
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

MACHINE LEARNING MODEL DEVELOPMENT IN KUBEFLOW CLOUD-
NATIVE SYSTEMS

Yevhen Bershchanskyi, Oleksandr Stepanov

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
Authors’ e-mails: yevhen.v.bershchanskyi@lpnu.ua, oleksandr.v.stepanov@lpnu.ua

https://doi.org/10.23939/acps2025.01.083

Submitted on 10.04.2025

© Bershchanskyi Y., Stepanov O., 2025

Abstract: Building scalable and reliable machine learning
models is critical for cloud-native AI systems. Kubeflow
provides a robust framework for orchestrating model
development workflows. This article presents best practices
for ML model development in Kubeflow Cloud-Native Sys-
tems, with a focus on Azure Kubernetes Service environ-
ments. It explores strategies for optimizing cluster configu-
ration, designing modular and reproducible training pipe-
lines, and implementing effective model tracking and ver-
sioning processes. Real-world case studies highlight practical
applications of these techniques. The article further evaluates
results through system performance metrics and model
development outcomes and concludes by discussing lessons
learned and future trends in cloud-native ML system design.

Index terms: Kubeflow, ML model development, Kubeflow
pipelines, cloud-native ML best practices.

I. INTRODUCTION
Machine learning has become a cornerstone of

modern technological innovation, enabling breakthroughs
across industries such as healthcare, finance, manufac-
turing, and autonomous systems [1, 2]. As organizations
increasingly adopt AI-driven solutions, there is a growing
demand for scalable, reliable, and production-ready
Machine Learning (ML) systems capable of operating
efficiently in dynamic cloud-native environments. Cloud-
native architectures, built on Kubernetes and serverless
managed services, provide the flexibility, resiliency, and
scalability required to support these evolving AI agents
and workloads [3].

 Kubeflow offers a comprehensive platform for
orchestrating the end-to-end ML lifecycle in cloud-native
systems. It brings together powerful capabilities for data
management, experiment tracking, training orchestration,
and pipeline automation, enabling teams to design
modular, scalable, and reproducible workflows. Deployed
on Azure Kubernetes Service (AKS), Kubeflow integrates
seamlessly with Azure’s robust cloud-native services,
such as Azure Blob Storage, Azure Key Vault, and Azure
Monitor, enhancing operational efficiency, security, and
observability. Leveraging Kubernetes’ native features like
horizontal scaling [4], resource management, and con-
tainer orchestration, Kubeflow empowers organizations to
streamline their ML operations while maintaining the
necessary flexibility for innovation and experimentation.

While initial efforts often focus on the deployment
and configuration of Kubeflow in cloud environments,
achieving true operational excellence requires a shift
beyond infrastructure setup toward systematic best
practices in model development. Without structured
workflows, clear pipeline modularization, and consistent
experiment tracking, ML projects are at risk of becoming
brittle, unscalable, and difficult to maintain. Inefficient
resource utilization, lack of reproducibility, fragmented
data handling, and poor version control can introduce
technical debt and significantly delay production
deployments [5].

In the context of production-grade machine learning,
developing models effectively within Kubeflow demands
a disciplined approach: optimizing cluster environments,
securing and managing data pipelines, modularizing
training workflows for reusability, implementing robust
model tracking mechanisms, and maintaining strict
versioning throughout experimentation phases. These
practices not only enhance development speed but also
ensure maintainability, scalability, and compliance with
organizational standards and security policies.

Furthermore, the complexity of modern ML
workflows, such as distributed training, hyperparameter
tuning, and the management of multiple model iterations
highlights the need for well-defined development frame-
works that go beyond ad hoc scripting [6]. Kubeflow’s
capabilities must be complemented with deliberate
architectural and operational choices to fully realize its
potential for cloud-native AI development.

This article addresses the critical shift from high-level
system design to actionable development practices by
presenting a comprehensive set of best practices for ML
model development in Kubeflow Cloud-Native Systems on
Azure AKS. It explores environment configuration
strategies, secure and efficient data handling, reproducible
pipeline design, effective model tracking, and lessons
learned from real-world implementations. Through detailed
case studies and performance evaluations, the article
illustrates how structured model development within
Kubeflow can drive operational excellence, scalability, and
continuous innovation in AI systems. By focusing
specifically on the model development stage, it provides
engineering teams with a roadmap for building robust and
future-proof ML solutions in cloud-native ecosystems.

