
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

INTELLIGENT TEST CASE GENERATION FROM TEXTUAL SECURITY
REQUIREMENTS IN SCRUM: AN NLP-DRIVEN APPROACH

Taras Chura, Myroslav Zvarych

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
Authors’ e-mails: taras.r.chura@lpnu.ua, myroslav.m.zvarych@lpnu.ua

https://doi.org/10.23939/acps2025.01.095

Submitted on 20.03.2025

© Chura T., Zvarych V., 2025

Abstract: This paper presents a method for automati-
cally generating security-oriented test cases from textual
requirements in SCRUM environments using Natural
Language Processing. The proposed approach has com-
bined transformer-based semantic analysis with behavior-
driven development test templates to extract and translate
functional, non-functional, and misuse-case security
requirements. The solution has been tested on 30 real-
world requirements derived from agile software projects.
Evaluation results have demonstrated that the system
achieved 91 % precision, 93 % recall, and complete
(100 %) coverage of input requirements. Compared to
manual testing, the method has reduced the time required
for test design by approximately 78 % and revealed 65 %
more critical security vulnerabilities. The generated test
cases have been structured to support integration with
behavior-driven development and continuous integration /
continuous deployment workflows. Overall, the results
indicate that automation based on Natural Language
Processing can substantially enhance the quality and
efficiency of security validation processes within agile
development environments.

Index terms: security testing, NLP, SCRUM, test
automation, requirements engineering, BDD.

I. INTRODUCTION

The widespread adoption of agile methodologies such
as SCRUM has revolutionized software engineering by
enabling continuous delivery and rapid response to change.
Despite these advantages, integrating information security
into agile workflows remains a persistent concern. Security
requirements are often formulated late in the development
cycle, inadequately defined, or overlooked entirely, parti-
cularly when delivery pressure dominates project priorities.
Survey results highlight that many agile teams operate
without formalized procedures for security integration,
which can lead to fragmented validation efforts and
increased vulnerability exposure [1].

A key difficulty lies in the manual development of
security test cases. When requirements are expressed
informally in natural language and subject to frequent
updates, test engineers face the challenge of interpreting
loosely defined security goals and transforming them into
structured, executable tests. This challenge is compounded
by the lack of standardized tools specifically designed to
support this task. However, recent reviews point to the
potential of Natural Language Processing (NLP)

techniques to automate test derivation by leveraging
linguistic patterns found in textual requirements [2].

Technical advances in language models have further
expanded the potential of NLP in requirement engineering.
The emergence of transformer-based architectures, such as
BERT, has introduced deeper contextual understanding of
complex expressions in requirement documents. These
tools significantly enhance the accuracy of information
extraction from unstructured text and are particularly
promising for identifying intent in security-related
statements [3].

Despite this progress, the use of NLP for generating
test cases specifically targeting security validation within
SCRUM settings remains limited. Many early NLP
applications in test automation have been designed for
generic use-case extraction or acceptance testing work-
flows [4]. These approaches often fall short in capturing
implicit or threat-oriented behaviors, which are central to
security testing. Bridging this gap requires a specialized
strategy that combines NLP-driven extraction with beha-
vior-driven development techniques, enabling test cases
that are both machine-readable and reflective of security
constraints relevant to agile contexts.

II. SCOPE LITERATURE REVIEW
AND PROBLEM STATEMENT

Agile methodologies, particularly SCRUM, have
become a dominant paradigm in software development due
to their adaptability and rapid delivery cycles. However,
the integration of security practices within these workflows
remains insufficiently addressed. Studies highlight that
teams often lack structured mechanisms for eliciting and
validating security-related requirements, which leads to
inconsistent or delayed implementation of critical
safeguards [1].

The process of manually deriving security test cases
from evolving textual requirements is known to be time-
intensive and prone to errors. This challenge becomes
especially apparent in SCRUM environments, where high
iteration frequency and natural language documentation
prevail. To mitigate these limitations, automated appro-
aches leveraging Natural Language Processing (NLP) have
gained attention. A comprehensive overview of such
techniques outlines how methods like tokenization,
syntactic parsing, and semantic role labeling can be
employed to reduce the burden of manual test design [2].

