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Abstract: This article explores the use of the Raft 
consensus algorithm to coordinate interceptor drones in 
systems designed to detect and neutralize unmanned aerial 
vehicles (UAVs). The modified Raft algorithm has enabled 
stable and synchronized drone actions, allowing for auto-
nomous target interception. Modeling and simulation con-
firmed the system’s fault tolerance and real-time coor-
dination capabilities. In scenarios involving partial commu-
nication failures or drone loss, the system has successfully 
maintained consensus and continued operation. The pro-
posed architecture has used the Rust programming language 
to ensure memory safety and concurrency management. The 
results have provided the effectiveness of using Raft in 
distributed UAV defense systems, while offering advantages 
such as leader re-election, log replication, and secure 
communication channels. The paper also discusses crypto-
graphic enhancements and system resilience to potential 
cyber threats. This research confirms the applicability of the 
Raft algorithm for UAV interceptor swarms and gives a 
foundation for further improvements in autonomous defense 
systems.  

Index terms: raft consensus algorithm, interceptor drones, 
UAV detection and neutralization, distributed coordination, 
memory-safe programming, Rust language, real-time 
autonomous systems, cybersecurity in UAV networks. 

I. INTRODUCTION 
In the current context of armed conflicts and rapid 

evolution of military technologies, unmanned aerial 
vehicles (UAV) are becoming an important threat to the 
security of states. From reconnaissance UAVs to barrage 
munitions and FPV drones, their use on the battlefield 
necessitates the development of effective defense and 
countermeasures. Traditional air defense systems, such as 
man-portable air defense systems, are expensive and not 
always effective against small and maneuverable drones. 
In this context, the use of interceptor drones becomes a 
promising solution, as they can detect and neutralize 
threats with high efficiency and low operating costs. 

Effective coordination of interceptor drones is a 
critical task, as the success of operations depends on rapid 
response and coordination in real time. One possible way 
to solve this problem is to use the Raft algorithm, which 
ensures consensus in distributed systems [1]. Raft offers 
robust mechanisms for synchronizing data and actions 

between system nodes, even in the event of individual 
component failures, making it an ideal choice for coor-
dinating interceptor drones in combat [2]. 

The purpose of this study is to develop and evaluate 
the effectiveness of a drone-interceptor coordination 
system based on the Raft algorithm. The paper analyzes 
the principles of the algorithm and presents modeling 
results that emphasize the effectiveness of the proposed 
approach in the face of real-world UAV threats. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

The Raft algorithm was proposed as a modern and 
more robust alternative to the Paxos algorithm, due to 
which Raft provides a simpler implementation of lea-
dership, voting, and log replication mechanisms than 
Paxos. These aspects are crucial for coordinating actions 
in systems with high reliability and responsiveness 
requirements. A study by Vora et al. in 2023 [1] showed 
that Raft can provide reliable consensus in systems with 
frequent failures and high loads, which is especially 
important for rapid response in the event of a UAV 
shootdown. Chu et al. (2024) [2] studied the importance of 
consensus for the coordination of autonomous vehicles, 
which is similar to the task of coordinating interceptor 
drones. The Raft algorithm can provide this consensus. 

Additionally, Abdorrahimi et al. (2024) analyzed the 
use of the Raft algorithm in the blockchain, which 
confirms its reliability and efficiency in distributed 
systems [3]. This study emphasizes Raft's ability to 
maintain consensus in complex environments, which is 
relevant for coordinating drones in combat. In addition, 
Belous and Krylov (2024) explored ways to minimize 
network traffic in distributed databases, which also 
strengthens the argument for using similar approaches in 
interceptor drone systems [4]. 

Compared to these works, our approach integrates 
Raft into an interceptor drone system with enhanced fault 
tolerance, aiming at combat-grade reliability in contested 
environments. The proposed model builds upon these 
foundations and addresses unique constraints of aerial 
interception in real-time scenarios. Also, this study 
contributes to the cybersecurity field since the proposed 
approach uses a memory-safe language (Rust) to address 
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the common vulnerabilities associated with embedded 
systems and real-time coordination logic. 

III. SCOPE OF WORK AND OBJECTIVES 
This study focuses on the design and evaluation of a 

distributed coordination system for interceptor drones 
based on the Raft consensus algorithm. The scope of work 
includes simulation of drone swarms executing coor-
dinated interception missions in hostile environments with 
potential communication loss or partial drone failure. 