Machine Learning Model Development in Kubeflow Cloud-Native Systems 84

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Establishing a robust and secure environment is
foundational for reliable machine learning model
development in cloud-native systems. When deploying
Kubeflow on Azure Kubernetes Service, careful attention
must be given to cluster configuration, resource scaling,
namespace isolation, and identity-based access
management. These optimizations ensure that ML
pipelines operate efficiently, securely, and reproducibly in
production settings.

AKS provides a managed Kubernetes environment
that supports auto-scaling, GPU-based node pools, and
workload separation, all critical for ML tasks that involve
high compute or memory requirements. Best practices for
configuring AKS clusters for ML workloads include
isolating ML workloads using taints and tolerations, using
node pools for CPU and GPU separation, and applying
horizontal pod autoscaling (HPA) to dynamically adjust
compute resources based on pipeline demand [7].

Kubeflow deployment on AKS can be optimized by
following key architectural practices. High availability
(HA) is achieved by deploying Kubeflow components,
such as Katib, Pipelines, and Notebooks across multiple
zones with appropriate anti-affinity rules and stateful
storage configurations [8]. Namespace isolation is crucial
for multi-team environments, allowing separate teams to
manage independent pipelines, resources, and secrets
within isolated namespaces. This isolation can be further
reinforced by Kubernetes Role-Based Access Control
(RBAC), integrated with Azure Active Directory (AAD),
enabling fine-grained identity and role management across
the platform [9]. For example, different teams may have
read-only access to pipelines but full access to their own
training notebooks and model repositories.

Azure cloud-native services enhance Kubeflow’s
capabilities in secure data handling and observability.
Azure Blob Storage and Azure Data Lake Storage Gen2
serve as primary data repositories for model inputs,
intermediate results, and artifacts. These services offer
scalable, cost-efficient storage with native support for
hierarchical namespaces and parallel data access.
Furthermore, integrating Azure Monitor with AKS
clusters enables detailed tracking of pipeline resource
usage, container health, and model training metrics,
offering real-time visibility into system performance and
facilitating proactive maintenance.

Secure data access is a central concern in any ML
development workflow. Azure-managed identities can be
used to grant AKS workloads secure access to storage
accounts, databases, and other services without
hardcoding credentials. This identity-based access strategy
eliminates secret management overhead and enforces
least-privilege principles (Fig. 1). Within Kubeflow,
secure data pipelines can be built using metadata
annotations, Kubernetes secrets, and automated policies
that restrict access to specific datasets based on context
and user roles. Moreover, leveraging Kubeflow Metadata
allows tracking of dataset versions, lineage, and usage

history essential for experiment reproducibility and
governance. When combined with Azure Data Factory or
custom ETL components, these metadata capabilities
ensure that training pipelines consume verified and
auditable datasets [10].

Fig. 1. Kubeflow AKS security authorization diagram

Overall, establishing an optimized and secure
environment in AKS, enhanced by Azure-native services
and Kubeflow-specific configurations, provides a strong
foundation for consistent, scalable, and production-ready
model development. By integrating storage, access
management, monitoring, and metadata tracking, teams
can ensure that ML workflows are robust, reproducible,
and aligned with enterprise security standards.

This article addresses the challenges engineering teams
encounter when building scalable and efficient machine
learning workflows in cloud-native environments powered
by Kubeflow on Azure. Despite the maturity of
Kubernetes-based orchestration, many organizations
struggle with integrating distributed training, managing
secure data access, ensuring reproducibility, and
optimizing pipeline performance in production settings.

III. SCOPE OF WORK AND OBJECTIVES
This article investigates the design, development,

and optimization of data preparation and model training
workflows using Kubeflow in Azure-based cloud-native
AI environments. The central objective is to provide
engineering teams with actionable guidelines for building
scalable, modular, and reproducible machine learning
pipelines that can support dynamic and high-throughput
workloads in enterprise-grade systems.

The scope of work covers the complete lifecycle of
ML system development from initial data ingestion and
preprocessing to distributed model training and metadata
management implemented within the Kubeflow
framework on AKS. Specific focus areas include the
construction of modular Kubeflow Pipelines components,
orchestration of distributed training jobs, and handling
persistent volumes with Azure-native storage services to
support efficient training.

