotal stage comprises the formulation of a
candidate-vacancy interaction matrix, incorporating data
on views, applications, and other parameters indicative of
user engagement. Recognizing the prevalence of implicit

Yurii Sosnovskyi, Yevdokym Fedorchuk 51

feedback in recruitment platforms, an implicit collabo-
rative filtering strategy was implemented. Consequently,
each user query, vacancy view, or application submission
was transformed into a corresponding numerical rating,
allowing the ALS algorithm to precisely quantify the
relevance of a vacancy for a given candidate.

Given the substantial dimensions and inherent
sparsity of the original matrix, the Implicit library was
utilized for its manipulation. This library offers an
efficient implementation of the ALS algorithm, providing
scalability for extensive datasets and adhering to a Model-
Based paradigm. All computations were executed in a
sparse matrix format via the Sparse submodule of the
Scipy library, thereby significantly reducing computa-
tional resource demands and expediting model training.

Model training was conducted in a multi-stage
process. The initial phase involved the determination of
the optimal latent dimensionality, representing the number
of latent factors within the factorized matrices. Empirical
studies demonstrated that selecting a value within the
range of 50 to 100 factors achieves a judicious equilibrium
between model performance and recommendation pre-
cision. The subsequent phase entailed the calibration of
the regularization coefficient, which serves to prevent
model overfitting and enhance its generalization capacity.

The model was trained on historical user-vacancy
interaction data (number of views), and its predictive
efficacy was assessed on a distinct test dataset. Standard
recommendation system evaluation metrics, specifically
Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE), were employed to quantify the accuracy of
the predictions.

VII. MODEL SERIALIZATION AND ITS
INTEGRATION INTO A MICROSERVICE

PLATFORM
Model serialization and its deployment via an

Application Programming Interface (API) are founda-
tional elements of modern machine learning architectures.
These processes enable the efficient persistence, trans-
mission, and retrieval of models across heterogeneous
execution environments. The primary objective is to
facilitate the seamless deployment of a model trained in
one environment to another, thereby obviating the
necessity for redundant retraining. This ensures solution
agility, scalability, and accessibility for a wide array of
applications and end-users, including other software
system modules.

Serialization entails the transformation of a model
object into a byte stream, which can be readily stored on
persistent storage, transmitted across network infra-
structure, or archived in cloud-based repositories. This
process is of paramount importance for distributed sys-
tems wherein machine learning models necessitate dep-
loyment across disparate servers or environments (deve-
lopment, quality assurance, production). For the pre-
servation of the trained model’s state to enable its
subsequent utilization, Pickle, a standard Python seria-
lization utility, was adopted. Periodic model retraining is

proposed on a bi-hourly schedule to maintain the currency
of the recommendation repository.

Following serialization, the model can be deployed
as an integral module of a web application, accessible via
an API that functions as an interface between the machine
learning model and end-users. In this specific implemen-
tation, communication is mediated through a REST API
leveraging the Flask framework. RESTful API constitutes
an architectural paradigm for the development of web
services, predicated on the HTTP protocol and employing
its methods (GET, POST, PUT, DELETE, et cetera) for
interaction with server-side resources. Each resource is
uniquely identified by a Uniform Resource Identifier
(URI), enabling client access.

A key attribute of RESTful APIs is their stateless
nature. This implies that each request encapsulates all
necessary information for its processing, and the server
does not maintain any client-specific state between
successive requests. This characteristic facilitates system
scalability and enhances reliability. Integration with the
developed recommendation retrieval API was imple-
mented using Feign Client, a library facilitating simplified
interaction with external REST-based web services. It is a
constituent of the Spring Cloud ecosystem and is realized
through a declarative programming paradigm.

VIII. TESTING OF THE RECOMMENDATION
MODULE AND ANALYZING THE RESULTS
A critical phase in the implementation and eva-

luation process of the developed predictive model is
validation. The initial step involves a preliminary
functional verification of the model’s capacity to return a
valid list of recommendations, commonly referred to as
Smoke-testing. This aims to assess the end-to-end
functionality of the software application, focusing on core
business logic and essential operational capabilities.

