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Abstract: This paper analyzes common pitfalls 
encountered during video GAN training and explores 
methods to mitigate them through hybrid loss functions. We 
focus on combining adversarial, pixel-wise reconstruction, 
perceptual, and temporal consistency losses to stabilize 
learning and improve the realism and coherence of generated 
video. An empirical study compares several loss 
configurations on a human action video dataset, using PSNR, 
LPIPS, FVD, and a custom temporal consistency metric. 
Results show that adding reconstruction and perceptual 
losses enhances fidelity and detail, while temporal loss 
reduces flicker and motion artifacts. The proposed hybrid 
loss has achieved balanced gains in fidelity and temporal 
stability1.  

Index terms: generative adversarial network, video 
generation, mode collapse, temporal consistency, perceptual 
loss, video GAN evaluation. 

I.   INTRODUCTION 
Generative Adversarial Networks (GANs) [1] 

represent a significant advancement in generative 
modeling, enabling the creation of realistic synthetic 
images and videos through adversarial training. Despite 
their remarkable successes, GANs are notoriously 
challenging to train, often exhibiting unstable dynamics, 
mode collapse, and sensitivity to hyperparameters [2–4]. 

While substantial progress has been made in 
generating high-quality static images, adapting GAN frame-
works to video generation introduces additional comp-
lexities, primarily related to maintaining temporal 
coherence and visual realism over sequential frames [5–7]. 

Video generation tasks require models not only to 
produce realistic individual frames but also ensure smooth 
and coherent transitions across consecutive frames. 
Temporal artifacts such as flickering, jitter, and incon-
sistent object appearance frequently arise if temporal 
consistency is not explicitly enforced [7, 8]. 

 
____________________ 
1 This article uses the materials and results obtained by the authors during 
the research work “Intelligent design methods and tools for the modular 
autonomous cyber-physical systems”, state registration number 
0124U002340 dated 09.03.2024 which is carried out at the Department of 
Electronic Computing Machines of the Institute of Computer 
Technologies, Automation and Metrology of Lviv Polytechnic National 
University in 2024–2028. 

Prior studies have attempted to address these tem-
poral issues using specialized architectures that separate 
motion and content [7] or incorporate temporal regu-
larization techniques [8]. 

This paper investigates the pitfalls of training 
generative models for video, including both general GAN-
related issues, such as unstable convergence, mode 
collapse, and overfitting and video-specific problems such 
as temporal inconsistency, synthetic artifacts, and the 
difficulty of evaluation. 

II.  LITERATURE REVIEW AND PROBLEM 
STATEMENT 

GANs have demonstrated strong capabilities in 
image synthesis; however, their training remains inhe-
rently unstable due to the adversarial optimization setup. 
One of the core issues is instability during training, where 
the generator and discriminator often fail to reach a proper 
equilibrium, leading to diverging gradients or oscillations 
[1–2]. Techniques such as Wasserstein loss [3] and its 
gradient-penalized variant [4], as well as spectral nor-
malization [5], have significantly improved convergence 
stability, yet challenges persist, particularly in video 
generation where model architectures are deeper and 
motion modeling increases complexity. 

Mode collapse remains another major limitation. It 
occurs when the generator produces a narrow set of 
outputs irrespective of the input noise, severely reducing 
diversity. In video synthesis, this problem manifests in the 
generation of nearly identical or repetitive video 
sequences, which undermines realism [2, 6]. Overfitting is 
an associated risk, especially for high-capacity models 
trained on relatively small datasets. Models may 
memorize specific training sequences, failing to generalize 
to unseen motion patterns [7]. 

Video-specific challenges further complicate 
generative modeling. One of the most critical is temporal 
inconsistency: despite generating plausible individual 
frames, models frequently suffer from flicker, jitter, or 
inconsistent object trajectories across frames [7–8]. This 
issue stems from the lack of explicit temporal constraints 
in standard adversarial losses. Architectures such as 
MoCoGAN [7] attempted to separate motion and content 
representations to alleviate temporal artifacts, but full 
consistency remains difficult to achieve. 
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Recent advancements also highlight the importance 
of perceptual quality preservation. While frame-level 
metrics such as PSNR and SSIM are widely used, they 
inadequately reflect perceived realism across time. 
Metrics like Fréchet Video Distance (FVD) [9] and 
learned perceptual similarity measures attempt to better 
capture human judgment, yet comprehensive and reliable 
evaluation remains challenging. 