Critical to the objectives is the integration of
observability and performance monitoring through tools,
which ensure continuous feedback on pipeline execution
and resource utilization. The work also explores best
practices for model versioning, reproducibility, and
experiment tracking by aligning Kubeflow’s metadata
capabilities with external registries such as Azure ML and

Yevhen Bershchanskyi, Oleksandr Stepanov 85

MLflow, enabling seamless transition from experimen-
tation to production-readiness.

This study supports engineering teams in
establishing cloud-native development environments that
are robust, iterative, and transparent. By codifying proven
strategies and highlighting real-world case studies, the
article offers a foundation for scalable AI development
and continuous performance refinement in Kubernetes-
native infrastructures.

IV. MODEL DEVELOPMENT, TRAINING
PIPELINES, TRACKING, VERSIONING,

AND MANAGEMENT
Developing production-grade ML models in

Kubeflow requires more than just high-quality data, it also
demands modular, scalable, and maintainable training
workflows. When deployed on AKS, Kubeflow enables
end-to-end automation of model development and training
tasks while ensuring reproducibility and traceability
through robust metadata and versioning mechanisms.
Building modular and reusable Kubeflow Pipelines
components is fundamental to achieving scalable ML
development [11]. Each component should encapsulate a
single logical function, such as feature selection, model
training, hyperparameter tuning, or evaluation and leve-
rage containerized execution to ensure consistency across
environments (Fig. 2). It is a best practice to maintain a
centralized registry of validated pipeline components with
semantic versioning, enabling quick assembly of new
pipelines without redundant engineering effort.

Fig. 2. Modular Kubeflow pipeline architecture

Scaling ML model training often requires distributed
training orchestration. Kubeflow natively supports the use
of TFJob for TensorFlow and MPIJob for general purpose
distributed training, including PyTorch workloads [12].
TFJob manages the lifecycle of master and worker
replicas for synchronous or asynchronous training, while
MPIJob utilizes the MPI (Message Passing Interface)
protocol for collective communication. On AKS, it is
recommended to deploy GPU-enabled node pools with
autoscaling enabled, optimize Kubernetes resource
requests / limits, and use node selectors or taints to
efficiently allocate specialized hardware for distributed
workloads (Fig. 3).

Persistent storage is essential for handling training
datasets, model checkpoints, logs, and evaluation outputs.
Azure offers Azure Disks and Azure Files as reliable
storage backends, which can be seamlessly integrated into

AKS via Kubernetes Persistent Volumes (PVs) and
Persistent Volume Claims (PVCs) [13]. Azure Disks are
optimal for high-throughput, low-latency requirements
typical of deep learning training jobs, while Azure Files is
suitable for shared, concurrent access across multiple
replicas. It is best practice to use StorageClasses
configured with premium performance tiers for latency-
sensitive operations and implement volume snapshotting
for disaster recovery (Fig. 4).

Fig. 3. TFJob and MPIJob orchestration flow

in AKS-enabled Kubeflow

Fig. 4. Storage management for training pipelines

Maintaining robust model tracking, versioning, and
lineage management is critical to ensuring reproducibility,
traceability, and auditability in ML workflows. Kubeflow
Metadata provides an integrated system that captures
every pipeline execution event, including input datasets,
hyperparameters, metrics, and trained model artifacts. The
metadata records can be queried to reconstruct training
conditions, enabling better debugging, explainability, and
regulatory compliance. Best practices include tagging
pipeline runs with experiment identifiers and associating
artifacts with metadata schemas for standardized
documentation.

To extend these capabilities, integration with exter-
nal model registries is advisable. Kubeflow Pipelines can
be configured to automatically register trained models in

Machine Learning Model Development in Kubeflow Cloud-Native Systems 86

the Azure ML Model Registry or MLflow Model Registry
[14]. Azure ML Registry provides capabilities such as
model versioning, promotion through different stages
(e. g., “Staging”, “Production”), and integration with
CI/CD pipelines.

Alternatively, MLflow can operate inside the AKS
environment, managing model artifacts, signatures, and
lineage information in an open format (Fig. 5). These
hybrid integration patterns enhance model governance and
facilitate seamless transition from development to
production environments.

Fig. 5. Integration flow connecting Kubeflow pipelines

with Azure ML model registry

An additional recommendation is to implement
Managed Identity based authentication for any
interactions between Kubeflow workloads and Azure
services. Using Azure Managed Identities for pod access
ensures secure, passwordless authentication to storage
accounts, Key Vaults, and registries, thereby minimizing
the operational overhead of managing credentials [15].