The subsequent phase entails rigorous API testing.
This stage is paramount in verifying the correct ope-
rational behavior of the Recommendation-Service and its
seamless integration with other system components,
notably the Vacancy-Service and Specialist-Search-Ser-
vice. Automated REST API testing was conducted
utilizing Postman and pytest in conjunction with the
Python’s Requests Library. Key validation procedures inc-
luded assessing the accurate processing of recommen-
dation retrieval requests, HTTP method adherence,
parameter validation, conformity of input and output data
formats (JSON schema compliance), as well as the
handling of boundary conditions, such as requests with
absent or malformed parameters. Test scenarios confirmed
the API’s ability to correctly process client requests,
returning personalized recommendations with a mean
response latency of 160ms under standard load conditions.

An analytical evaluation of the developed software
module was performed based on accuracy metrics (Mean
Absolute Error, Mean Squared Error, Root Mean Squared
Error) and performance metrics (computational resource
utilization). During evaluation on a sequestered test
dataset (approximately 2760 vacancies), the error metric

Collaborative Filtering Algorithms for a Job Recommendation System Built with a Microservice Architecture 52

values obtained were MAE = 0.831, RMSE = 1.063, and
MSE = 1.129. These results indicate a high degree of
congruence between the model’s predictions and
empirical data, although residual deviations suggest
potential avenues for further optimization. The findings
demonstrate that the adapted collaborative filtering
methodology employing the Alternating Least Squares
algorithm yielded a consistent improvement ranging from
1.8 % to 3.2 % across varying training and testing set sizes
for MAE, and from 2.0 % to 4.1 % for RMSE.

Laboratory-based efficiency testing of the model was
executed on a compute-optimized medium AWS
c7i.2xlarge instance featuring 16 GB of Random Access
Memory (RAM) and 8 virtual Central Processing Units
(vCPUs), powered by an Intel Xeon Platinum 8488C
processor with a base clock frequency of 2.4 GHz
(3.8 GHz peak), operating under the Amazon cloud
computing infrastructure. Analysis of performance
indicators (RAM and CPU utilization) revealed a
significant advantage of the model-based recommendation
algorithm. Local testing on an Intel Core i7-9750H
processor at 2.6 GHz with 16 GB of DDR4 RAM yielded
substantially similar results. Peak memory and central
processing unit resource consumption reached 91 % and
84 %, respectively, for the memory-based approach,
whereas the model-based approach exhibited maximum
utilization levels of 67 % for RAM and 58 % for CPU
(Fig. 5). Load testing was conducted utilizing Apache
JMeter software with 50 concurrent threads, at an
aggregate throughput of 200 requests per second over a
duration of 100 seconds. Recommendations were
generated for a randomly selected candidate from a cohort
of 11,000 existing candidates for each request.

Fig. 5. Performance comparison graphs of memory-based

and model-based approaches

The service demonstrated stable performance with a
mean response latency of 215 ms, which remains within
an acceptable threshold for real-time systems. Analysis of
the service’s log data confirmed the absence of critical
errors or anomalous operational delays in the API, thereby
validating its suitability for scalable web service dep-
loyment.

These results substantiate the rationale for a sub-
sequent experimental investigation aimed at evaluating the

effectiveness of the developed recommendation system
within authentic operational environments. Specifically,
the efficacy of the generated recommendations, system
performance under realistic load conditions, and the
potential for enhancing the recruitment process through
automated candidate and vacancy matching may be
assessed in the scope of further research.

The investigation will be conducted on a live,
deployed system integrated within a functional job search
web platform. The experimental cohort will consist of two
distinct user categories: recruiters, who will receive
automatically generated lists of prospective candidates,
and candidates, who will receive personalized vacancy
recommendations predicated on their skill sets, profes-
sional experience, and historical interactions with the
platform.