An additional consideration is maintaining percep-
tual sharpness and contrast across generated sequences. 
As highlighted in our earlier study on contrast enhan-
cement [10], balancing high-frequency detail preservation 
while avoiding over-enhancement is critical for main-
taining natural visual quality. Extending these principles 
to video generation, ensuring consistent contrast and 
texture fidelity across frames can contribute to perceptual 
coherence without introducing artifacts. 

Problem statement: video GAN training inherits 
classic generative challenges, including unstable conver-
gence, mode collapse, and overfitting, and adds domain-
specific difficulties like temporal inconsistency and 
imperfect evaluation. This motivates the development of 
improved loss objectives and evaluation strategies tailored 
for robust, perceptually aligned video synthesis. 

III.   SCOPE OF WORK AND OBJECTIVES 
This study focuses on analyzing and mitigating the key 

challenges encountered when training GANs for video ge-
neration. These challenges include common issues such as 
mode collapse, unstable convergence dynamics, and over-
fitting, along with domain-specific problems like temporal 
inconsistency and the difficulty of perceptual evaluation. 

The primary aim is to systematically investigate 
critical pitfalls in video GAN training, review and classify 
existing stabilization and enhancement techniques, and 
propose a unified training framework that combines 
adversarial, reconstruction, perceptual, and temporal 
consistency losses.  

Through empirical evaluation on a representative 
dataset using established quality metrics, the study seeks 
to assess the impact of different loss configurations and to 
derive practical recommendations for building more 
robust and perceptually realistic video generation models. 

IV.   ARCHITECTURAL STRATEGIES  
AND TRAINING OBJECTIVES 

Addressing the above challenges often requires a 
combination of techniques. Recent works suggest that no 
single loss or component is sufficient; instead, multi-term 
loss functions are used to guide the video generator to 
produce outputs that are accurate, realistic, and consistent. 
In this section, we outline several key strategies: 

A. ADVERSARIAL LOSS FOR VIDEO GAN 

The adversarial loss remains the core mechanism in 
GAN training [1]. In the video setting, a discriminator 
observes sequences of frames and attempts to distinguish 
real from generated videos [6–7], while the generator G 

learns to fool it. This interaction is typically formulated as 
a minimax game: 

[ ]))((log)( )1,0(~ zGDEGL vNzGAN −= ,       (1) 

where z is a random input (e. g., a noise vector or a 
sequence of latent vectors) and generator G(z) denotes the 
generated video frames. The discriminator D is trained 
with its corresponding loss: 

[ ]))((log)]([log)( ~ zGDExDEDL vzvpxGAN −−= ,  (2) 

where p the real video distribution, E denotes the 
expectation over the data distribution, )(xDv represents 
the discriminator’s probability of classifying a real video x 
correctly, and ))(( zGDv

 is the probability assigned to 
generated videos. 

In practice discriminator, may be a 3D-CNN or an 
RNN-based network processing multiple frames [7–8].  

While adversarial loss drives realism at the frame 
and sequence level, it does not guarantee coverage of all 
data modes or temporal consistency. A generator can 
collapse to producing limited outputs as long as it 
successfully fools the discriminator, making mode 
collapse a persistent risk [2]. 

B. RECONSTRUCTION (PIXEL) LOSS  
A widely used strategy for stabilizing GAN training 

is adding a reconstruction loss, typically an L1 or L2 norm 
between generated and ground truth frames [6]. This acts 
as a regularizer, encouraging the generator G  to produce 
outputs closely matching real examples, thus mitigating 
mode collapse and improving convergence. 