By combining modular pipeline construction,
distributed training strategies, secure storage access, and
rigorous metadata tracking, Kubeflow on AKS enables
ML teams to build reproducible, scalable, and production-
ready model development workflows.

V. CASE STUDIES AND PRACTICAL
APPLICATIONS

This section presents practical examples of Ku-
beflow-based model development pipelines in production-
grade environments, emphasizing pipeline modularity,
data consistency, and iterative experimentation strategies.

One representative case involved a large-scale
academic research lab working on automated species
classification from camera trap images for biodiversity
monitoring. Researchers needed to develop high accuracy
computer vision models that could classify hundreds of
animal species from highly variable field imagery. With
thousands of annotated images stored in Azure Blob
Storage, the team used Kubeflow Pipelines to orchestrate
modular workflows for dataset curation, preprocessing,

and training. The preprocessing phase included image
normalization, background filtering, and synthetic
augmentation, each encapsulated in a containerized pipe-
line step.

A major challenge during this process was
maintaining consistency in image preprocessing routines.
Early experiments showed performance degradation due
to untracked updates in augmentation logic across teams.
This issue was resolved by refactoring all transformation
steps into shared pipeline components with explicit ver-
sion tagging. With preprocessing isolated and versioned,
researchers could reproduce past experiments and
correlate results to specific feature engineering settings,
ensuring traceable and consistent progress.

In another case, a medical AI startup used Kubeflow
to accelerate the development of deep learning models for
histopathology image classification. Large image datasets,
often exceeding 1 TB in size, were processed in Azure
Data Lake Storage and indexed using metadata-based
partitioning schemes. The team built Kubeflow Pipelines
that orchestrated tiling, stain normalization, and patch
sampling routines prior to training convolutional neural
networks on annotated regions of interest.

Given the volume of data, the team adopted
persistent volume claims mapped to Azure Disks to store
intermediate artifacts between pipeline stages, minimizing
redundant computation. Model training steps incorporated
callbacks for early stopping and validation logging.
During each run, Kubeflow Metadata recorded the
specific data samples, augmentation techniques, and loss
curves, giving the team a detailed historical view of model
development progression.

During the training phase, model accuracy plateaued
until the team analyzed metadata logs and discovered a
skew in the class distribution among sampled patches. By
adjusting their patch sampling logic and rebalancing the
input data per class label, they significantly improved the
model’s recall without overfitting. This insight, traceable
only through structured logging and metadata analysis,
demonstrated the critical role of experiment lineage
tracking in iterative model development.

Both cases exemplify how Kubeflow Pipelines,
when paired with best practices for modularization,
metadata tracking, and reproducible preprocessing, enable
teams to navigate the complexities of model development
at scale. Standardized component reuse, shared feature
transformation logic, and structured metadata allowed for
consistent experimentation and continuous improvement
across diverse domains.

These examples also reinforce the importance of
viewing model development as a lifecycle process, one
that depends not just on algorithms, but on traceability,
consistency, and collaboration embedded within well-
structured ML pipelines.

VI. RESULTS EVALUATION AND ANALYSIS
Evaluating the effectiveness of Kubeflow-based ML

pipelines deployed on AKS requires analyzing multiple
dimensions of system performance, including runtime

Yevhen Bershchanskyi, Oleksandr Stepanov 87

efficiency, resource utilization, and training throughput.
This section presents a detailed assessment of how well-
designed model development pipelines can impact overall
engineering velocity, training cost, and model accuracy.
Emphasis is placed on monitoring-driven insights and the
role of observability tools in guiding optimization.

One of the primary benefits observed in production-
grade Kubeflow environments was the reduction in end-
to-end pipeline execution time. Modularization of
components, such as data preprocessing, model training,
and evaluation allowed for concurrent execution across
Kubernetes worker nodes, cutting overall pipeline runtime
by 40 % compared to sequential workflows (Fig. 6).
TFJob and MPIJob workloads, configured to utilize GPU-
backed AKS node pools, further accelerated training
throughput for deep learning models, resulting in a 50–
65 % decrease in training time for large-scale image
classification tasks.

