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Abstract: This paper presents a method for automati-
cally generating security-oriented test cases from textual 
requirements in SCRUM environments using Natural 
Language Processing. The proposed approach has com-
bined transformer-based semantic analysis with behavior-
driven development test templates to extract and translate 
functional, non-functional, and misuse-case security 
requirements. The solution has been tested on 30 real-
world requirements derived from agile software projects. 
Evaluation results have demonstrated that the system 
achieved 91 % precision, 93 % recall, and complete 
(100 %) coverage of input requirements. Compared to 
manual testing, the method has reduced the time required 
for test design by approximately 78 % and revealed 65 % 
more critical security vulnerabilities. The generated test 
cases have been structured to support integration with 
behavior-driven development and continuous integration / 
continuous deployment workflows. Overall, the results 
indicate that automation based on Natural Language 
Processing can substantially enhance the quality and 
efficiency of security validation processes within agile 
development environments. 

Index terms: security testing, NLP, SCRUM, test 
automation, requirements engineering, BDD. 

I. INTRODUCTION 

The widespread adoption of agile methodologies such 
as SCRUM has revolutionized software engineering by 
enabling continuous delivery and rapid response to change. 
Despite these advantages, integrating information security 
into agile workflows remains a persistent concern. Security 
requirements are often formulated late in the development 
cycle, inadequately defined, or overlooked entirely, parti-
cularly when delivery pressure dominates project priorities. 
Survey results highlight that many agile teams operate 
without formalized procedures for security integration, 
which can lead to fragmented validation efforts and 
increased vulnerability exposure [1]. 

A key difficulty lies in the manual development of 
security test cases. When requirements are expressed 
informally in natural language and subject to frequent 
updates, test engineers face the challenge of interpreting 
loosely defined security goals and transforming them into 
structured, executable tests. This challenge is compounded 
by the lack of standardized tools specifically designed to 
support this task. However, recent reviews point to the 
potential of Natural Language Processing (NLP) 

techniques to automate test derivation by leveraging 
linguistic patterns found in textual requirements [2]. 

Technical advances in language models have further 
expanded the potential of NLP in requirement engineering. 
The emergence of transformer-based architectures, such as 
BERT, has introduced deeper contextual understanding of 
complex expressions in requirement documents. These 
tools significantly enhance the accuracy of information 
extraction from unstructured text and are particularly 
promising for identifying intent in security-related 
statements [3]. 

Despite this progress, the use of NLP for generating 
test cases specifically targeting security validation within 
SCRUM settings remains limited. Many early NLP 
applications in test automation have been designed for 
generic use-case extraction or acceptance testing work-
flows [4]. These approaches often fall short in capturing 
implicit or threat-oriented behaviors, which are central to 
security testing. Bridging this gap requires a specialized 
strategy that combines NLP-driven extraction with beha-
vior-driven development techniques, enabling test cases 
that are both machine-readable and reflective of security 
constraints relevant to agile contexts. 

II.   SCOPE LITERATURE REVIEW  
AND PROBLEM STATEMENT 

Agile methodologies, particularly SCRUM, have 
become a dominant paradigm in software development due 
to their adaptability and rapid delivery cycles. However, 
the integration of security practices within these workflows 
remains insufficiently addressed. Studies highlight that 
teams often lack structured mechanisms for eliciting and 
validating security-related requirements, which leads to 
inconsistent or delayed implementation of critical 
safeguards [1]. 

The process of manually deriving security test cases 
from evolving textual requirements is known to be time-
intensive and prone to errors. This challenge becomes 
especially apparent in SCRUM environments, where high 
iteration frequency and natural language documentation 
prevail. To mitigate these limitations, automated appro-
aches leveraging Natural Language Processing (NLP) have 
gained attention. A comprehensive overview of such 
techniques outlines how methods like tokenization, 
syntactic parsing, and semantic role labeling can be 
employed to reduce the burden of manual test design [2]. 
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Significant improvement in the quality of NLP-based 
extraction has been driven by advancements in deep 
learning models. For instance, the emergence of trans-
former architectures, such as BERT, has enabled better 
contextual interpretation of domain-specific language, 
including security-related intents [3]. This shift opens the 
possibility of more reliable identification of actionable 
information from natural language specifications. 

