
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

ENHANCING HOST INTRUSION DETECTION SYSTEMS FOR LINUX
BASED NETWORK OPERATING SYSTEMS

Bohdan Havano, Andriy Dobush

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
Authors’ e-mails: bohdan.i.havano@lpnu.ua, andrii.r.dobush@lpnu.ua

https://doi.org/10.23939/acps2025.01.054

Submitted on 24.03.2025

© Havano B., Dobush A., 2025

Abstract: This paper proposes an enhanced model of Host
Intrusion Detection Systems (HIDS) adapted for Linux-
based Network Operating Systems (NOS), specifically
SONiC. The SONiC architecture has been analyzed to
identify intrusion-sensitive components, including telemetry
data, container logs, and inter-container communications. A
machine learning-based HIDS profile has been introduced to
detect anomalies within containerized services and network
modules. Signature-based, anomaly-based, and hybrid-based
detection approaches have been classified with consideration
of NOS-specific traits. The proposed solution has integrated
external threat intelligence and adversarial modeling to
improve detection accuracy. Results confirm the effectiveness
of the method in securing cloud-scale networks powered by
open-source NOS platforms.

Index terms: Host intrusion detection, Linux, Network OS,
Security.

I. INTRODUCTION
Intrusion detection involves monitoring and

analyzing events within a computer system or network to
identify potential security breaches. These threats can
range from malware and DoS / DDoS attacks to unau-
thorized access, privilege escalation, or probe attacks.
While many events that seem malicious are genuine
attacks, there are exceptions, such as users mistyping an
address or unintentionally connecting to the wrong
system. It’s crucial for the system to accurately differen-
tiate between actual intrusions and normal network traffic.
Ultimately, an Intrusion Detection System (IDS)
automates the process of identifying and responding to
such attacks [1–3].

In numerous studies, Host Intrusion Detection
Systems (HIDS) are commonly applied to general-purpose
Linux hosts, such as servers and network-connected user
devices. In today’s rapidly evolving cybersecurity land-
scape, HIDS play a crucial role in monitoring the integrity
and security of individual computing systems. Typically
designed to operate within a single host, HIDS focus on
analyzing internal activities to detect and prevent potential
threats [4–6]. With various types of HIDS tailored to
specific environments and needs, a deeper understanding
of their capabilities is essential.

HIDS solutions range from signature-based detection
to advanced anomaly detection mechanisms. While some
systems rely on predefined rules to identify suspicious

behavior, others use machine learning to detect anomalies
in real time. Whether rule-based or dynamic, HIDS are
essential in securing devices such as servers, workstations,
and mobile devices against cyber threats.

Traditionally, HIDS monitor events like file system
changes, process execution, and network connections on
the host machine to identify unauthorized access,
malware, and other malicious activities. However, as the
computing paradigm shifts towards interconnected
systems driven by Network Operating Systems (NOS),
traditional HIDS may not be as effective in protecting
these complex environments [7].

Given this shift, there is a growing need to extend
HIDS capabilities to better integrate with Network OS
environments. Enhancing HIDS to account for network
communications, protocol analysis, and distributed threat
detection can strengthen the security of interconnected
systems. This article examines the need for adapting HIDS
to work within Network OS frameworks, exploring the
challenges and opportunities in improving these essential
security tools to meet the demands of an increasingly
interconnected world.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Host based IDS is aimed at collecting and analyzing
information on a particular host or system. Such agent
monitors and prevents intruders to compromise system
security policy. Comparing to Anti-virus HIDS play
different role. As it has been mentioned in [1] HIDS check
and collect system data including File System, Network
Events and System Calls to verify whether any incon-
sistency has occurred or not. HIDS relies on audit trail and
system logs to detect unusual activities inside the system.

Several critical factors influence effective decision-
making in intrusion detection systems (IDS) are
enumerated in [7]. The IDS must remain operational and
resilient during failures or high-load scenarios to ensure
uninterrupted threat monitoring. Timely identification of
threats is essential to prevent the spread of attacks within
interconnected NOS modules. Reducing false alerts helps
maintain the system’s credibility and ensures that real
threats receive prompt attention. The IDS should
accurately detect a broad range of attacks, including novel
or zero-day threats, to ensure comprehensive protection.