Intelligent Test Case Generation from Textual Security Requirements in Scrum: an NLP-Driven Approach 96

Significant improvement in the quality of NLP-based
extraction has been driven by advancements in deep
learning models. For instance, the emergence of trans-
former architectures, such as BERT, has enabled better
contextual interpretation of domain-specific language,
including security-related intents [3]. This shift opens the
possibility of more reliable identification of actionable
information from natural language specifications.

While early implementations of automated testing
frameworks focused predominantly on general acceptance
tests, more recent models have explored deeper semantic
analysis, including dependency parsing techniques to
enhance requirement coverage and correctness [4]. In
parallel, the application of behavior-driven design patterns
has been investigated as a means to express security
objectives in structured, executable formats, helping
translate abstract intentions into testable scenarios [5].

Nonetheless, formalization of security requirements
continues to present a significant obstacle. The absence of
shared taxonomies or ontological support across teams has
been identified as a factor hindering the standardization
and reuse of security specifications [6]. This gap under-
scores the importance of integrating structured represen-
tations within agile documentation practices.

Security-focused test case generation introduces
additional complexity due to its emphasis on negative
scenarios and threat modeling. Some research has shown
that NLP models often struggle with identifying conditions
related to denial, privilege escalation, or malicious
behavior when compared to functional use cases [7]. To
address these concerns, pattern-based frameworks have
been developed that translate syntactic structures into
reusable testing logic. However, these solutions still face
challenges when interpreting ambiguous or context-spe-
cific terminology [8].

Complementary efforts have looked at static analysis
and vulnerability detection through NLP-powered
techniques, particularly at the code level. While such
approaches demonstrate high potential, their integration
with early-stage textual requirements remains limited [9].
At the same time, other initiatives have demonstrated that
it is technically feasible to map natural language requi-
rements into formal specification formats, such as Soft-
ware Cost Reduction (SCR), though widespread adoption
remains low [10].

The synthesis of these findings reveals a persistent
limitation: despite the maturity of agile methods and
progress in NLP research, there remains no widely adopted
mechanism for translating security requirements – often
expressed informally in product backlogs – into executable
test cases. As a result, security validation is either incom-
plete or absent in many agile projects. The methodology
presented in this paper seeks to close this gap through a
multi-stage NLP pipeline that automates the transition
from natural language to structured, behavior-driven
security test scenarios, integrated directly within the
SCRUM process.

III. SCOPE OF WORK AND OBJECTIVES
This research is positioned at the intersection of agile

methodology, natural language processing, and information
security. The primary scope of the work is to develop and
evaluate a methodology that enables the automated gene-
ration of security-focused test cases from textual require-
ments in SCRUM-based software development projects.

To maintain relevance and technical rigor, the
proposed methodology adheres to several key constraints.
First, it is designed to function with natural language input
that is typical for SCRUM artifacts, including user stories,
acceptance criteria, and threat models. In addition, the
methodology is compatible with agile development workf-
lows and can be seamlessly integrated into standard CI/CD
pipelines. Finally, it specifically addresses security-related
requirements, encompassing aspects such as authentication,
access control, data protection, and input validation.

The methodology is grounded in modern NLP
techniques, including transformer-based contextual models,
semantic role labeling, and syntactic dependency parsing.
These technologies are leveraged to extract actors, actions,
objects, and constraints from unstructured textual requi-
rements and convert them into executable test logic. The
resulting test cases are presented in a Behavior-Driven
Development (BDD) format to ensure interpretability and
maintainability.

The primary goal is to design, implement, and evaluate
an NLP-driven pipeline that converts natural language
security requirements into automated and executable test
cases, fully aligned with agile development processes. This
objective is supported by several specific aims. The first
involves the formulation of a comprehensive taxonomy that
categorizes common security requirements typically
encountered in agile contexts. Next, the focus shifts to the
development of a multi-stage NLP pipeline that can
accurately extract semantic structures from textual inputs.
Building on this, a dedicated test generation engine will be
designed to translate the extracted semantics into reusable
templates following the BDD (Behavior-Driven Develop-
ment) style. The methodology will then be evaluated using
both real-world and synthetic datasets that encompass a
range of security-related scenarios. Finally, the effectiveness
of the proposed approach will be assessed through
quantitative metrics such as precision, recall, F1-score,
requirement coverage, and time efficiency in testing.

