
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

QUANTUM-INSPIRED COMPUTING: COMPARSION
OF VARIANTS OF SHOR’S ALGORITHM

Volodymyr Pavlenko, Valerii Hlukhov

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine
Authors’ e-mails: volodymyr.v.pavlenko@lpnu.ua, valerii.s.hlukhov@lpnu.ua

https://doi.org/10.23939/acps2025.01.071

Submitted on 16.03.2025

© Pavlenko V., Hlukhov V., 2025

Abstract: This study explores the theme of quantum-
inspired computing, specifically the different variations of
Shor’s algorithm. The focus of this article is on leveraging
quantum computing’s approach to explore new ways to
solve complex problems more efficiently than classical
methods. Using the Microsoft Azure Quantum SDK, we
have simulated variant of Shor's algorithm to investigate its
effectiveness in solving complex problems more efficiently
than traditional methods. Although variant has
demonstrated good potential for translating quantum
principles to classical algorithms, it is not practical in terms
of efficiency or scalability. It is relatively slow, highlighting
its limitations in application. Nevertheless, it offers a
valuable example of quantum-inspired algorithm design by
reducing quantum complexity and introducing novel
classical approaches.

Index terms: Shor’s algorithm, Microsoft Azure Quan-
tum SDK, Quantum-inspired algorithms, Quantum-ins-
pired cryptography, Quantum-inspired efficiency1

I. INTRODUCTION
Quantum computing represents a significant leap

forward in our ability to solve complex problems that
classical computers struggle with. At the heart of this
advancement is Shor’s algorithm [1], renowned for its ability
to factor large numbers efficiently – a process critical to
cryptography and secure digital communication.

Recent advancements in quantum-inspired computing
signify a pivotal shift in computational capabilities, drawing
from the principles of quantum mechanics to enhance
classical computing frameworks [2]. Notably, quantum-
inspired algorithms have demonstrated substantial impro-
vements in machine learning efficiency, facilitating faster
data processing and analysis [3]. These advancements extend
to practical applications such as optimization problems in
global financial markets and the potential enhancement of
future 6G communication networks [4].

Furthermore, the application of quantum-inspired
methods in drug discovery and material science promises to

1 The article uses materials and results obtained by the authors

during the research project "Intelligent Methods and Tools for
Designing Modules for Autonomous Cyber-Physical Systems" state
registration number 0124U002340 dated 09.03.2024. This project is
conducted at the Department of Electronic Computing Machines of the
Institute of Computer Technologies, Automation, and Metrology of the
Lviv Polytechnic National University from 2024 to 2028.

accelerate the development of new therapeutics and materials
through more effective molecular simulations [5].

The variation of Shor’s algorithm [6] is a nuanced
adaptation that explores a new approach to the usage of
quantum Shor’s algorithms in quantum-inspired systems [2].
Variation introduces a quantum-inspired methodology that
enhances the efficiency of prime factorization, a key
operation in encryption and digital security.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Traffic Optimization: genetic algorithms have shown
promise in addressing complex path-finding and scheduling
challenges in traffic flow. Quantum-inspired genetic algo-
rithms, which integrate principles from quantum computing
to enhance search and optimization capabilities, have been
successfully applied in various scenarios. For instance, Nara-
yanan and Moore demonstrated the potential of quantum-
inspired genetic algorithms to improve evolutionary com-
putation techniques [7]. Similarly, Wang and Li developed a
hybrid quantum-inspired genetic algorithm specifically desig-
ned for flow shop scheduling, illustrating its effectiveness in
managing combinatorial optimization problems, which could
be applicable to optimizing traffic flow paths [8].

Supply Chain Management: Quantum-inspired algori-
thms have been utilized to optimize supply chain operations,
including logistics and warehouse management [9]. Com-
panies like BMW have explored quantum-inspired solutions
to solve complex logistics problems, such as the routes
optimization of their supply chain to minimize costs and
improve efficiency [10].