In video tasks like prediction or super-resolution, the 
reconstruction loss is defined as: 

[ ]( , )~ 1( ) || ( ( ) ) || ,rec x y DL G E G x y= −        (3) 

where ( , ) ~x y D  denotes a pair sampled from the 
training dataset D, G(x) is the generated video frame based 
on input x, y is the ground truth frame,  represents the 
L1 norm measuring pixel-wise differences. 

Many video GAN frameworks, including TGAN [8] 
and vid2vid [6], have adopted this hybrid adversarial + 
pixel loss strategy. 

The overall generator objective with reconstruction 
regularization becomes: 

)(, GLLL recrecGANtotalG λ+= .           (4) 

A suitable coefficient λ ensures the generator does 
not overly focus on pixel correctness at the expense of 
realism, or vice versa. In practice, adversarial +L1 training 
yields videos that are structurally correct and generally 
free of major mode collapse, though sometimes slightly 
blurred or less vivid than pure GAN outputs. 

C. PERCEPTUAL LOSS – DEEP FEATURE 
CONSISTENCY 

While pixel losses enforce low-level accuracy, they 
may not fully capture human perception of quality. A 
small spatial misalignment can lead to a large L2 error but 
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might be perceptually acceptable, whereas blurriness 
(which yields low pixel error) can be perceptually poor. 
To bridge this gap, perceptual loss functions have been 
proposed [9]. 

A perceptual loss measures differences between the 
generated and real frame in the feature space of a pre-
trained deep network (such as VGG-16 or VGG-19) rather 
than raw pixels. A typical perceptual loss is formulated as: 

( , )~ 2
1( ) || ( ( )) ( )) ||perc x y D j jL G E G x y
N

 = φ − φ ∑ ,    (5) 

where jφ ( ) denotes the feature map activations at the j-th 
layer of a chosen CNN. N is the number of elements in the 
j-th feature map. This includes percL  guides for the GAN 
to focus on visual realism rather than just pixel-by-pixel 
accuracy. It has been observed to reduce blurring and 
improve texture sharpness [6, 9]. 

One must balance perceptual and pixel losses – too 
much weight recλ  on percL  can sometimes introduce 
minor artifacts or deviate from exact ground truth colors, 
since it only cares about looking plausible to the CNN. 
We will use a perceptual loss based on pre-trained VGG-
19 in our experiment. 

D. TEMPORAL CONSISTENCY LOSS 
Temporal consistency is critical for generating 

realistic video sequences. Without explicit constraints, 
models often produce flickering, jitter, or inconsistent 
object motions across frames. To address this, temporal 
consistency losses are introduced, typically based on 
optical flow [11]. 

A commonly used local temporal loss is defined as: 

[ ]11 ||)(||)( ttttemp GGEGL −= + ,       (6) 

where 1+tG and tG  are consecutive generated frames, E 
is the estimated optical flow between those frames. 

However, this can bias the model towards trivial 
solutions (like static frames) if used alone. Hence, it’s 
more common to use a learning-based approach (flow or 
learned embeddings). In our implementation, we adopt a 
flow-based consistency loss similar to prior art, but in a 
simplified form: we compute optical flow on the real 
video frames and apply it to enforce that the generated 
frames move accordingly. Specifically, given ground truth 
frames t and t+1, we obtain the flow. We then require 

1+tG  to match t+1 as if it were generated from t, moving 

with that flow. This can be seen as a form of teacher-
forcing for motion: the generator is taught to respect the 
actual motion present in the data. By incorporating 

tempL  

the generator receives direct pressure to maintain 
consistency over time.  

However, excessive temporal regularization can 
overly constrain dynamics, leading to motion over-
smoothing. Therefore, temporal loss weights are typically 
set smaller than adversarial terms to balance consistency 
with motion diversity. 

E. COMBINED OBJECTIVE 
In practice, a video GAN model may use all the 

above losses in combination. The total generator loss can 
be written as:  

temptemppercpercrecrecGAN
total
G LLLLL λλλ +++= .  (7) 
The discriminator loss remains primarily as before 

(sometimes with auxiliary terms if a two-channel 
discriminator for temporal consistency is used.  