The scope is deliberately limited to the transformation
of textual inputs into test cases and does not address
dynamic analysis, test execution environments, or post-
execution reporting. However, the system is designed to
produce artifacts that are compatible with these downstream
activities.

IV. METHODOLOGY, ARCHITECTURE,
AND IMPLEMENTATION

The proposed approach relies on a multi-stage
Natural Language Processing (NLP) pipeline designed to
extract and transform textual security requirements into
structured, executable test cases. This methodology
integrates syntactic and semantic analysis techniques with

Taras Chura, Myroslav Zvarych 97

domain-specific rule sets and templates to enable high-
fidelity security test generation in Scrum-based agile
development environments. The approach ensures the
systematic handling of both explicit and implicit security
conditions, minimizing the risk of missed requirements.
Its design prioritizes traceability, automation, and
compatibility with modern CI/CD pipelines, enhancing
both scalability and maintainability.

In software development projects, security require-
ments typically manifest in three primary forms. These
include functional requirements, such as specifications
mandating user authentication through two-factor verifi-
cation; non-functional constraints, like the stipulation that
all sensitive data must be encrypted during transmission;
and misuse or abuse cases, for instance, scenarios where
an unauthorized attempt to access the admin panel should
be actively blocked.

To handle such diverse inputs, the proposed NLP
pipeline follows a structured, multi-phase approach. The
initial stage, preprocessing, involves linguistic operations
such as tokenization, part-of-speech tagging, dependency
parsing, and named entity recognition to identify relevant
entities, roles, and security-related terms. This stage is
further enhanced by leveraging transformer-based models
like BERT to capture contextual semantics.

Following preprocessing, the pipeline performs
intent extraction through Semantic Role Labeling (SRL),
which is used to determine the main actions, responsible
agents, target objects, and any conditional or temporal
qualifiers associated with the requirement. These sema-
ntics are then mapped to a logical testing framework in
the test logic mapping phase, where the extracted infor-
mation is aligned with predefined, rule-based templates
for security tests.

In the next step, test case generation, the system
produces behavior-driven test scenarios using the
“'Given–When–Then” format characteristic of Behavior-
Driven Development (BDD). The final phase, integration
and traceability, ensures that each test case is clearly
linked to its original requirement using unique identifiers,
and the resulting test cases are exported in a format
suitable for integration into CI/CD pipelines.

Underpinning this process is a modular system
architecture composed of four main components. The
input interface allows users to provide requirement data
either through direct file uploads or integration with
project management tools. The NLP processor performs
both syntactic and semantic analysis. The test generator
then applies the semantic patterns to produce structured
test cases, while the exporter module handles the output
of these cases to version control repositories or automated
test execution systems.

This architecture is designed for adaptability and
can be extended to meet the regulatory and operational
needs of specialized sectors such as healthcare or finance
(Fig. 1). Moreover, it includes feedback mechanisms to
continuously improve the underlying rulesets based on
system performance and user validation (Fig. 2).

Fig. 1. System architecture overview

Fig. 2. NLP-based test generation pipeline

To illustrate the approach, consider the following
example of a security requirement: “The system must
prevent access to the admin dashboard for non-authen-
ticated users”. This requirement can be semantically
decomposed into several core elements: the actor, in this
case, is a user who has not been authenticated; the action
involves an attempt to access a resource; the object is the
admin dashboard; and the key constraint specifies that
such access must be explicitly prevented.

Based on this analysis, the NLP-driven system
generates a behavior-driven test case structured in the
Given-When-Then format. The resulting scenario reads:
“Scenario: Prevent dashboard access for unauthenticated
users. Given the user is not logged in, when the user
attempts to access / admin, then access should be denied
with status code 403”. This test case directly reflects the
original requirement and is ready for execution within
automated pipelines.

This example demonstrates the end-to-end trans-
formation of abstract security requirements into auto-
mated, traceable, and behaviorally structured test cases
suitable for agile QA workflows.

Intelligent Test Case Generation from Textual Security Requirements in Scrum: an NLP-Driven Approach 98

V. EXPERIMENT AND RESULTS
A. EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed NLP-
based test generation approach, a dataset of 30 security-
related requirements was collected from a combination of
open-source repositories and anonymized SCRUM
backlogs provided by industry partners. Each requirement
was expressed in natural language and categorized into
functional, non-functional, or misuse cases.