Portfolio Optimization: Quantum-inspired computing
has been applied in the finance sector to optimize investment
portfolios, balancing risk and return in a way that is
computationally efficient and provides better outcomes than
classical algorithms. Companies like Barclays have explored
quantum-inspired techniques to enhance their portfolio
optimization processes [11].

Molecular Simulation: Quantum-inspired algorithms
are used to simulate the properties of materials [5] at the
molecular level, which is essential for discovering new
materials and drugs. These simulations can predict material
behaviors under various conditions, helping in the design of
new drugs or materials with desired properties more
efficiently than traditional methods.

Volodymyr Pavlenko, Valerii Hlukhov 72

Feature Selection: Quantum-inspired computing has
been used to enhance machine learning models by optimizing
the feature selection process [12]. This involves selecting the
most relevant features from large datasets to improve the
accuracy of machine learning models while reducing
computational complexity.

Data Clustering: Quantum-inspired algorithms have
been applied to data clustering tasks, such as customer
segmentation in marketing. These algorithms can find the
optimal grouping of data points more efficiently than clas-
sical methods, enabling businesses to target their marketing
strategies more effectively [10].

Power Grid Optimization: In the energy sector,
quantum-inspired computing has been used to optimize the
operation of power grids [13], including the efficient distri-
bution of renewable energy sources. This helps minimize
energy loss and ensures the stability of the power supply
across the grid.

These examples illustrate the versatility and potential of
quantum-inspired computing across various industries. By
applying principles of quantum mechanics to classical
computing, quantum-inspired technologies provide solutions
to problems that were previously intractable or highly
resource-intensive [10].

III. SCOPE OF WORK AND OBJECTIVES

The purpose of this work is to explore the potential for
simplifying the quantum components of quantum algorithms,
leveraging the Microsoft Azure Quantum SDK and Q#
simulation of the variant of Shor’s algorithm [6]. By focusing
on reducing the complexity of quantum subroutines, this
study investigates the feasibility of creating quantum-inspired
algorithms that retain essential functionality while improving
accessibility and practical implementation.

This article demonstrates how simplifying quantum
operations can inspire classical algorithm design, aiming to
establish a proof-of-concept for translating quantum
principles into classical computing. By implementing variant
of Shor’s algorithm [6], we seek to highlight the potential of
such approaches for advancing quantum-inspired metho-
dologies, particularly for complex problems like prime
factorization.

Additionally, we touch on the potential role of Field-
Programmable Gate Array (FPGA)-based platforms in
executing these simplified algorithms. As indicated [6], there
is a viable path for the application of variant [6] within the
domain of quantum-inspired computing. This approach could
leverage the adaptability and efficiency of digital quantum
coprocessors, offering a practical framework for executing
quantum algorithms in a more accessible manner.

IV. VARIANT OF SHOR’S ALGORITHM
The variant [6] significantly simplifies the quantum part

of Shor’s algorithm Fig. 1 by compiling the QFT part into 2
qubits subroutine. Original Shor’s algorithm:

Fig. 1. Flow Chart of Shor’s algorithm

Fig. 2. Flow Chart of Extended Euclidean Algorithm

Quantum-Inspired Computing: Comparison of Variants of Shor’s Algorithm 73

To factor an integer N, the following procedure is
applied.

Firstly, a random integer a is selected such that it is less
than N but greater than 1.

Next, the Greatest Common Divisor (GCD) of a and N
is computed using Euclidean algorithm (Fig. 2). If the GCD
is not 1, it is a non-trivial factor of N.

If the GCD is 1, a quantum state is prepared, and a
Quantum Fourier Transform (QFT) is performed. In this
variation [6], the period r is assumed to be r = 2.

After the QFT, the quantum state is measured. The
measurement yields a value that is, with high probability,
related to the period r of a modulo N.

