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Abstract: This study explores the theme of quantum-
inspired computing, specifically the different variations of 
Shor’s algorithm. The focus of this article is on leveraging 
quantum computing’s approach to explore new ways to 
solve complex problems more efficiently than classical 
methods. Using the Microsoft Azure Quantum SDK, we 
have simulated variant of Shor's algorithm to investigate its 
effectiveness in solving complex problems more efficiently 
than traditional methods. Although variant has 
demonstrated good potential for translating quantum 
principles to classical algorithms, it is not practical in terms 
of efficiency or scalability. It is relatively slow, highlighting 
its limitations in application. Nevertheless, it offers a 
valuable example of quantum-inspired algorithm design by 
reducing quantum complexity and introducing novel 
classical approaches.  

Index terms: Shor’s algorithm, Microsoft Azure Quan-
tum SDK, Quantum-inspired algorithms, Quantum-ins-
pired cryptography, Quantum-inspired efficiency1 

I. INTRODUCTION 
Quantum computing represents a significant leap 

forward in our ability to solve complex problems that 
classical computers struggle with. At the heart of this 
advancement is Shor’s algorithm [1], renowned for its ability 
to factor large numbers efficiently – a process critical to 
cryptography and secure digital communication. 

Recent advancements in quantum-inspired computing 
signify a pivotal shift in computational capabilities, drawing 
from the principles of quantum mechanics to enhance 
classical computing frameworks [2]. Notably, quantum-
inspired algorithms have demonstrated substantial impro-
vements in machine learning efficiency, facilitating faster 
data processing and analysis [3]. These advancements extend 
to practical applications such as optimization problems in 
global financial markets and the potential enhancement of 
future 6G communication networks [4]. 

Furthermore, the application of quantum-inspired 
methods in drug discovery and material science promises to 

                                                        
1 The article uses materials and results obtained by the authors 

during the research project "Intelligent Methods and Tools for 
Designing Modules for Autonomous Cyber-Physical Systems" state 
registration number 0124U002340 dated 09.03.2024. This project is 
conducted at the Department of Electronic Computing Machines of the 
Institute of Computer Technologies, Automation, and Metrology of the 
Lviv Polytechnic National University from 2024 to 2028. 

accelerate the development of new therapeutics and materials 
through more effective molecular simulations [5]. 

The variation of Shor’s algorithm [6] is a nuanced 
adaptation that explores a new approach to the usage of 
quantum Shor’s algorithms in quantum-inspired systems [2]. 
Variation introduces a quantum-inspired methodology that 
enhances the efficiency of prime factorization, a key 
operation in encryption and digital security. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Traffic Optimization: genetic algorithms have shown 
promise in addressing complex path-finding and scheduling 
challenges in traffic flow. Quantum-inspired genetic algo-
rithms, which integrate principles from quantum computing 
to enhance search and optimization capabilities, have been 
successfully applied in various scenarios. For instance, Nara-
yanan and Moore demonstrated the potential of quantum-
inspired genetic algorithms to improve evolutionary com-
putation techniques [7]. Similarly, Wang and Li developed a 
hybrid quantum-inspired genetic algorithm specifically desig-
ned for flow shop scheduling, illustrating its effectiveness in 
managing combinatorial optimization problems, which could 
be applicable to optimizing traffic flow paths [8]. 

Supply Chain Management: Quantum-inspired algori-
thms have been utilized to optimize supply chain operations, 
including logistics and warehouse management [9]. Com-
panies like BMW have explored quantum-inspired solutions 
to solve complex logistics problems, such as the routes 
optimization of their supply chain to minimize costs and 
improve efficiency [10]. 

Portfolio Optimization: Quantum-inspired computing 
has been applied in the finance sector to optimize investment 
portfolios, balancing risk and return in a way that is 
computationally efficient and provides better outcomes than 
classical algorithms. Companies like Barclays have explored 
quantum-inspired techniques to enhance their portfolio 
optimization processes [11]. 

Molecular Simulation: Quantum-inspired algorithms 
are used to simulate the properties of materials [5] at the 
molecular level, which is essential for discovering new 
materials and drugs. These simulations can predict material 
behaviors under various conditions, helping in the design of 
new drugs or materials with desired properties more 
efficiently than traditional methods. 
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Feature Selection: Quantum-inspired computing has 
been used to enhance machine learning models by optimizing 
the feature selection process [12]. This involves selecting the 
most relevant features from large datasets to improve the 
accuracy of machine learning models while reducing 
computational complexity. 