The system was implemented in a Python-based
environment utilizing spaCy for preprocessing,
HuggingFace’s Transformers (RoBERTa) for contextual
understanding, and a custom BDD template engine for
test case construction. For benchmarking, three expe-
rienced QA professionals independently produced manu-
al test cases for the same requirement set. Their outputs
were reviewed to ensure consistency and objectivity.

B. EVALUATION METRICS
The performance of the proposed methodology was

evaluated using a set of well-defined metrics to ensure
both technical validity and practical relevance. Precision
was used to measure the proportion of correctly generated
test steps out of all the steps that the system produced,
thereby indicating the accuracy of the output. Recall
assessed the extent to which the system was able to
successfully identify and incorporate all relevant security-
related aspects from the input requirements. To provide a
balanced perspective, the F1 score – the harmonic means
of precision and recall – was also calculated.

In addition to these standard information retrieval
metrics, the evaluation also considered the overall
requirement coverage, which represents the percentage of
input requirements for which valid and complete test
cases could be automatically generated. The effectiveness
of the system was further demonstrated by tracking the
number of critical security defects that were successfully
identified through the generated tests. Finally, to assess
the efficiency of the pipeline, the average time to test
(TtT) was measured, capturing the duration required to
produce a valid and executable test case from a given
requirement.

C. RESULTS OVERVIEW
The results of the evaluation highlight clear

performance gains achieved through the proposed NLP-
based approach when compared to manual test case
generation. In terms of precision, the automated method
achieved a score of 0.91, surpassing the manual appro-
ach, which yielded 0.84. Similarly, recall was signi-
ficantly higher for the NLP system at 0.93, compared to
0.78 manually. This trend continued with the F1 score,
where the NLP method scored 0.92, notably outper-
forming the manual score of 0.80.

The difference was even more pronounced in terms
of requirement coverage. The automated system succes-
sfully produced test cases for all input requirements,
achieving 100 % coverage, while manual processes

managed to cover only 73 %. Furthermore, the NLP-
based method identified 28 critical security defects,
compared to just 17 uncovered through manual testing.
Time efficiency was another key advantage: on average,
the automated pipeline required only 3.2 minutes to
generate a valid test case, whereas the manual process
took approximately 14.6 minutes.

Collectively, these findings demonstrate the su-
periority of the NLP-driven approach across all evalua-
tion criteria. Of particular note is the approximately 78 %
reduction in time-to-test, alongside a 65 % increase in the
identification of critical security vulnerabilities – both of
which underscore the practical value of automation in
agile security testing.

D. DISCUSSION

As shown in Table, the NLP-driven approach
proved not only more efficient but also more effective in
identifying meaningful security flaws. Its ability to
achieve full coverage across all types of requirements and
maintain high semantic alignment with source content
underscores the robustness of the pipeline. Moreover, the
use of structured BDD outputs allows for better maintai-
nability and integration with CI/CD workflows. Testers
highlighted the interpretability and consistency of the
generated cases, especially under high iteration pressure.

Comparison of test performance metrics
(NLP vs Manual)

Metric NLP-based
approach Manual testing

Precision 0.91 0.84
Recall 0.93 0.78

F1 Score 0.92 0.8
Requirement coverage,

% 100 73

Critical defects
identified 28 17

Avg. time to test,
minutes 3,2 14,6

VI. CONCLUSION
The conducted study validated the viability of

integrating Natural Language Processing (NLP) into agile
SCRUM environments for the purpose of generating
high-quality, security-focused test cases directly from
textual requirements. The developed multi-stage pipeline –
comprising preprocessing, semantic extraction, test logic
mapping, and automated BDD-based generation –proved
effective across multiple evaluation criteria.

Empirical results showed an average precision of
0.91 and recall of 0.93 in generated test cases, signi-
ficantly outperforming manual testing with an F1 score of
0.92. The automated system achieved 100 % requirement
coverage compared to 73 % in manual testing and
uncovered 65 % more critical security defects.
Additionally, the average time to produce a test case was

Taras Chura, Myroslav Zvarych 99

reduced by 78 %, highlighting efficiency gains without
compromising quality.