The main objectives of this research are as follows: 
(1) to adapt and evaluate the Raft consensus algorithm in 
the context of UAV threat response; (2) to implement a 
prototype drone coordination system using memory-safe 
Rust programming language; (3) to test the system’s fault 
tolerance, leader election process, and ability to maintain 
consensus under varying conditions; (4) to propose 
security-enhanced modifications of the Raft algorithm for 
use in cyber-physical military systems. 

The study also addresses integration challenges, 
implementation constraints, and real-world applicability 
for both military and civilian UAV countermeasure 
scenarios. 

IV. CREATING A SYSTEM ARCHITECTURE 
The system’s architecture involves a distributed 

network of interceptor drones, each with its own sensors 
and communication means to interact with other drones 
and the central server (see Fig. 1). The main task is to 
quickly detect and neutralize enemy UAVs, while 
maintaining coherence of actions even in the event of 
failures or temporary loss of communication. 

 

 
Fig. 1. System architecture of Raft-based UAV interceptor 

coordination system 

The central server collects and processes data, pro-
viding basic information about targets and coordinating 
the initial planning of the operation, while interceptor 
drones directly detect objects in their range and apply 
interception means. Each drone constantly exchanges 
position, status, and threat information, automatically 
matching roles and tasks in changing environments [5]. 

An adapted Raft algorithm is used to coordinate the 
system. One of the drones in the “cluster” acts as a leader, 
distributing tasks and agreeing on the choice of target. If 
the leader loses connection with the network, the drones 
use timers to initiate the election of a new leader based on 
a majority vote mechanism. Each decision made is 

recorded in a log that the leader sends to other drones, 
reflecting the current state of the entire group (including 
drone positions, battery level, signal strength, etc.). In the 
event of critical changes, such as switching attention to 
another target or choosing the best one among several, a 
voting mechanism is used to maintain the system’s 
stability despite the failure of individual elements. Thanks 
to this architecture, drones retain high autonomy and can 
continue to perform combat missions even in the face of 
significant network failures or lack of communication 
with the server. 

A. HOW THE RAFT ALGORITHM WORKS IN 
DRONE COORDINATION SYSTEMS 

The Raft algorithm solves the problem of achieving 
consensus in distributed systems, which is critical for real-
time coordination of interceptor drones. It is based on a 
centralized control model: a leader is elected who makes 
decisions and sends change logs to other nodes. In case of 
loss of communication with the leader, an election process 
based on random timers is initiated: nodes that do not 
receive a signal become candidates and collect the 
majority vote. This ensures rapid recovery of the system 
after failures and allows drones to respond quickly to new 
threats or the disappearance of enemy objects [6]. 

Raft uses a quorum rule (more than half) to make 
decisions. A candidate for leadership must receive votes 
from at least half of the nodes plus one. The same applies 
to confirmation of operations: new entries in the change 
logs are considered valid only if they are supported by a 
majority. This eliminates the “bifurcation” of system 
states and guarantees consistency, because without a 
quorum, contradictory records are not moved forward [7]. 
Also, Raft is usually implemented on an odd number of 
nodes (3, 5, 7, etc.), which minimizes the risk of an equal 
distribution of votes [8]. This way, even if a certain 
number of drones fail or lose connection, the rest can 
continue to perform the common task. 

Raft is fault tolerant: it can function correctly even if 
up to half of the nodes fail. This is especially important 
when drones operate in environments with a high risk of 
damage, as the algorithm allows them to maintain data 
integrity and maintain uninterrupted coordination. In large 
clusters, the leader election time can increase, which 
affects system performance, so it is recommended to 
optimize timer parameters for scalability [9]. Thanks to 
the election mechanisms, log replication, and quorum use, 
Raft is the best choice for building fault-tolerant systems, 
including UAV detection and neutralization systems. 

B. CHOOSING A PROGRAMMING LANGUAGE 
AND DEVELOPMENT TOOLS 

Software for the flight controller or for the control 
station is written using low-level programming languages. 
They allow you to use the limited resources of the 
microcontroller and the system as a whole very efficiently. 
The disadvantage of this approach is that the developer, 
having gained full control of the system, can implicitly 
create an error in the system, which will lead to incorrect 
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program execution or vulnerability [10]. The most com-
mon problem in low-level systems is the problem of 
proper memory management. 