Data Clustering: Quantum-inspired algorithms have 
been applied to data clustering tasks, such as customer 
segmentation in marketing. These algorithms can find the 
optimal grouping of data points more efficiently than clas-
sical methods, enabling businesses to target their marketing 
strategies more effectively [10]. 

Power Grid Optimization: In the energy sector, 
quantum-inspired computing has been used to optimize the 
operation of power grids [13], including the efficient distri-
bution of renewable energy sources. This helps minimize 
energy loss and ensures the stability of the power supply 
across the grid. 

These examples illustrate the versatility and potential of 
quantum-inspired computing across various industries. By 
applying principles of quantum mechanics to classical 
computing, quantum-inspired technologies provide solutions 
to problems that were previously intractable or highly 
resource-intensive [10]. 

III. SCOPE OF WORK AND OBJECTIVES 

The purpose of this work is to explore the potential for 
simplifying the quantum components of quantum algorithms, 
leveraging the Microsoft Azure Quantum SDK and Q# 
simulation of the variant of Shor’s algorithm [6]. By focusing 
on reducing the complexity of quantum subroutines, this 
study investigates the feasibility of creating quantum-inspired 
algorithms that retain essential functionality while improving 
accessibility and practical implementation. 

This article demonstrates how simplifying quantum 
operations can inspire classical algorithm design, aiming to 
establish a proof-of-concept for translating quantum 
principles into classical computing. By implementing variant 
of Shor’s algorithm [6], we seek to highlight the potential of 
such approaches for advancing quantum-inspired metho-
dologies, particularly for complex problems like prime 
factorization. 

Additionally, we touch on the potential role of Field-
Programmable Gate Array (FPGA)-based platforms in 
executing these simplified algorithms. As indicated [6], there 
is a viable path for the application of variant [6] within the 
domain of quantum-inspired computing. This approach could 
leverage the adaptability and efficiency of digital quantum 
coprocessors, offering a practical framework for executing 
quantum algorithms in a more accessible manner. 

IV. VARIANT OF SHOR’S ALGORITHM 
The variant [6] significantly simplifies the quantum part 

of Shor’s algorithm Fig. 1 by compiling the QFT part into 2 
qubits subroutine. Original Shor’s algorithm: 

 

Fig. 1. Flow Chart of Shor’s algorithm 

 

Fig. 2. Flow Chart of Extended Euclidean Algorithm 
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To factor an integer N, the following procedure is 
applied. 

Firstly, a random integer a is selected such that it is less 
than N but greater than 1.  

Next, the Greatest Common Divisor (GCD) of a and N 
is computed using Euclidean algorithm (Fig. 2). If the GCD 
is not 1, it is a non-trivial factor of N. 

If the GCD is 1, a quantum state is prepared, and a 
Quantum Fourier Transform (QFT) is performed. In this 
variation [6], the period r is assumed to be r = 2.  

After the QFT, the quantum state is measured. The 
measurement yields a value that is, with high probability, 
related to the period r of a modulo N. 

Finally, post-processing is carried out. The GCD-based 
method [6] algorithm to extract factors of is used to derive 
factors of N from the measurement result. If no factors are 
obtained, the process is repeated with a new random a. 

The flow diagram of Shor’s algorithm outlines the key 
steps of executing Fig. 1. 

The thing to understand about approach [6] is that the 
quadratic residue a, that it is getting us to compute, is the 
same a that Shor’s algorithm is finding by using period-
finding against a random base g. When we set g = a, we get 
an execution of Shor’s algorithm where it computes that this 
g’s period is 2, and returns  as the quadratic residue to 
use for factoring.  

A sequence diagram of variation [6] is shown in Fig. 3.  
 

 

Fig. 3. Flow Chart of variant of Shor’s algorithm 

So, modification [6] (Fig. 3) focuses on optimizing 
the process by ensuring the period r is set to 2. It 
significantly simplifies the quantum circuit and reduce the 
overall resource requirements, such as the number of 
qubits. This adaptation allows for efficient implementation 
of Shor’s algorithm on quantum-inspired computing 
platforms like FPGA quantum-inspired coprocessors [14]. 