Fig. 6. Pipeline runtime comparison diagram

A side-by-side comparison chart illustrates average
pipeline runtime with and without component paral-
lelization across multiple AKS nodes. Metrics captured
via observability tools indicate the drop in execution
latency once containerized pipeline steps were inde-
pendently orchestrated within Kubeflow.

Efficiency gains were also evident in system-level
resource utilization. Azure Monitor metrics integrated
with dashboards revealed consistent GPU saturation
during training windows and minimal resource idling due
to intelligent pod scheduling and autoscaling strategies.
CPU and memory utilization trends captured across
successive pipeline runs enabled fine-tuning of container
resource requests and limits, which helped reduce over-
provisioning and prevent node pressure errors.

Observability practices were central to this
performance evaluation. Metrics provided visibility into
pipeline latency, per step execution durations, and pod
restart frequencies. These were analyzed in conjunction
with Azure Monitor logs to identify memory spikes during
feature preprocessing phases. Alerts based on runtime
thresholds helped detect underperforming pipeline steps,
enabling rapid debugging and refinement of trans-
formation logic and model code.

Increased model training efficiency translated direc-
tly into better experimentation velocity. By automating

version control of datasets and pipelines through Kube-
flow Metadata, teams were able to conduct reproducible
experiments, accelerate hyperparameter tuning, and
compare model variants with consistent baselines. In one
case, experiment reproducibility improved by 35 %, as
reported by lineage comparison across pipeline executions
with identical configurations and input versions (Fig. 7).

Fig. 7. Hyperparameter tuning reproducibility

The overall evaluation confirms that embedding
observability, reproducibility, and modular design into
Kubeflow-based ML pipelines significantly improves
system efficiency and model development outcomes.
These results reinforce the value of combining Kube-
flow’s orchestration capabilities with Azure-native moni-
toring and resource management to create sustainable,
high-performing AI workflows.

VII. CONCLUSION
This article outlined critical practices for model

development and pipeline design in Kubeflow, targeting
cloud-native AI systems deployed on Azure Kubernetes
Service. From constructing modular training components
to enabling robust model tracking and lineage, each
element of the development lifecycle contributed to a
scalable, reliable, and maintainable machine learning
ecosystem. The integration of distributed training,
persistent cloud storage, and real-time observability
highlighted Kubeflow’s flexibility and power in managing
complex ML workflows.

Model management was equally critical. Leveraging
Kubeflow Metadata for experiment tracking, coupled with
tools such as MLflow or Azure ML Registry, enabled
clear traceability across development cycles. These
integrations supported reproducibility and helped establish
trust in producing ML pipelines. Monitoring tools like
Azure Monitor helped to visualize through dashboards,
provide deep insight into training performance and
infrastructure efficiency allowing teams to proactively
adjust configurations and minimize training bottlenecks.

A key theme throughout this study was the
importance of continuous iteration. Initial development
rarely presents a production-ready system; instead,
engineering teams must focus on refining their pipelines
over time through feedback loops, metric-driven analysis,
and automated model evaluations. Observability and data

Machine Learning Model Development in Kubeflow Cloud-Native Systems 88

versioning provided the infrastructure for this kind of
improvement, transforming ad hoc ML workflows into
stable, production-grade systems. For engineering and
scientific teams looking to adopt Kubeflow in Azure-
native environments, several final recommendations
apply. Start by investing in pipeline modularization early,
as this pays long-term dividends in terms of reusability
and maintainability. Use native Azure services to enhance
security, storage scalability, and identity management.
Prioritize observability across training pipelines, using
monitoring tools not only for system metrics but also to
track model performance, drift, and feature stability.
Finally, adopt version control and metadata tracking
practices that treat data, models, and configurations as
first-class artifacts in the ML lifecycle.

References
[1] Jha, P., Biswas, T., Sagar, U., & Ahuja, K. (2021).