These findings demonstrated that the proposed
NLP-based method substantially improved both the
quality and speed of security testing in iterative
development cycles. The structured test outputs
facilitated integration into CI/CD pipelines and enhance
communication among cross-functional teams.

The presented methodology offered a replicable and
scalable framework for enhancing information security
assurance through automation. Its application can serve as
a significant step forward in aligning QA practices with the
increasing demands of secure software development.

References

[1] Garousi, V., Bauer, S., & Felderer, M. (2020). NLP-assisted
software testing: a systematic mapping of the literature.
Information and Software Technology, 126, 106321.
DOI: https://doi.org/10.1016/j.infsof.2020.106321.

[2] Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2021).
Security in agile software development: A practitioner
survey. Information and Software Technology, 131,
106488. DOI: https://doi.org/10.1016/j.infsof.2020.106488.

[3] Boukhlif, M., Hanine, M., Kharmoum, N., Ruigómez
Noriega, A., García Obeso, D., & Ashraf, I. (2024). Natural
language processing-based software testing: A systematic
literature review. IEEE Access, 12, 79383–79400.
DOI: https://doi.org/10.1109/ACCESS.2024.3407753.

[4] Medeshetty, N., Ghazi, A. N., Alawadi, S., & Alkhabbas, F.
(2025). From Requirements to Test Cases: An NLP-Based

Approach for High-Performance ECU Test Case
Automation. arXiv preprint arXiv:2505.00547.
DOI: https://doi.org/10.48550/arXiv.2505.00547.

[5] Oliveira, A. R. de, & de Oliveira, R. A. (2023). Using
Behavior-Driven Development (BDD) for Non-Functional
Requirements Elicitation: A Case Study Based on
ISO/IEC/IEEE 25010. Journal of Software Engineering
Research and Development, 3(3), 14. DOI: https://
doi.org/10.3390/software3030014.

[6] Souag, A., Salinesi, C., & Comyn-Wattiau, I. (2024).
SecOnto: Ontological Representation of Security
Directives. Computers & Security, 130, 102456.
DOI: https://doi.org/10.1016/j.cose.2024.102456.

[7] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.
DOI: https://doi.org/10.48550/arXiv.1810.04805.

[8] Chinnaswamy, A., Sabarish, B. A., & Menan, R. D. (2024).
User Story Based Automated Test Case Generation Using
NLP. Proceedings of the 2024 International Conference on
Computational Intelligence in Data Science, 717, 156–166.
DOI: https://doi.org/10.1007/978-3-031-69982-5_12.

[9] Mai, P. X., Nakamura, M., & Sato, T. (2018). NLP
approach for requirements-based security testing. IEEE
29th International Symposium on Software Reliability
Engineering (ISSRE), 58–69. DOI: https://doi.org/
10.1109/ISSRE.2018.00017.

[10] Li, Z., Dutta, S., & Naik, M. (2025). IRIS: LLM-Assisted
Static Analysis for Detecting Security Vulnerabilities. In
Proceedings of the International Conference on Learning
Representations (ICLR). DOI: https://doi.org/10.48550/
arXiv.2408.10377

Taras Chura was born in
Kalush, Ivano-Frankivsk region,
Ukraine, on May 29, 1999. He
received a Bachelor’s degree in
cybersecurity in 2020 and a
Master’s degree in cybersecurity
in 2022 at Lviv Polytechnic
National University, Lviv,
Ukraine. He is currently pursuing
a Ph.D. in cybersecurity at the
same institution. His professional

experience includes project management and coordination of
software development teams using the Agile methodology
and the SCRUM framework. His research interests include
agile security processes, NLP in software engineering, and
automated test case generation.

Myroslav Zvarych was born
in Brody, Lviv region, Ukraine,
on October 24, 1981. He received
a Master’s degree in mathematics
and programming at the Institute
of Applied Mathematics and Fun-
damental Sciences at Lviv Poly-
technic National University, Lviv,
Ukraine. He is currently pursuing
a Ph. D. at the Department of
Applied experience Mathematics

of the same institute. His thesis focuses on “Test Case
Generation from Textual Requirements Using NLP
Techniques”. He is also employed as a software engineer at
SoftServe, specializing in automated software testing and
quality assurance.