Finally, post-processing is carried out. The GCD-based
method [6] algorithm to extract factors of is used to derive
factors of N from the measurement result. If no factors are
obtained, the process is repeated with a new random a.

The flow diagram of Shor’s algorithm outlines the key
steps of executing Fig. 1.

The thing to understand about approach [6] is that the
quadratic residue a, that it is getting us to compute, is the
same a that Shor’s algorithm is finding by using period-
finding against a random base g. When we set g = a, we get
an execution of Shor’s algorithm where it computes that this
g’s period is 2, and returns as the quadratic residue to
use for factoring.

A sequence diagram of variation [6] is shown in Fig. 3.

Fig. 3. Flow Chart of variant of Shor’s algorithm

So, modification [6] (Fig. 3) focuses on optimizing
the process by ensuring the period r is set to 2. It
significantly simplifies the quantum circuit and reduce the
overall resource requirements, such as the number of
qubits. This adaptation allows for efficient implementation
of Shor’s algorithm on quantum-inspired computing
platforms like FPGA quantum-inspired coprocessors [14].

A. PREPARING SIMULATION MODEL
For implementation, we are using Microsoft Azure

Quantum SDK and language Q#. The program begins
with setting up the value N. Then we perform the
algorithm that is implemented by state machine (Fig. 3)
mentioned above. Key steps include (the factorization
below is done for test number 16837 generated by
multiplying two prime numbers 113 and 149):

First step of this modification is to make a validation
[6]. This part requires to use of Q# capabilities of
simulation of qubits to generate coherent qubits, bring one
of them in the state of a quantum superposition (using
Hadamard gate), and after that perform CNOT (Controlled
NOT) gate to provide their entanglement. The concrete
quantum schema you can see in Fig. 4.

There is a base state |+⟩ that can be described as . In the circuit, the ∣+⟩ acts as the control qubit
input for controlled unitary operations, which are essential
for creating the modular exponentiation steps in Shor's
algorithm.

Fig. 4. The quantum circuit for compiled Shor’s algorithm

It is important to know that the modular
exponentiation step of Shor’s algorithm in variant [6] is a
CNOT gate and the Fourier transform part is a Hadamard
gate [6] Q# code of the simulated operation:
operation ValidateAUsingQuantumSubroutine(a : Int, N :
Int, r : Int) : Result {
 use qubits = Qubit[2];

 // Prepare qubits
 H(qubits[0]);
 CNOT(qubits[0], qubits[1]);

 // Measurement could be used to validate assumptions
 let measurement = M(qubits[0]);

 ResetAll(qubits);
 return measurement;
}

The quantum aspect in approach [6] to factoring
large numbers using a compiled variant [6] of Shor’s

Volodymyr Pavlenko, Valerii Hlukhov 74

algorithm is largely for demonstration rather than practical
necessity. It showcases how minimal quantum resources
can still mimic Shor’s algorithm [2].

The core of the algorithm involves a combination of
classical and quantum steps, with the latter simulated for
this demonstration. The quantum portion of the algorithm,
while not executed on a quantum computer, is represented
with quantum gates and measurements in a simulated
environment. This approach allows for the exploration of
the algorithm’s principles and potential without the need
for a physical quantum computing platform.

After the validation is complete, it’s needed to have
classical Post-Processing:
let factor = MaxI(
 GreatestCommonDivisorI(halfPower - 1, modulus),
 GreatestCommonDivisorI(halfPower + 1, modulus)
);

if (factor != 1) and (factor != modulus) {
 Message($"Found factor={factor}");
 return (true, (factor, modulus/factor));
}

return (false, (1, 1));

B. TIME AND SPACE COMPLEXITY
Let’s evaluate the most significant parts of the

created implementation and make an assumption about its
time and space complexity using O(n) notation, where n –
number of input bits and N – is an actual number.

Finding of a choosing a base a that satisfies ≡ 1 by computing modular inverses p and q
using Extended GCD. The algorithm runs for (log(min(,))) [6].