While early implementations of automated testing 
frameworks focused predominantly on general acceptance 
tests, more recent models have explored deeper semantic 
analysis, including dependency parsing techniques to 
enhance requirement coverage and correctness [4]. In 
parallel, the application of behavior-driven design patterns 
has been investigated as a means to express security 
objectives in structured, executable formats, helping 
translate abstract intentions into testable scenarios [5]. 

Nonetheless, formalization of security requirements 
continues to present a significant obstacle. The absence of 
shared taxonomies or ontological support across teams has 
been identified as a factor hindering the standardization 
and reuse of security specifications [6]. This gap under-
scores the importance of integrating structured represen-
tations within agile documentation practices. 

Security-focused test case generation introduces 
additional complexity due to its emphasis on negative 
scenarios and threat modeling. Some research has shown 
that NLP models often struggle with identifying conditions 
related to denial, privilege escalation, or malicious 
behavior when compared to functional use cases [7]. To 
address these concerns, pattern-based frameworks have 
been developed that translate syntactic structures into 
reusable testing logic. However, these solutions still face 
challenges when interpreting ambiguous or context-spe-
cific terminology [8]. 

Complementary efforts have looked at static analysis 
and vulnerability detection through NLP-powered 
techniques, particularly at the code level. While such 
approaches demonstrate high potential, their integration 
with early-stage textual requirements remains limited [9]. 
At the same time, other initiatives have demonstrated that 
it is technically feasible to map natural language requi-
rements into formal specification formats, such as Soft-
ware Cost Reduction (SCR), though widespread adoption 
remains low [10]. 

The synthesis of these findings reveals a persistent 
limitation: despite the maturity of agile methods and 
progress in NLP research, there remains no widely adopted 
mechanism for translating security requirements – often 
expressed informally in product backlogs – into executable 
test cases. As a result, security validation is either incom-
plete or absent in many agile projects. The methodology 
presented in this paper seeks to close this gap through a 
multi-stage NLP pipeline that automates the transition 
from natural language to structured, behavior-driven 
security test scenarios, integrated directly within the 
SCRUM process. 

III. SCOPE OF WORK AND OBJECTIVES 
This research is positioned at the intersection of agile 

methodology, natural language processing, and information 
security. The primary scope of the work is to develop and 
evaluate a methodology that enables the automated gene-
ration of security-focused test cases from textual require-
ments in SCRUM-based software development projects. 

To maintain relevance and technical rigor, the 
proposed methodology adheres to several key constraints. 
First, it is designed to function with natural language input 
that is typical for SCRUM artifacts, including user stories, 
acceptance criteria, and threat models. In addition, the 
methodology is compatible with agile development workf-
lows and can be seamlessly integrated into standard CI/CD 
pipelines. Finally, it specifically addresses security-related 
requirements, encompassing aspects such as authentication, 
access control, data protection, and input validation. 

The methodology is grounded in modern NLP 
techniques, including transformer-based contextual models, 
semantic role labeling, and syntactic dependency parsing. 
These technologies are leveraged to extract actors, actions, 
objects, and constraints from unstructured textual requi-
rements and convert them into executable test logic. The 
resulting test cases are presented in a Behavior-Driven 
Development (BDD) format to ensure interpretability and 
maintainability. 

The primary goal is to design, implement, and evaluate 
an NLP-driven pipeline that converts natural language 
security requirements into automated and executable test 
cases, fully aligned with agile development processes. This 
objective is supported by several specific aims. The first 
involves the formulation of a comprehensive taxonomy that 
categorizes common security requirements typically 
encountered in agile contexts. Next, the focus shifts to the 
development of a multi-stage NLP pipeline that can 
accurately extract semantic structures from textual inputs. 
Building on this, a dedicated test generation engine will be 
designed to translate the extracted semantics into reusable 
templates following the BDD (Behavior-Driven Develop-
ment) style. The methodology will then be evaluated using 
both real-world and synthetic datasets that encompass a 
range of security-related scenarios. Finally, the effectiveness 
of the proposed approach will be assessed through 
quantitative metrics such as precision, recall, F1-score, 
requirement coverage, and time efficiency in testing. 

The scope is deliberately limited to the transformation 
of textual inputs into test cases and does not address 
dynamic analysis, test execution environments, or post-
execution reporting. However, the system is designed to 
produce artifacts that are compatible with these downstream 
activities. 