Bohdan Havano, Andriy Dobush 55

Efficient resource consumption is necessary to avoid
impacting the performance of SONiC switches and
network operations. The IDS must pinpoint the exact
location of suspicious activity, whether in containers,
configuration files, or Redis interactions. Lastly, the
system should seamlessly integrate with external security
tools and intelligence feeds for enhanced threat analysis
and response.

In summary, an IDS must provide the above-
mentioned features for high accuracy and timely detection
of attacks.

According to [3] intrusion detection systems (IDSs)
typically consist of three primary elements:

1. Data collection: acquire various types of data,
such as system calls or network flows.

2. Feature extraction: This involves transforming
a predetermined unit of data, like system calls within a
process or flows within a time frame, into a set of
attributes known as a feature vector.

3. Decision mechanism: This component employs
an algorithm or heuristic to determine whether the
provided data, in its feature vector form, is indicative of an
attack or not.

The decision mechanism can be classified as either
misuse, anomaly, or a hybrid detector. Misuse intrusion
detection relies on pre-established attack patterns, such as
signatures of known malware or expertly crafted rules, to
identify matching events. As it has been mentioned in [3]
zero-day attacks, which are novel or exploit previously
undiscovered vulnerabilities, often bypass misuse detec-
tion algorithms. Typically, misuse detection relies on a
database of attack signatures that tends to be large, con-
tinuously expanding, potentially challenging to employ
effectively, and requires frequent updates. Having pre-
defined signatures of attack, misuse detection typically has
a relatively low rate of false positives but a high rate of
false negatives.

In anomaly detection, expected behavior is learned
from observations of common host work. Any significant
deviation from this established profile is identified as a
potential attack. Such approach allows detection of
previously unseen attack patterns. As it has been described
in [4] anomaly detection systems that update in almost
real-time can adapt models to the gradually shifting sys-
tem dynamics. However, the main drawback of anomaly
detection lies in its detection accuracy, particularly in its
tendency to produce higher rates of false alarms.
Furthermore, attacks may camouflage themselves within
the background noise of ambient data if the training data,
used to establish normal behavior, exhibits significant
variation. Likewise, if attacks are present within the
training data, detectors may learn to consider such
behavior as normal. In [8] author proposed Ab-HIDS, an
anomaly-based host intrusion detection system that
utilizes N-gram frequency analysis of system calls com-
bined with ensemble learning techniques to effectively
detect malicious activity in containerized Linux envi-
ronments, demonstrating improved accuracy in behavioral
anomaly detection models.

As it has been mentioned in [2], intrusion detection
systems can rely on several key behavioral measures to
identify potential threats. One important category is login
and session activity, which encompasses metrics such as
login frequency, the distribution of login attempts across
different positions, the duration of each session, and the
output of executed commands. Another crucial aspect is
resource utilization, which includes indicators like the
number of failed login attempts, the execution of specific
commands and procedures, operational frequency, and the
extent of system resource usage. Additionally, file
operation activity serves as a valuable measure, focusing
on the frequency of actions such as reading, writing,
creating, and deleting files.

Host Intrusion Detection Systems (HIDS) can be
broadly categorized based on the method they use to
detect intrusions as it has been described in Table. The
two principal categories are Misuse-based Detection and
Anomaly-based Detection, with some modern systems
adopting Hybrid approaches. Each type has distinct
operational characteristics, advantages, and limitations.
The selection of the most appropriate HIDS type depends
on the deployment context – especially in environments
like SONiC-based NOS where modular, real-time analysis
is essential.

Comparative Analysis of HIDS Detection Approaches

Criteria Misuse-based
detection

Anomaly-
based

detection

Hybrid
detection

Detection
Method

Pattern
matching with
known attack

signatures

Identifies
deviations

from
established

normal
behavior

Combines
signature and

anomaly
methods

Accuracy

High
precision for

known
attacks; low

false positives

Can detect
novel

attacks but
higher false

positives

Balances
precision and

recall

Zero-Day
Attack

Detection

Limited
(cannot detect

unknown
threats)

Capable
(learns new
behaviors)

Strong
(leverages

both detection
paths)

Perfor-
mance

overhead

Low to
moderate

(dependent on
signature DB

size)

High (real-
time

statistical /
ML compu-

tations)

Moderate to
high

(depending on
implemen-

tation)