So, in terms of input bits count, using the Extended
Euclidean Algorithm takes () time.

During finding a process GCD are done from 2 to N,
so N-1 times. Iterating from 2 to N is (2).

Overall routine complexity: O(2 ⋅ n).
GCD calculations after a is found: for a given a,

calculate gcd(a − 1, N)and gcd(a + 1, N) using the
Euclidean Algorithm; each GCD computation has a time
complexity of O(n); overall step complexity: ().

The total time complexity combines the complexities
of GCD, and iterations: (2 ⋅). Best case complexity
is based on the chance to find a on the first iteration, so ().

This estimation (Table 1) indicates that variant [6] is
not suitable for real-world usage due to its inefficiency
and exponential time complexity for larger inputs.

According to classical implementation of Shor’s
algorithm (Table 2), in terms of bits n we can estimate that
complexity is: classical = ⋅ / () / . (1)

So, rough estimation of time complexity for this
variant will be 2 / .

Table 1

Big O notation complexity
 Best case Worst case

Time
complexity

 (n) O(2 ⋅ n)

Space
complexity

O(1) O(1)

Table 2

Comparing variant
and Classical Shor’s algorithm implementation

 Variant [6]
implementation

Classical
simulation

Time
complexity

O(2 ⋅ n) 2 /

When you simulate Shor's algorithm classically,

there is no more efficient way to do it than computing
every term of the wave function in the computational
basis. So, we can see that variant [6] implemented in this
research is worth than modern classical simulation of
Shor’s algorithm.

C. SIMULATION
The experiment will utilize three distinct semiprime

numbers as test cases. Each number represents a different
scale of challenge for the algorithm, ranging from
relatively small numbers to larger integers that approach
the sizes used in cryptographic applications.

The process involves selecting an appropriate
auxiliary number a for each semiprime, which is crucial
for the success of the algorithm. This choice is guided by
the requirement that a and the semiprime share no
common factors other than one, a condition that is
necessary for the subsequent steps of the algorithm to
yield meaningful results.

The semiprimes chosen for this experiment serve as
test cases to evaluate the algorithm across a spectrum of
complexities. These test cases are detailed in Table 3 and
include three semiprime numbers of varying sizes:

• N1=1843=19⋅97,
• N2=16837=113⋅149,
• N3=20373811=5449⋅3739.
• The computation times have not been included

in the Table 3 because the Q# and Microsoft Quantum
Development Kit (QDK) tools utilized for this work do
not provide functionality for precise time measurement.
Furthermore, simulating quantum algorithms on classical
hardware, as is the case with Q# and QDK, is not
appropriate for factoring large numbers.

• The outcomes of the simulation highlight that,
while variant of Shor’s algorithm [6] is not practical for
real-world applications due to its inefficiency and slow
execution, it serves as an excellent example of how
quantum algorithms can inspire classical approaches. For
each test case, the algorithm successfully identifies a
suitable and deduces the prime factors of the

Quantum-Inspired Computing: Comparison of Variants of Shor’s Algorithm 75

semiprime, demonstrating its conceptual validity and
showcasing the potential of simplifying quantum
elements to create innovative, quantum-inspired
algorithms (Table 3).

Table 3

Simulation results
Number Logs

N1 Message: *** Factoring 1843, attempt 1.
Message: Starting searching needed ‘a’ for
N=1843
Message: Found ‘a’=96
Message: Assume that period=2.Message:
Found factor=97
Message: Found factorization 1843 = 97 * 19
Result: “(97, 19)”

N2 Message: *** Factoring 16837, attempt 1.
Message: Starting searching needed ‘a’ for
N=16837
Message: Found ‘a’=6555
Message: Assume that period=2.Message:
Found factor=149Message: Found factorization
16837 = 149 * 113
Result: “(149, 113)”

N3 Message: *** Factoring 20373811, attempt 1.
Message: Starting searching needed ‘a’ for
N=20373811
Message: Found ‘a’=9388628
Message: Assume that period=2.
Message: Found factor=5449
Message: Found factorization 20373811 =
= 5449 * 3739
Result: “(5449, 3739)”

This demonstrates that even limited or adapted

versions of quantum algorithms can provide valuable
insights, leading to the development of practical methods
that leverage quantum concepts without requiring full
quantum computation capabilities.