Over a longitudinal period of two months, statistical
data pertaining to user engagement with the recommen-
dation system will be collected, and a comprehensive
analysis of its effectiveness will be performed. The
accuracy of the generated recommendations will be
quantified using Click-Through Rate (CTR) and Con-
version Rate (CVR) metrics. It is hypothesized that the
CTR for recommended vacancies will exhibit a sta-
tistically significant increase of 15–20 % in comparison to
vacancies identified through standard search functio-
nalities. Furthermore, the CVR (defined as the number of
applications submitted for recommended vacancies) is
projected to increase by 10–15 %. The mean time
expenditure by users on manual vacancy searches will
also be quantified and compared against the time allocated
to interacting with recommended vacancies. A statistically
significant reduction of 25–30 % in the mean vacancy
search time is anticipated. Load testing will be executed
under authentic operational conditions, simulating an
estimated daily active user base of 10,000. Analysis of
computational resource utilization (CPU, RAM, API
response latency) will be conducted. The anticipated mean
response latency of the Recommendation-Service is
within the range of 150–300 milliseconds.

IX. CONCLUSION
This research investigated several pivotal facets in

the creation of effective recommendation systems
leveraging collaborative filtering, model serialization, and
API integration. These components are critically signi-
ficant for the design of modern, scalable, and performant
machine learning systems that can be deployed across a
diverse range of services.

Particular attention was directed towards the Alter-
nating Least Squares (ALS) method, a widely adopted
iterative algorithm for the decomposition of the interaction
matrix into the product of two lower-rank matrices
representing user factors and item factors. It was functioned
by minimizing the mean squared error of ratings to achieve
dimensionality reduction and the extraction of latent factors
from the data. In the context of this study, this enabled the
modeling of relationships between users and vacancies,
even in the absence of direct observed interactions.

Yurii Sosnovskyi, Yevdokym Fedorchuk 53

It was determined that the development of the
software product employing a microservice architecture
ensures high scalability and fault tolerance. This
architectural paradigm facilitated the facile updating and
extension of the system, thereby enhancing its perfor-
mance and reliability characteristics. A demonstration of
machine learning model deployment via a REST API was
conducted, enabling users to interact with the model
without requiring knowledge of its internal structure or
implementation specifics. The concluding phase of the
research involved the validation of the developed model,
the analysis of relevant performance metrics, and
experimentation. In summary, the proposed system
exhibits potential for implementation in the automation of
personnel and vacancy matching processes, which could
exert a positive impact on the contemporary labor market.

References
[1] Huamán, A., Rebaza, G., & Subauste, D. (2024). Hybrid

Job Recommendation Model Based on Professional Profile
Using Data from Job Boards and Machine Learning
Libraries. Proceedings of the 18th International Multi-
Conference on Society, Cybernetics and Informatics:
IMSCI 2024, pp. 72–79. DOI:
https://doi.org/10.54808/IMSCI2024.01.72.

[2] Liu, Y., Xiao, Y., Wu, Q., Miao, C., Zhang, J., Zhao, B., &
Tang, H. (2020). Diversified Interactive Recommendation
with Implicit Feedback. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(4), 4932–4939.
DOI: https://doi.org/10.1609/aaai.v34i04.5931.

[3] Krauth, K., Wang, Y., & Jordan, M. (2025). Breaking
Feedback Loops in Recommender Systems with Causal
Inference. ACM Transactions on Recommender Systems.
DOI: https://doi.org/10.1145/3728372.

[4] Jain, A., & Gupta, C. (2018). Fuzzy logic in recommender
systems. Fuzzy logic augmentation of neural and
optimization algorithms: Theoretical aspects and real
applications, 255–273. DOI: https://doi.org/10.1007/978-
3-319-71008-2_20.

[5] Liu, D. (2018, December). A Study on Collaborative
Filtering Recommendation Algorithms. In 2018 IEEE 4th
International Conference on Computer and
Communications (ICCC) (pp. 2256–2261). IEEE. DOI:
https://doi.org/10.1109/compcomm.2018.8780979.