A. PREPARING SIMULATION MODEL 
For implementation, we are using Microsoft Azure 

Quantum SDK and language Q#. The program begins 
with setting up the value N. Then we perform the 
algorithm that is implemented by state machine (Fig. 3) 
mentioned above. Key steps include (the factorization 
below is done for test number 16837 generated by 
multiplying two prime numbers 113 and 149): 

First step of this modification is to make a validation 
[6]. This part requires to use of Q# capabilities of 
simulation of qubits to generate coherent qubits, bring one 
of them in the state of a quantum superposition (using 
Hadamard gate), and after that perform CNOT (Controlled 
NOT) gate to provide their entanglement. The concrete 
quantum schema you can see in Fig. 4.  

There is a base state |+⟩ that can be described as . In the circuit, the ∣+⟩ acts as the control qubit 
input for controlled unitary operations, which are essential 
for creating the modular exponentiation steps in Shor's 
algorithm. 

 

 

Fig. 4. The quantum circuit for compiled Shor’s algorithm 

It is important to know that the modular 
exponentiation step of Shor’s algorithm in variant [6] is a 
CNOT gate and the Fourier transform part is a Hadamard 
gate [6] Q# code of the simulated operation: 
operation ValidateAUsingQuantumSubroutine(a : Int, N : 
Int, r : Int) : Result { 
 use qubits = Qubit[2]; 
 
 // Prepare qubits 
 H(qubits[0]); 
 CNOT(qubits[0], qubits[1]); 
 
 // Measurement could be used to validate assumptions 
 let measurement = M(qubits[0]); 
 
 ResetAll(qubits); 
 return measurement; 
} 

The quantum aspect in approach [6] to factoring 
large numbers using a compiled variant [6] of Shor’s 
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algorithm is largely for demonstration rather than practical 
necessity. It showcases how minimal quantum resources 
can still mimic Shor’s algorithm [2]. 

The core of the algorithm involves a combination of 
classical and quantum steps, with the latter simulated for 
this demonstration. The quantum portion of the algorithm, 
while not executed on a quantum computer, is represented 
with quantum gates and measurements in a simulated 
environment. This approach allows for the exploration of 
the algorithm’s principles and potential without the need 
for a physical quantum computing platform. 

After the validation is complete, it’s needed to have 
classical Post-Processing: 
let factor = MaxI( 
 GreatestCommonDivisorI(halfPower - 1, modulus), 
 GreatestCommonDivisorI(halfPower + 1, modulus) 
); 
 
if (factor != 1) and (factor != modulus) { 
 Message($"Found factor={factor}"); 
 return (true, (factor, modulus/factor)); 
} 
 
return (false, (1, 1)); 

B. TIME AND SPACE COMPLEXITY 
Let’s evaluate the most significant parts of the 

created implementation and make an assumption about its 
time and space complexity using O(n) notation, where n – 
number of input bits and N – is an actual number. 

Finding of a choosing a base a that satisfies   ≡ 1     by computing modular inverses p  and q  
using Extended GCD. The algorithm runs for  (log(min( , ))) [6].  

So, in terms of input bits count, using the Extended 
Euclidean  Algorithm takes  (  ) time. 

During finding a process GCD are done from 2 to N, 
so N-1 times. Iterating from 2 to N is  (2 ). 

Overall routine complexity: O(2 ⋅ n ). 
GCD calculations after a is found: for a given a, 

calculate gcd(a − 1, N)and gcd(a + 1, N) using the 
Euclidean Algorithm; each GCD computation has a time 
complexity of O(n ); overall step complexity:  (  ). 

The total time complexity combines the complexities 
of GCD, and iterations:  (2 ⋅   ). Best case complexity 
is based on the chance to find a on the first iteration, so  (  ). 

This estimation (Table 1) indicates that variant [6] is 
not suitable for real-world usage due to its inefficiency 
and exponential time complexity for larger inputs. 

According to classical implementation of Shor’s 
algorithm (Table 2), in terms of bits n we can estimate that 
complexity is:  classical =     ⋅  / (    ) /  .                     (1) 

So, rough estimation of time complexity for this 
variant will be   2  /  . 

Table 1  

Big O notation complexity 
 Best case Worst case 

Time 
complexity 

 (n ) O(2 ⋅ n ) 

Space 
complexity 

O(1) O(1) 
 

Table 2  

Comparing variant  
and Classical Shor’s algorithm implementation 

 Variant [6] 
implementation 

Classical  
simulation 

Time 
complexity 

O(2 ⋅ n )   2  /   
 
When you simulate Shor's algorithm classically, 

there is no more efficient way to do it than computing 
every term of the wave function in the computational 
basis. So, we can see that variant [6] implemented in this 
research is worth than modern classical simulation of 
Shor’s algorithm. 