V. CONCLUSION
This study highlighted the transformative potential

of quantum-inspired computing, particularly in fields like
cryptography that rely on computational hardness
assumptions, using variant [6] as a key example. While
the simulations presented were simplified and failed to
reflect the full complexity of quantum computation, they
provided a valuable proof of concept for adapting
quantum algorithms to classical problems.

The obtained results demonstrated algorithm’s
complexity equal () in the best cases and (2 ⋅) for the worst cases. We can observe that
variant [6] implemented in this research is worth than
modern classical simulation of Shor’s algorithm, but could
be used for demonstration purposes to show how quantum
algorithms could be transformed to theirs’s classical
variations.

While the practical application of the variant [6] was
being limited by its high time complexity and scalability
challenges, it successfully demonstrated how core

concepts from quantum computing could influence
classical algorithm design. Future research directions
include optimizing the classical parts of the algorithm,
exploring hardware accelerations via specialized
architectures, and investigating more advanced quantum-
inspired techniques that could close the gap between pure
quantum and classical solutions.

Ultimately, the study confirms that even simplified
models of quantum algorithms offer significant insights
into the broader field of quantum-inspired computing,
laying the groundwork for future innovations in
cryptography, optimization, and beyond. By showcasing
how quantum principles can be translated into classical
operations, such approaches may foster the development
of hybrid algorithms, promoting gradual integration of
quantum computing concepts into practical applications
before fully quantum hardware becomes widely available.

References
[1] Willsch, D., Willsch, M., Jin, F., De Raedt, H., and

Michielsen, K., (2023). Large-Scale Simulation of Shor’s
Quantum Factoring Algorithm. Mathematics, 11(19), 4222.
DOI: https://doi.org/10.3390/math11194222.

[2] Hlukhov, V., (2021). Implementation of Shor’s Algorithm in
a Digital Quantum Coprocessor. Proceedings of the 2nd
International Conference on Intellectual Systems and
Information Technologies (ISIT 2021), CEUR Workshop
Proceedings, Vol. 3126, pp. 15–23. Available at:
https://ceur-ws.org/Vol-3126/paper2.pdf.

[3] Huynh, L., Hong, J., Mian, A., Suzuki, H., Wu, Y., &
Camtepe, S. (2023). Quantum-inspired machine learning: a
survey. arXiv preprint arXiv:2308.11269. DOI:
https://doi.org/10.48550/arXiv.2308.11269.

[4] Duong, T. Q., Ansere, J. A., Narottama, B., Sharma, V.,
Dobre, O. A., & Shin, H. (2022). Quantum-inspired machine
learning for 6G: fundamentals, security, resource allocations,
challenges, and future research directions. IEEE open
journal of vehicular technology, 3, 375-387. DOI:
https://doi.org/10.1109/OJVT.2022.3202876.

[5] Moussa, C., Wang, H., Araya-Polo, M., Bäck, T., & Dunj-
ko, V. (2023, September). Application of quantum-inspired
generative models to small molecular datasets. In 2023 IEEE
International Conference on Quantum Computing and
Engineering (QCE) (Vol. 1, pp. 342-348). IEEE. DOI:
https://doi.org/10.48550/arXiv.2304.10867.