IV. METHODOLOGY, ARCHITECTURE,  
AND IMPLEMENTATION 

The proposed approach relies on a multi-stage 
Natural Language Processing (NLP) pipeline designed to 
extract and transform textual security requirements into 
structured, executable test cases. This methodology 
integrates syntactic and semantic analysis techniques with 
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domain-specific rule sets and templates to enable high-
fidelity security test generation in Scrum-based agile 
development environments. The approach ensures the 
systematic handling of both explicit and implicit security 
conditions, minimizing the risk of missed requirements. 
Its design prioritizes traceability, automation, and 
compatibility with modern CI/CD pipelines, enhancing 
both scalability and maintainability. 

In software development projects, security require-
ments typically manifest in three primary forms. These 
include functional requirements, such as specifications 
mandating user authentication through two-factor verifi-
cation; non-functional constraints, like the stipulation that 
all sensitive data must be encrypted during transmission; 
and misuse or abuse cases, for instance, scenarios where 
an unauthorized attempt to access the admin panel should 
be actively blocked. 

To handle such diverse inputs, the proposed NLP 
pipeline follows a structured, multi-phase approach. The 
initial stage, preprocessing, involves linguistic operations 
such as tokenization, part-of-speech tagging, dependency 
parsing, and named entity recognition to identify relevant 
entities, roles, and security-related terms. This stage is 
further enhanced by leveraging transformer-based models 
like BERT to capture contextual semantics. 

Following preprocessing, the pipeline performs 
intent extraction through Semantic Role Labeling (SRL), 
which is used to determine the main actions, responsible 
agents, target objects, and any conditional or temporal 
qualifiers associated with the requirement. These sema-
ntics are then mapped to a logical testing framework in 
the test logic mapping phase, where the extracted infor-
mation is aligned with predefined, rule-based templates 
for security tests. 

In the next step, test case generation, the system 
produces behavior-driven test scenarios using the 
“'Given–When–Then” format characteristic of Behavior-
Driven Development (BDD). The final phase, integration 
and traceability, ensures that each test case is clearly 
linked to its original requirement using unique identifiers, 
and the resulting test cases are exported in a format 
suitable for integration into CI/CD pipelines. 

Underpinning this process is a modular system 
architecture composed of four main components. The 
input interface allows users to provide requirement data 
either through direct file uploads or integration with 
project management tools. The NLP processor performs 
both syntactic and semantic analysis. The test generator 
then applies the semantic patterns to produce structured 
test cases, while the exporter module handles the output 
of these cases to version control repositories or automated 
test execution systems. 

This architecture is designed for adaptability and 
can be extended to meet the regulatory and operational 
needs of specialized sectors such as healthcare or finance 
(Fig. 1). Moreover, it includes feedback mechanisms to 
continuously improve the underlying rulesets based on 
system performance and user validation (Fig. 2). 

 
Fig. 1. System architecture overview  

 
Fig. 2. NLP-based test generation pipeline  

To illustrate the approach, consider the following 
example of a security requirement: “The system must 
prevent access to the admin dashboard for non-authen-
ticated users”. This requirement can be semantically 
decomposed into several core elements: the actor, in this 
case, is a user who has not been authenticated; the action 
involves an attempt to access a resource; the object is the 
admin dashboard; and the key constraint specifies that 
such access must be explicitly prevented. 

Based on this analysis, the NLP-driven system 
generates a behavior-driven test case structured in the 
Given-When-Then format. The resulting scenario reads: 
“Scenario: Prevent dashboard access for unauthenticated 
users. Given the user is not logged in, when the user 
attempts to access / admin, then access should be denied 
with status code 403”. This test case directly reflects the 
original requirement and is ready for execution within 
automated pipelines. 

This example demonstrates the end-to-end trans-
formation of abstract security requirements into auto-
mated, traceable, and behaviorally structured test cases 
suitable for agile QA workflows. 
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V. EXPERIMENT AND RESULTS 
A. EXPERIMENTAL SETUP 

To evaluate the effectiveness of the proposed NLP-
based test generation approach, a dataset of 30 security-
related requirements was collected from a combination of 
open-source repositories and anonymized SCRUM 
backlogs provided by industry partners. Each requirement 
was expressed in natural language and categorized into 
functional, non-functional, or misuse cases. 

The system was implemented in a Python-based 
environment utilizing spaCy for preprocessing, 
HuggingFace’s Transformers (RoBERTa) for contextual 
understanding, and a custom BDD template engine for 
test case construction. For benchmarking, three expe-
rienced QA professionals independently produced manu-
al test cases for the same requirement set. Their outputs 
were reviewed to ensure consistency and objectivity. 