C. SIMULATION 
The experiment will utilize three distinct semiprime 

numbers as test cases. Each number represents a different 
scale of challenge for the algorithm, ranging from 
relatively small numbers to larger integers that approach 
the sizes used in cryptographic applications.  

The process involves selecting an appropriate 
auxiliary number a for each semiprime, which is crucial 
for the success of the algorithm. This choice is guided by 
the requirement that a and the semiprime share no 
common factors other than one, a condition that is 
necessary for the subsequent steps of the algorithm to 
yield meaningful results.  

The semiprimes chosen for this experiment serve as 
test cases to evaluate the algorithm across a spectrum of 
complexities. These test cases are detailed in Table 3 and 
include three semiprime numbers of varying sizes: 

• N1=1843=19⋅97, 
• N2=16837=113⋅149, 
• N3=20373811=5449⋅3739. 
• The computation times have not been included 

in the Table 3 because the Q# and Microsoft Quantum 
Development Kit (QDK) tools utilized for this work do 
not provide functionality for precise time measurement. 
Furthermore, simulating quantum algorithms on classical 
hardware, as is the case with Q# and QDK, is not 
appropriate for factoring large numbers.  

• The outcomes of the simulation highlight that, 
while variant of Shor’s algorithm [6] is not practical for 
real-world applications due to its inefficiency and slow 
execution, it serves as an excellent example of how 
quantum algorithms can inspire classical approaches. For 
each test case, the algorithm successfully identifies a 
suitable   and deduces the prime factors of the 
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semiprime, demonstrating its conceptual validity and 
showcasing the potential of simplifying quantum 
elements to create innovative, quantum-inspired 
algorithms (Table 3). 

 

Table 3 

Simulation results 
Number Logs 

N1 Message: *** Factoring 1843, attempt 1. 
Message: Starting searching needed ‘a’ for 
N=1843 
Message: Found ‘a’=96 
Message: Assume that period=2.Message: 
Found factor=97 
Message: Found factorization 1843 = 97 * 19 
Result: “(97, 19)” 

N2 Message: *** Factoring 16837, attempt 1. 
Message: Starting searching needed ‘a’ for 
N=16837 
Message: Found ‘a’=6555 
Message: Assume that period=2.Message: 
Found factor=149Message: Found factorization 
16837 = 149 * 113 
Result: “(149, 113)” 

N3 Message: *** Factoring 20373811, attempt 1. 
Message: Starting searching needed ‘a’ for 
N=20373811 
Message: Found ‘a’=9388628 
Message: Assume that period=2. 
Message: Found factor=5449 
Message: Found factorization 20373811 =  
= 5449 * 3739 
Result: “(5449, 3739)” 

 
This demonstrates that even limited or adapted 

versions of quantum algorithms can provide valuable 
insights, leading to the development of practical methods 
that leverage quantum concepts without requiring full 
quantum computation capabilities. 

V. CONCLUSION 
This study highlighted the transformative potential 

of quantum-inspired computing, particularly in fields like 
cryptography that rely on computational hardness 
assumptions, using variant [6] as a key example. While 
the simulations presented were simplified and failed to 
reflect the full complexity of quantum computation, they 
provided a valuable proof of concept for adapting 
quantum algorithms to classical problems. 

The obtained results demonstrated algorithm’s 
complexity equal  (  ) in the best cases and   (2 ⋅   ) for the worst cases. We can observe that 
variant [6] implemented in this research is worth than 
modern classical simulation of Shor’s algorithm, but could 
be used for demonstration purposes to show how quantum 
algorithms could be transformed to theirs’s classical 
variations. 

While the practical application of the variant [6] was 
being limited by its high time complexity and scalability 
challenges, it successfully demonstrated how core 

concepts from quantum computing could influence 
classical algorithm design. Future research directions 
include optimizing the classical parts of the algorithm, 
exploring hardware accelerations via specialized 
architectures, and investigating more advanced quantum-
inspired techniques that could close the gap between pure 
quantum and classical solutions. 

Ultimately, the study confirms that even simplified 
models of quantum algorithms offer significant insights 
into the broader field of quantum-inspired computing, 
laying the groundwork for future innovations in 
cryptography, optimization, and beyond. By showcasing 
how quantum principles can be translated into classical 
operations, such approaches may foster the development 
of hybrid algorithms, promoting gradual integration of 
quantum computing concepts into practical applications 
before fully quantum hardware becomes widely available. 
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