[6] Smolin, J. A., Smith, G., & Vargo, A. (2013). Pretending to
factor large numbers on a quantum computer. arXiv preprint
arXiv:1301.7007. DOI: https://doi.org/10.48550/arXiv.
1301.7007

[7] Mansori, A. R., & Nguyeni, S. K. (2023). Quantum-Inspired
Genetic Algorithms for Combinatorial Optimization
Problems. Algorithm Asynchronous, 1(1), 16-23. DOI:
https://doi.org/10.61963/jaa.v1i1.47

[8] Zhu, H., Luo, N. and Li, X., (2021). A Quantum-Inspired
Cuckoo Co-Evolutionary Algorithm for No-Wait Flow Shop
Scheduling. IET Collaborative Intelligent Manufacturing,
3(2), 105-118. DOI: https://doi.org/10.1049/cim2.12002

[9] Silveira, L. R., Tanscheit, R., & Vellasco, M. (2017).
Quantum inspired evolutionary algorithm for ordering
problems. Expert Systems with Applications, 67, 71–83.
DOI: https://doi.org/10.1016/j.eswa.2016.08.067

[10] Arrazola, J. M., Delgado, A., Bardhan, B. R., & Lloyd, S.
(2019). Quantum-inspired algorithms in practice. arXiv

Volodymyr Pavlenko, Valerii Hlukhov 76

preprint arXiv:1905.10415. DOI: https://doi.org/10.48550/
arXiv.1905.10415

[11] Kuo, S. Y., Lai, Y. T., Jiang, Y. C., Chang, M. H.,
Wu, K. M., Chen, P. C., ... & Chou, Y. H. (2023,
July). Entanglement Local Search-Assisted Quantum-
Inspired Optimization for Portfolio Optimization in
G20 Markets. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation
(pp. 2232-2240). DOI: https://doi.org/ 10.1145/3583133.
3596370.

[12] Ram, P. K., Bhui, N., & Kuila, P. (2020, July). Gene
selection from high dimensionality of data based on
quantum inspired genetic algorithm. In 2020 11th
International Conference on Computing, Communication

and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
DOI: https://doi.org/10.1109/ICCCNT49239.2020.9225512

[13] Bertini, C., & Leporini, R. (2023). Quantum-inspired
applications for classification problems. Entropy, 25(3), 404.
DOI: https://doi.org/10.3390/e25030404

[14] Hlukhov, V. (2019). Implementing quantum Fourier
transform in a digital quantum coprocessor. Advances in
Cyber-Physical Systems: scientific journal, 1 (4), 2019, 4(1),
7-14. DOI: https://doi.org/10.23939/acps2019.01.006

[15] Fu, X.-Q., Bao, W.-S., Huang, H.-L., Li, T., Shi, J.-H.,
Wang, X., Zhang, S., and Li, F.-G., (2019). Realization of t-
bit semiclassical quantum Fourier transform on IBM’s
quantum cloud computer. Chinese Physics B, 28, 2, 020302.
DOI: https://doi.org/10.1088/1674-1056/28/2/020302

Volodymyr Pavlenko is a
Computer Engineer with a strong
experience in System Program-
ming, who is currently working a
Senior C++ developer. He comp-
leted his secondary education at
Talne Lyceum of Maths and
Economics from 2013 to 2017.
Following this, he pursued higher
education at Lviv Polytechnic Na-
tional University earning a Bache-

lor’s degree (2017-2021) and subsequently a Master’s degree
in Computer Engineering, specializing in System
Programming. Currently, he is further advancing his expertise
by working towards a Postgraduate degree in Computer
Engineering at the same institution.

Valerii Hlukhov is a
distinguished Doctor of Technical
Sciences and Professor at the De-
partment of Electronic Compu-
ting, Lviv Polytechnic National
University. He pursued postgra-
duate studies at the Institute of
Modeling Problems in Energy,
Kyiv (1988-1991). He defended
his candidate's thesis on mathe-
matical special computers for na-

vigation problems in 1991 and earned his Doctor of
Technical Sciences degree in 2013. Dr. Hlukhov 's career
includes extensive research and development in primary
information processing devices and cryptoprocessors.