Prediction with ML paradigm in Healthcare System. 2021
Second international conference on electronics and sus-
tainable communication systems, 1334–1342. DOI: https://
doi.org/10.1109/ICESC51422.2021.9532752

[2] Bershchanskyi, Y., & Klym, H. (2023). Information
System for Administration of Medical Institution. 13th
International Conference on Dependable Systems, Services
and Technologies, 1–4. DOI: https://doi.org/10.1109/
DESSERT61349.2023.10416537

[3] Chaplia, O., Klym, H., & Elsts, E. (2024). Serverless AI
agents in the cloud. Advances in Cyber-Physical Systems, 9(2),
115–120. DOI: https://doi.org/10.23939/acps2024.02.115

[4] Zheng, C., Kremer-Herman, N., Shaffer, T., & Thain, D.
(2020). Autoscaling high-throughput workloads on
container orchestrators. IEEE International Conference on
Cluster Computing, 142–152. DOI: https://doi.org/
10.1109/CLUSTER49012.2020.00024

[5] Karkazis, P., Uzunidis, D., Trakadas, P., & Leligou, H. C.
(2022). Design challenges on machine-learning enabled
resource optimization. IT Professional, 24(5), 69–74. DOI:
https://doi.org/10.1109/MITP.2022.3194129

[6] Sandha, S. S., Aggarwal, M., Saha, S. S., & Srivastava, M.
(2021). Enabling hyperparameter tuning of machine
learning classifiers in production. IEEE third international

conference on cognitive machine intelligence, 262–271,
DOI: https://doi.org/10.1109/CogMI52975.2021.00041

[7] Bershchanskyi, Y., Klym, H., & Shevchuk, Y. (2024).
Containerized artificial intelligent system design in cloud
and cyber-physical systems. Advances in Cyber-Physical
Systems, 9(2), 151–157. DOI:
https://doi.org/10.23939/acps2024.02.151

[8] Johansson, B., Rågberger, M., Nolte, T., & Papadopou-
los, A. V. (2022). Kubernetes orchestration of high
availability distributed control systems. International
Conference on Industrial Technology, 1–8, DOI:
https://doi.org/10.1109/ICIT48603.2022.10002757

[9] Rostami, G. (2023). Role-based access control (rbac)
authorization in kubernetes. Journal of ICT Stan-
dardization, 11(3), 237–260. DOI: https://doi.org/
10.13052/jicts2245-800X.1132

[10] Mbata, A., Sripada, Y., & Zhong, M. (2024). A survey of
pipeline tools for data engineering. arXiv preprint
arXiv:2406.08335.
DOI:https://doi.org/10.48550/arXiv.2406.08335

[11] Woźniak, A. P., Milczarek, M., & Woźniak, J. (2025).
MLOps Components, Tools, Process and Metrics-A
Systematic Literature Review. IEEE Access, (13), 22166–
22175.
DOI: https://doi.org/10.1109/ACCESS.2025.3534990

[12] Liu, P., & Guitart, J. (2022). Fine-grained scheduling for
containerized HPC workloads in Kubernetes clusters. 24th
Int. Conf. on High Performance Computing &
Communications; 8th Int Conf on Data Science &
Systems; 20th Int Conf on Smart City, 275–284. DOI:
https://doi.org/10.1109/HPCC-DSS-SmartCity-
DependSys57074.2022.00068

[13] Na, J. H., Yu, H. J., Kang, H., Kang, H., Lim, H. D.,
Shin, J. H., & Noh, S. Y. (2024). PVA: The persistent
volume autoscaler for stateful applications in Kubernetes.
IEEE Access. (12), 179130–179143 DOI: https://doi.org/
10.1109/ACCESS.2024.3507194

[14] Gill, K. S., Anand, V., Chauhan, R., Rawat, R.,
& Hsiung, P. A. (2023). Utilization of Kubeflow for
deploying machine learning models across several cloud
providers. 3rd International Conference on Smart
Generation Computing, Communication and Networking
(SMART GENCON), 1–7. DOI: https://doi.org/10.1109/
SMARTGENCON60755.2023.10442069

Bershchanskyi Yevhen was
born in 1997, in Ukraine. In
2019, he received a master’s
degree in computer engineering
at Lviv Polytechnic National
University. In 2023, he entered a
PhD program in the faculty of
specialized computer systems at
Lviv Polytechnic National
University. His research inte-
rests include AI, security, ma-
chine learning, and cloud
computing.

Oleksandr Stepanov – gra-
duated from Lviv Polytechnic
National University in 2004. He
received the B.S. and M.S. degrees
in Electronics. He has been
working in IT field as a front-end
developer. On most large projects,
he faced with problem of aging
technology, and migrating to new
architecture approaches. His rese-
arch interests include client-server

highly loaded information systems, performance scalability of
micro-interfaces, migration from monolith architecture to
micro-frontend, design and implementation of scalable
systems.