Data
require-

ment

Signature
database

Clean and
complete

training data

Requires both:
clean baseline

+ updated
signature sets

III. SCOPE OF WORK AND OBJECTIVES
This paper investigates the types and methodologies

of Host Intrusion Detection Systems (HIDS), focusing on
their relevance and adaptability within Network Operating
Systems (NOS). The study explores the specific chal-
lenges of applying HIDS in the context of modular,

Enhancing Host Intrusion Detection Systems for Linux Based Network Operating Systems 56

container-based NOS environments, with SONiC selected
as a representative open-source example. It examines how
traditional HIDS approaches such as signature-based,
anomaly-based, and hybrid detection align with the
architectural and operational demands of modern NOS
platforms. Particular attention is given to identifying
which components and data sources within SONiC, are
most suitable for intrusion monitoring. The research
further outlines the key considerations for integrating
HIDS into open-source NOS architectures and presents a
conceptual framework to support this integration.
Ultimately, the work aims to clarify the requirements and
opportunities for enhancing security in disaggregated
network systems through tailored HIDS strategies.

IV. NETWORK OS ARCHITECTURE
Since the beginning of the networking industry,

routing and switching devices have been confined to
tightly integrated hardware and software components.

B Manufacturers offer closed-source proprietary
stacks, limiting network operators from employing
customized features, as a result impending innovation.
This bundled approach proves expensive, time-con-
suming, and non-scalable, as device modifications ne-
cessitate vendor intervention. Consequently, the industry
has embraced the production of white-box switches and
the development of Network Operating Systems (NOSs)

that accommodate multiple vendors and Application
Specific Integrated Circuits (ASICs). This approach,
known as “disaggregated”, involves the separation of
software and hardware, allowing vendors’ switching
silicon (e. g., Broadcom) to be compatible with various
NOS.

The range of available Network Operating Systems
(NOS) is expanding quickly as a result of a competition-
driven innovation race which enables organizations to
choose the best option to match their use case. Classic,
proprietary NOS solutions come with license fees but
promise reliable support and new features to be added by
the vendor. With this approach, users rely on the vendor’s
roadmap for innovation within the product and have a
little to no control over its functionality.

The separation of hardware and software in white-
box switches has accelerated the development and
maintenance of open-source network operating systems
(NOS). As a result, production-ready solutions like
SONiC (Software for Open Networking in the Cloud) and
the Dent OS have gained traction in the NOS market. By
adopting a whitebox model with an open-source NOS,
organizations can take advantage of network disag-
gregation helping lower expenditures on system
integration and eliminate costly software licensing fees.

SONiC – Software for Open Networking in the
Cloud – represents a classic approach to network

High level SONiC design

Bohdan Havano, Andriy Dobush 57

operating systems. Created by Microsoft for its Azure data
centers in 2016, it is based on Linux distributive Debian
and consists of kernel patches, device drivers, utilities, and
user space applications. SONiC adopted Docker contai-
ners to successfully address NOS component packaging
issues. Currently, this NOS runs on nearly all ASICs with
switches available from most equipment vendors. In 2022,
SONiC was moved to the Linux Foundation – a center of
gravity for the larger open-source community, ensuring
the next level of its development and support.

SONiC architecture is described in [5]. It is a Linux-
based open source NOS developed by Microsoft. It offers
a full-suite of network functionality, like BGP and Remote
Direct Memory Access (RDMA) and runs on switches
from multiple vendors and ASICs

In [6] SONiC was successfully tested not only as
data center-oriented NOS but also as NOS that can be
widely used in campus network. Although open source
NOSs and white-box switches are mainly targeted to large
data centers, they have strong potentials to replace closed
source proprietary switches used in campus networks.

SONiC consists of several modules that exist either
in docker containers or in the Linux-host system itself. A
container is a lightweight, standalone, executable package
of software that contains the code, runtime, system tools,
system libraries, and settings needed to execute the
application. The high-level architecture of SONiC is
shown in Fig. 1, where it operates in the user space. Each
component in SONiC handles a specific job, such as
relaying the DHCP requests, handling Link Layer
Discovery Protocol (LLDP) functionalities, providing
Command Line Interface (CLI) and system configuration
capabilities, and running FRR or Quagga routing stacks.