Common weight settings include recλ =10, percλ =1, 

tempλ = 2 have been shown to improve convergence, 
enhance perceptual sharpness, and reduce temporal 
artifacts. The combination of losses addresses mode 
collapse, promotes diverse video outputs, and ensures 
frame-to-frame consistency, providing a robust framework 
for training high-quality video generators. 

V.  EXPERIMENTS AND RESULTS 
To evaluate the effectiveness of the above training 

strategies, we conducted a comparative experiment on a 
video generation task. We chose the UCF-101 action video 
dataset as our training data (UCF-101 contains short clips of 
various human actions, providing diverse motions and 
scenes). We focused on a conditional video generation 
setting: given a starting frame, generate the next few frames. 
This setup provides a ground truth video sequence for each 
input, enabling reconstruction and perceptual losses and 
objective evaluation via reference metrics (PSNR, LPIPS). 

Model Architecture: all models shared the same 
generator architecture. The discriminator was a 3D 
convolutional network operating on 4-frame clips. We 
trained all models for 100 epochs (approximately 50 k 
generator updates) with the Adam optimizer (learning rate 

42e− ) and batch size 8 on 4-frame clips. 
We compared five training objectives: (1) adversarial 

loss only; (2) adversarial loss combined with L1 pixel-
wise reconstruction loss; (3) adversarial loss combined 
with perceptual loss; (4) adversarial, L1, and temporal 
consistency losses; and (5) a full combined objective 
integrating adversarial, reconstruction, perceptual, and 
temporal consistency terms as described in (7).  

All models were trained on identical data splits and 
initialized with the same random seeds to ensure fair 
comparison. 

A. EVALUATION METRICS 
The generated videos were evaluated using four 

metrics. PSNR measures pixel-level fidelity to ground 
truth (higher values indicate better reconstruction). LPIPS 
assesses perceptual dissimilarity based on deep features, 
where lower values are better. TC was evaluated using a 
custom flow-warping approach: for each consecutive 
frame pair, we computed the optical flow on ground truth 
frames, warped the generated frame accordingly, and 
measured the average PSNR between the warped and 
actual generated next frame. TC scores were normalized 
between 0 and 1, with higher values indicating smoother 
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temporal transitions. Additionally, FVD was reported to 
measure the overall distributional quality of generated 
videos compared to real samples, where lower values 
denote closer alignment. 

All metrics were computed on a test set comprising 
50 novel video sequences not seen during training. 

Table 1 

Comparison of video generation models trained with 
different loss functions. Arrows (↑/↓) indicate direction 

of better performance for each metric 
Model 
(Loss) 

PSNR↑, 
dB LPIPS↓ TC↑ FVD↓ 

GAN-only 24.5  0.289 0.67 210.5 
GAN + L1 28.7   0.341 0.72 189.4 
GAN + Perc 26.1   0.225 0.69 180.2 
GAN + L1 + 
Temp 27.4   0.278 0.81 175.0 

GAN + L1 + 
Perc + Temp 27.0   0.236 0.79 168.3 

 
The adversarial-only model achieved the lowest 

PSNR of 24.5 dB, indicating frequent divergence from 
ground truth frames. Although this model occasionally 
produced crisp individual images (reflected in moderate 
LPIPS values), it exhibited instability, including frequent 
flicker and occasional mode collapse, generating repetitive 
or random sequences that still fooled the discriminator. 

Adding a pixel-wise reconstruction loss significantly 
improved PSNR to 28.7 dB, anchoring the generator 
outputs more closely to target frames. However, this resul-
ted in smoother, blurrier visuals, as averaging pixel values 
suppressed high-frequency details. Temporal consistency 
improved modestly (from 0.67 to 0.72), reflecting smoo-
ther frame-to-frame transitions. 

Replacing the reconstruction term with a perceptual 
loss yielded a model that prioritized textural and semantic 
realism over strict pixel fidelity. While PSNR dropped to 
26.1 dB, the model achieved the best LPIPS score (0.225), 
producing sharper, more perceptually realistic frames. 
Nevertheless, without explicit temporal supervision, minor 
flicker remained due to independent frame optimization. 