[6] Chornous, G., Nikolskyi, I., Wyszyński, M., Kharlamova,
G., & Stolarczyk, P. (2021). A hybrid user-item-based
collaborative filtering model for e-commerce
recommendations. Journal of International Studies, 14(4).

157–173. DOI: https://doi.org/10.14254/2071-
8330.2021/14-4/11.

[7] Permana, K. E. (2024). Comparison of User Based and
Item Based Collaborative Filtering in Restaurant
Recommendation System. Mathematical Modelling of
Engineering Problems, 11(7), 1922–1928. DOI:
https://doi.org/10.18280/mmep.110723.

[8] Xu, Y., Zhang, Y., Zhang, Y., & Li, H. (2023).
Optimization of intelligent recommendation of innovation
and entrepreneurship projects based on collaborative
filtering algorithm. Intelligent Decision Technologies,
17(1), 1–13. DOI: https://doi.org/10.3233/idt-230313.

[9] Sitkar, S., Teslyuk, V., Yanchuk, I., Antonyuk, D., &
Kohut, I. (2022). The intellectual system of movies
recommendations based on the collaborative filtering.
Journal of Education, Health and Sport, 12(3), 115–127.
DOI: https://doi.org/10.12775/jehs.2022.12.03.010.

[10] Nguyen, L. V., Vo, Q.-T., & Nguyen, T.-H. (2023).
Adaptive KNN-Based Extended Collaborative Filtering
Recommendation Services. Big Data and Cognitive
Computing, 7(2), 106. DOI:
https://doi.org/10.3390/bdcc7020106.

[11] Nguyen, L. V., Nguyen, T.-H., Vo, Q.-T., & Le, T. A.
(2020). Cognitive Similarity-Based Collaborative Filtering
Recommendation System. Applied Sciences, 10(12), 4183.
DOI: https://doi.org/10.3390/app10124183.

[12] El Fazziki, A., Lachhab, A., & Mouloudi, A. (2022).
Employing opposite ratings users in a new approach to
collaborative filtering. Indonesian Journal of Electrical
Engineering and Computer Science, 25(1), 450–459. DOI:
https://doi.org/10.11591/ijeecs.v25.i1.pp450-459.

[13] Muhammad, M. (2021). Recommendation System Using
User-Based Collaborative Filtering and Spectral
Clustering. In Proceedings of the 1st International Seminar
on Teacher Training and Education, ISTED 2021
(pp. 516–521). EAI. DOI: https://doi.org/10.4108/eai.17-7-
2021.2312409.

[14] Kwieciński, R., Filipowska, A., Górecki, T., & Dubrov, V.
(2023). Job recommendations: benchmarking of
collaborative filtering methods for classifieds. arXiv e-
prints, arXiv-2301.
DOI:https://doi.org/10.48550/arXiv.2301.07946.

[15] Melnyk, K., Borysova, N., Kochuieva, Z., & Huliieva, D.
(2021). Towards Designing of Recommendation System
for Recruiting of Software Development Teams. Computer
Modeling and Intelligent Systems, 2864, 226–237. DOI:
https://doi.org/10.32782/cmis/2864-20.

[16] Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative
Filtering for Implicit Feedback Datasets. In 2008 Eighth
IEEE International Conference on Data Mining (ICDM).
IEEE. DOI: https://doi.org/10.1109/icdm.2008.22

Yurii Sosnovskyi was born in
Lviv. Starting from 2023, he is a
student of the Master’s educational
and scientific program there. Since
2021, he has been working as a
Java Software Engineer, his cur-
rent position is Senior Software
Developer at ELEKS. Yurii’s are-
as of interest are backend engine-
ering, enterprise systems, cloud
computing, machine learning and
recommender systems.

Yevdokym Fedorchuk gra-
duated from the Faculty of Physics
of Ivan Franko National Univer-
sity of Lviv, majoring in Radio-
physics and Electronics. Since
2000 and up to the present time, he
has been working as an Associate
Professor at the Department of
Software Engineering of Lviv Po-
lytechnic National University. He
is the author of over 50 scientific
publications and educational-me-
thodical developments