The architecture of the SONiC system consists of
various modules that interact through a centralized and
scalable infrastructure. This infrastructure relies on a
redis-database engine, which is a key-value database used
to provide a language-independent interface, ensure data
persistence, enable replication, and facilitate multi-process
communication among all SONiC subsystems. By
leveraging the publisher / subscriber messaging paradigm
provided by the redis-engine infrastructure, applications
can subscribe only to the data views they need, thus
avoiding implementation details that are irrelevant to their
functionality.

SONiC adopts a strategy of placing each module in
independent docker containers to maintain high cohesion
among semantically related components while reducing
coupling between disparate ones. Each of these
components is designed to be entirely independent of the
platform-specific details required to interact with lower-
layer abstractions.

Currently, SONiC divides its main functional com-
ponents into the following docker containers: dhcp-relay,
pmon, snmp, lldp, bgp, teamd, database, swss, syncd. Still
its possible to extend SONiC functionality using external
prepared docker images. Figure 1 displays from a high-
level view of the functionality enclosed within each
docker-container, and how these containers interact

among themselves. The architecture of SONiC is designed
to be modular, scalable, and flexible to meet the
requirements of modern cloud-scale networks. A high-
level overview of its architecture contains of next items:
Linux kernel, Switch Abstraction Interface (SAI), SWSS
(SONiC Web Service), Database (REDIS), ASIC-specific
Components, Platform-specific Components, Containe-
rized Services and Open-source Software Stack. SONiC is
built on top of a Linux kernel, leveraging its stability,
performance, and vast ecosystem of drivers and tools.

Switch Abstraction Interface (SAI): SONiC utilizes
SAI, which is a standardized API (Application
Programming Interface) for programming network ASICs
(Application-Specific Integrated Circuits). SAI abstracts
the underlying hardware-specific functionalities, enabling
SONiC to work with a variety of network hardware
platforms.

SWSS (SONiC Web Services): SWSS provides a set
of REST APIs for managing and configuring network
switches. It acts as a bridge between the SONiC software
stack and external management applications, allowing
operators to interact with SONiC programmatically.

SONiC uses a Redis database to store network
configuration and state information. This database is
accessed by various components within SONiC to retrieve
and update network settings dynamically.

ASIC-specific Components: SONiC includes ASIC-
specific components that interface with the underlying
hardware ASICs. These components translate high-level
network configuration commands into ASIC-specific
instructions and handle tasks such as packet forwarding,
ACL (Access Control List) processing, and QoS (Quality
of Service) enforcement.

Platform-specific Components: SONiC includes
platform-specific components responsible for managing
hardware resources such as fans, power supplies, and
temperature sensors. These components ensure the proper
functioning and monitoring of the underlying hardware
infrastructure.

Containerized Services: SONiC adopts a conta-
inerized approach for running various network services
and applications. Services such as routing protocols (e. g.,
BGP, OSPF) and monitoring tools (e. g., SNMP, tele-
metry) are packaged as containers, providing isolation,
scalability, and ease of deployment.

Open-source Software Stack: SONiC incorporates
various open-source software components for networking
functionalities, including FRRouting (FRR), Quagga, and
OpenSwitch. These software packages provide routing,
switching, and other networking capabilities within the
SONiC ecosystem.

Overall, SONiC's architecture emphasizes modularity,
standardization, and openness, enabling interoperability
across diverse hardware platforms and facilitating the
development of innovative network solutions for cloud-
scale environments. From listed items there are vendor
specifics items: SAI, ASIC and Platform specifics, which
may vary from vendor to vendor. On other hand common
items should be monitored as part of host intrusion

Enhancing Host Intrusion Detection Systems for Linux Based Network Operating Systems 58

detection system: Containerized Services, Open-source
Software Stack, Database, SWSS, SAI, Linux Kernel.