Incorporating a temporal consistency term alongside 
adversarial and reconstruction losses led to the most stable 
motion, achieving the highest TC score of 0.81. 

Finally, the full model integrating adversarial, 
reconstruction, perceptual, and temporal losses achieved 
the most balanced performance across all metrics. It 
maintained high fidelity (27.0 dB PSNR), sharp perceptual 
quality (0.236 LPIPS), strong temporal coherence 
(0.79 TC), and the lowest distributional discrepancy 
(168.3 FVD). This combination leveraged each compo-
nent’s strengths, resulting in visually convincing, detail-
rich, and temporally stable videos. 

B. MODE COLLAPSE AND DIVERSITY 
Mode collapse and diversity: We also evaluated 

whether any models suffered mode collapse by checking 
the diversity of outputs given different noise seeds. The 

GAN-only model showed some tendency to ignore the 
noise input (a sign of collapse) – about 20 % of the time, it 
would produce virtually the same video for two different 
noise vectors.  

All other models, especially those with L1, did not 
exhibit this behavior: the reconstruction term forces output 
to follow the input frame content, so by design each input 
(which was different for each test case) led to a different 
output. In effect, adding L1 eliminated the trivial mode 
collapse in our conditional setup (where collapsing would 
mean predicting an “average” next frame for all inputs). 
The perceptual and temporal losses did not appear to 
reintroduce any collapse; on the contrary, by stabilizing 
training they likely helped the generator explore more. 

This was reflected in the relatively low FVD of the 
full model – a collapsed model would have a very high 
FVD due to lack of diversity. 

An additional experiment on the model using only 
adversarial and temporal losses (no pixel or perceptual 
term) confirmed the strong effect of the temporal 
constraint. This ablated model improved temporal consis-
tency from 0.67 to 0.75 compared to the adversarial-only 
baseline, despite low PSNR, indicating that a temporal 
loss can enforce coherence even in an unconditional 
setting. 

C. TRAINING DYNAMICS 
Fig. 1 illustrates discriminator loss trajectories over 

50 training epochs. The adversarial-only model shows 
strong oscillations and occasional spikes, necessitating a 
learning rate reduction during late training. In contrast, 
models incorporating reconstruction loss (adversarial + 
reconstruction and adversarial + reconstruction + 
temporal) exhibit smoother, more stable declines without 
significant divergence.  

By epoch 30, the combined model achieves its best 
validation scores, while the adversarial-only model 
struggles.  

 

 
Fig. 1. Stability of discriminator loss across training epochs  

for different loss functions 

Fig. 2 compares the PSNR evolution of different 
models across 50 epochs. The adversarial-only variant 
demonstrates the slowest improvement, reaching just 
24.5 dB by epoch 50. 
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Fig. 2. PSNR value changes for the tested setups under  

varying loss configuration 

Adding a reconstruction loss dramatically accelerates 
convergence, boosting PSNR from 24 dB to 28.7 dB, with 
stabilization observed after epoch 30. The perceptual-only 
model steadily rises to 26.1 dB, but remains lower than 
reconstruction-based variants due to the lack of direct 
frame anchoring. Incorporating temporal consistency 
alongside reconstruction further improves PSNR, reaching 
27.4 dB, indicating that temporal regularization enhances 
convergence without compromising fidelity. Finally, the 
full combined model achieves high early performance, 
surpassing all models by epoch 20, and converges near 
27.0 dB by epoch 50. 

These training dynamics highlight that each 
additional loss term contributes to faster convergence, 
improved stability, and superior final performance. 

In Table 2, we present a summary of how each loss 
weight impacts PSNR. Varying the reconstruction loss 
weight from 0 to 10 substantially improves PSNR, with 
diminishing returns beyond this point. The perceptual loss 
shows an optimal setting at 0.5 λ, while higher values 
reduce pixel fidelity. Increasing the temporal consistency 
weight improves PSNR up to λ = 2.0, after which 
performance plateaus. 