B. EVALUATION METRICS 
The performance of the proposed methodology was 

evaluated using a set of well-defined metrics to ensure 
both technical validity and practical relevance. Precision 
was used to measure the proportion of correctly generated 
test steps out of all the steps that the system produced, 
thereby indicating the accuracy of the output. Recall 
assessed the extent to which the system was able to 
successfully identify and incorporate all relevant security-
related aspects from the input requirements. To provide a 
balanced perspective, the F1 score – the harmonic means 
of precision and recall – was also calculated. 

In addition to these standard information retrieval 
metrics, the evaluation also considered the overall 
requirement coverage, which represents the percentage of 
input requirements for which valid and complete test 
cases could be automatically generated. The effectiveness 
of the system was further demonstrated by tracking the 
number of critical security defects that were successfully 
identified through the generated tests. Finally, to assess 
the efficiency of the pipeline, the average time to test 
(TtT) was measured, capturing the duration required to 
produce a valid and executable test case from a given 
requirement. 

C. RESULTS OVERVIEW 
The results of the evaluation highlight clear 

performance gains achieved through the proposed NLP-
based approach when compared to manual test case 
generation. In terms of precision, the automated method 
achieved a score of 0.91, surpassing the manual appro-
ach, which yielded 0.84. Similarly, recall was signi-
ficantly higher for the NLP system at 0.93, compared to 
0.78 manually. This trend continued with the F1 score, 
where the NLP method scored 0.92, notably outper-
forming the manual score of 0.80. 

The difference was even more pronounced in terms 
of requirement coverage. The automated system succes-
sfully produced test cases for all input requirements, 
achieving 100 % coverage, while manual processes 

managed to cover only 73 %. Furthermore, the NLP-
based method identified 28 critical security defects, 
compared to just 17 uncovered through manual testing. 
Time efficiency was another key advantage: on average, 
the automated pipeline required only 3.2 minutes to 
generate a valid test case, whereas the manual process 
took approximately 14.6 minutes. 

Collectively, these findings demonstrate the su-
periority of the NLP-driven approach across all evalua-
tion criteria. Of particular note is the approximately 78 % 
reduction in time-to-test, alongside a 65 % increase in the 
identification of critical security vulnerabilities – both of 
which underscore the practical value of automation in 
agile security testing. 

D. DISCUSSION 

As shown in Table, the NLP-driven approach 
proved not only more efficient but also more effective in 
identifying meaningful security flaws. Its ability to 
achieve full coverage across all types of requirements and 
maintain high semantic alignment with source content 
underscores the robustness of the pipeline. Moreover, the 
use of structured BDD outputs allows for better maintai-
nability and integration with CI/CD workflows. Testers 
highlighted the interpretability and consistency of the 
generated cases, especially under high iteration pressure. 

Comparison of test performance metrics  
(NLP vs Manual) 

Metric NLP-based 
approach Manual testing 

Precision 0.91 0.84 
Recall 0.93 0.78 

F1 Score 0.92 0.8 
Requirement coverage, 

% 100 73 

Critical defects 
identified 28 17 

Avg. time to test, 
minutes 3,2 14,6 

VI. CONCLUSION 
The conducted study validated the viability of 

integrating Natural Language Processing (NLP) into agile 
SCRUM environments for the purpose of generating 
high-quality, security-focused test cases directly from 
textual requirements. The developed multi-stage pipeline – 
comprising preprocessing, semantic extraction, test logic 
mapping, and automated BDD-based generation –proved 
effective across multiple evaluation criteria. 

Empirical results showed an average precision of 
0.91 and recall of 0.93 in generated test cases, signi-
ficantly outperforming manual testing with an F1 score of 
0.92. The automated system achieved 100 % requirement 
coverage compared to 73 % in manual testing and 
uncovered 65 % more critical security defects. 
Additionally, the average time to produce a test case was 
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reduced by 78 %, highlighting efficiency gains without 
compromising quality. 

These findings demonstrated that the proposed 
NLP-based method substantially improved both the 
quality and speed of security testing in iterative 
development cycles. The structured test outputs 
facilitated integration into CI/CD pipelines and enhance 
communication among cross-functional teams. 

The presented methodology offered a replicable and 
scalable framework for enhancing information security 
assurance through automation. Its application can serve as 
a significant step forward in aligning QA practices with the 
increasing demands of secure software development. 
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