V. SONIC NOS PROFILE FOR HOST INTRUSSION
DETECTION SYSTEM

 To construct a machine learning (ML) profile tailored
for a Host Intrusion Detection System (HIDS) within a
SONiC-based architecture, it is critical to leverage telemetry
and host-level data sources that conventional HIDS often
overlook. The key data categories informing this enhanced
profile include: network telemetry, hardware metrics,
container activity logs, configuration changes, inter-container
communication, Redis database activity, threat intelligence
feeds, and adversarial behavior patterns.
 Switch hardware metrics like CPU and memory
usage, or interface errors, help identify infrastructure-level
threats. Container logs from routing daemons or
monitoring agents are analyzed for suspicious executions
or resource spikes, while configuration change monitoring
targets unauthorized edits to ACLs or routing settings.
 Inter-container communication is scrutinized for
abnormal lateral movement or C2 behavior across
containers. The Redis database, a core SONiC component,
is observed for irregular queries or tampering. Addi-
tionally, integrating external threat intelligence enriches
the detection pipeline by correlating SONiC-specific
behavior with known indicators of compromise. Lastly,
adversarial modeling trains the ML system to recognize
evasive techniques that mimic legitimate patterns to
bypass detection.
 Together, these sources enable the development of a
robust, SONiC-aware HIDS capable of intelligent, real-time
response to complex threats in cloud-scale environments.

VI. CONCLUSION
Network infrastructures increasingly adopt distri-

buted and modular architectures powered by Network
Operating Systems. Traditional HIDS approaches must be
adapted to meet new challenges. This article examined the
application of host intrusion detection system within
network operating systems, with a particular focus on
SONiC, an open-source network operating system
designed for disaggregated network hardware. The paper
analyzed SONiC’s modular architecture and proposed an
enhanced host intrusion detection systems profiling appro-

ach that incorporated telemetry data, container logs,
configuration monitoring, and configuration activity.
These elements formed the basis for intelligent, machine
learning-driven threat detection tailored to modern
networked environments. The study highlights the need
for integrated, adaptive HIDS solutions capable of
addressing the complexity and scale of today’s cloud-
native systems.

References
[1] Satilmiş, H., Akleylek, S., & Tok, Z. Y. (2024). A

systematic literature review on host-based intrusion
detection systems. Ieee Access, 12, 27237–27266. DOI:
https://doi.org/10.1109/ACCESS.2024.3367004

[2] Liu, M., Xue, Z., Xu, X., Zhong, C., & Chen, J. (2018).
Host-based intrusion detection system with system calls:
Review and future trends. ACM computing surveys
(CSUR), 51(5), 1-36. DOI: https://doi.org/10.1145/3214304

[3] Ou, Y. J., Lin, Y., & Zhang, Y. (2010, April). The design
and implementation of host-based intrusion detection
system. In 2010 third international symposium on intelligent
information technology and security informatics, 595–598.
IEEE. DOI: https://doi.org/10.1109/IITSI.2010.127

[4] Jose, S., Malathi, D., Reddy, B., & Jayaseeli, D. (2018,
April). A survey on anomaly based host intrusion detection
system. In Journal of Physics: Conference Series (Vol.
1000, p. 012049). IOP Publishing. DOI: https://doi.org/
10.1088/1742-6596/1000/1/012049.

[5] SONiC Network OS architecture document. (2025).
[Electronic resource]. Available: https://github.com/sonic-
net/sonic/wiki/architecture.

[6] AlSabeh, A., Kfoury, E., Crichigno, J., & Bou-Harb, E.
(2020, July). Leveraging sonic functionalities in
disaggregated network switches. In 2020 43rd International
Conference on Telecommunications and Signal Processing
(TSP) (pp. 457-460). IEEE. DOI: https://doi.org/
10.1109/TSP49548.2020.9163508

[7] Ozkan-Okay, M., Samet, R., Aslan, Ö., & Gupta, D. (2021).
A comprehensive systematic literature review on intrusion
detection systems. IEEE Access, 9, 157727-157760. DOI:
https://doi.org/10.1109/ACCESS.2021.3129336.

[8] Joraviya, N., Gohil, B. N., & Rao, U. P. (2024). Ab-HIDS:
An anomaly-based host intrusion detection system using
frequency of N-gram system call features and ensemble
learning for containerized environment. Concurrency and
Computation: Practice and Experience, 36(23), e8249. DOI:
https://doi.org/10.1002/cpe.8249

Bohdan Havano was born in
1994 in Sambir, Ukraine. He
received the B.S. degree in co-
mputer engineering at Lviv Poly-
technic National University in
2015 and M.S degree in system
programming at Lviv Polytechnic
National University in 2016. He
has been doing scientific and
research work since 2017. His
research interests include archi-
tecture and data protection in
cyber-physical systems.

Andriy Dobush obtained his
master’s degree in computer engi-
neering, specializing in Computer
Systems and Networks, at Lviv
Polytechnic National University in
2010. Research interests include
security in network operating
systems.