Table 2 

Influence of loss weights on PSNR 

Parameter Lambda λ  PSNR,  dB  

Reconstruction 0.0 25.0 
Reconstruction 5.0 27.0 
Reconstruction 10.0 28.7 
Reconstruction 20.0 28.5 

Perceptual 0.0 27.0 
Perceptual 0.5 27.5 
Perceptual 1.0 26.1 
Perceptual 2.0 25.8 
Temporal 0.0 26.0 
Temporal 1.0 26.5 
Temporal 2.0 27.4 
Temporal 5.0 27.1 

 
These findings emphasize the importance of 

carefully balancing loss weights to optimize fidelity, 
perceptual quality, and temporal stability. 

VI.   DISCUSSION 
Our experiments demonstrate that each loss com-

ponent contributes distinct and complementary benefits to 
video GAN training. The pixel-wise reconstruction term 
prevents mode collapse by anchoring outputs to their 
corresponding input frames, resulting in the highest PSNR 
and stable, predictable sequences. The perceptual loss 
addresses the over-smoothing induced by pixel losses, 
sharpening textures and enhancing visual realism without 
reintroducing instability. Temporal consistency loss is 
crucial for suppressing flicker and ensuring smooth motion 
dynamics; when combined with reconstruction, it yields 
highly stable videos, and when combined with perceptual 
loss, it maintains detail alongside motion coherence. 

Together, these components form a unified loss 
objective that produces videos with high fidelity, percep-
tual sharpness, and temporal consistency, as evidenced by 
balanced PSNR, LPIPS, TC, and FVD metrics. 

Despite these advances, certain limitations remain. 
Fine-grained textures with rapid motion, such as water 
ripples or specular highlights, can still exhibit minor 
flicker, likely due to imperfect optical flow estimation. 
Additionally, the models struggle to maintain coherence 
over very long sequences, with background drift or 
blurring emerging after dozens of frames, suggesting a 
need for architectures with longer memory (e. g., recurrent 
or transformer-based generators). Moreover, our 
evaluation was conducted in a conditional setting with an 
initial real frame; fully unconditional video generation 
remains more challenging and may require noise 
conditioning or novel predictive feedback mechanisms to 
sustain diversity and temporal realism. 

Overall, this study provides practical guidelines for 
designing multi-term loss functions in video GAN 
training. Future work should explore learned temporal 
constraints beyond optical flow, architectures capable of 
long-term temporal reasoning, and rigorous testing in fully 
unconditional generation settings. 

VII. CONCLUSION 
Training generative models for video synthesized 

classic GAN challenges such as mode collapse, unstable 
optimization, and overfitting with video-specific hurdles 
like temporal incoherence and the lack of robust evalua-
tion metrics. This study demonstrated that combining 
adversarial, reconstruction, perceptual, and temporal 
consistency losses into a unified training objective leads to 
more stable, diverse, and perceptually convincing video 
generation. 

Each loss component targeted a distinct failure 
mode: reconstruction stabilizes learning and prevents 
collapse, perceptual loss enhances textural sharpness, and 
temporal consistency enforces smooth, coherent motion. 
Together, they achieved a balanced trade-off, producing 
videos that maintain fidelity to ground truth while 
delivering high visual quality over time. 

For practitioners, these findings provided actionable 
guidelines: incorporate a reconstruction term whenever 
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ground truth frames are available; leverage perceptual loss 
to recover fine-grained details; and always include an 
explicit temporal consistency constraint to ensure realistic 
motion. Although limitations remain particularly for very 
long sequences or highly complex dynamics the principles 
outlined here extend naturally to other generative 
frameworks, such as diffusion models and transformer-
based architectures, and to applications like video 
enhancement or style transfer. 

Future research should focus on designing more effi-
cient and learned temporal losses, developing unified video 
quality metrics, and creating models capable of sustaining 
consistency across extended sequences, moving closer to 
the goal of fully realistic, high-quality video generation. 
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