Dynamic memory errors remain one of the most 
common sources of software vulnerabilities. Attackers 
actively exploit them to gain unauthorized access to 
systems, steal data, disrupt software operations, and per-
form other criminal acts [11]. These types of vulne-
rabilities are very difficult to reproduce and quickly fix. In 
high-level systems, this problem is dealt with at the level 
of the operating system and antiviruses, but unfortunately, 
it is impossible to run a full-fledged operating system in 
microcontrollers to counteract these problems. 

Despite being a long-standing issue with significant 
consequences, memory management vulnerabilities 
remain widespread even in large-scale projects. Reports 
by Google, Microsoft, Mozilla, and others show that up to 
70 % of critical security flaws in software (both 
proprietary and open-source) are caused by improper 
memory handling (see Fig. 2). 

 

 
Fig. 2. Percentage of vulnerabilities related to memory 

management 

This data shows that the problem of secure memory 
management remains acute and requires careful attention 
from developers and cybersecurity professionals. There-
fore, to write software for a drone interception system, 
you should use Rust or similar programming languages 
that guarantee secure memory management in low-level 
systems. 

Rust was chosen to write the software for the drone 
interceptor coordination system because it provides a high 
level of memory safety and prevents common errors asso-
ciated with improper management of dynamic memory, 
such as buffer overflows or working with uninitialized 
variables. Rust’s performance is comparable to languages 
like C and C++, which is crucial for resource-intensive 
tasks related to real-time drone coordination. In addition, 
its strong type system allows many errors to be detected at 
compile time, reducing the risk of vulnerabilities in the 
executable code. An important advantage is also the built-
in mechanisms for safe parallelism and competition, 
which allow for the efficient processing of a large number 
of tasks simultaneously, which is critical for a system that 
often has to work under a significant load [12]. 

C. EXPERIMENT SETUP AND EVALUATION 
The software development process began with the 

design of the high-level structure of the system, where the 
main components and data model for the exchange of 
messages between the drones and the central server were 
defined [13]. 

To evaluate the performance and feasibility of the 
proposed coordination system based on the Raft 
algorithm, a series of simulations were conducted using a 
prototype implementation written in Rust. The simulation 
environment was designed to emulate a swarm of three 
interceptor drones operating in a shared airspace, tasked 
with detecting and neutralizing multiple enemy UAV 
targets. 

Each drone was represented as an independent node 
running a separate instance of the Raft protocol using the 
raft-lite library. Communication between drones was 
modeled over the loopback interface (127.0.0.1) using 
asynchronous message passing powered by the Tokio 
runtime. The drones communicated and reached 
consensus on which enemy target to intercept based on 
pre-defined conditions (e. g., prioritizing specific UAV 
models such as Lancet-3). 

The available drones and targets list was hard-coded 
to simulate a realistic scenario with limited coordination 
time. The primary metric for evaluating the system’s 
correctness was its ability to reach a consensus quickly. A 
successful consensus was recorded when all nodes 
decided to intercept the same high-priority target. 

The simulation results demonstrated the system’s 
ability to coordinate actions under various conditions, 
including partial node delays and message handling 
asynchrony. All three drones successfully reached 
consensus on the selected target, confirming the system’s 
correctness and fault tolerance within the constraints of 
the simulated environment. The program code is shown in 
Listing 1. 
 
Listing 1. Program code 
use raft_lite::config::{RaftConfig, 
RaftParams}; 
use raft_lite::raft::Raft; 
use std::path::PathBuf; 
 
#[tokio::main] 
async fn main() { 
    // To simplify this example, the HTTP 
protocol is used. 
    // The protocol is just a transport 
layer, so anything suitable can be used. 
    // The list of drone interceptors 
available in that area 
    let drones = vec![ 
        "127.0.0.1:1024".to_string(), // 
drone 1 
        "127.0.0.1:1025".to_string(), // 
drone 2 
        "127.0.0.1:1026".to_string(), // 
drone 3 
    ]; 
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    // The list of  enemy drones that must 
be intercepted 
    let targets = vec![ 
        b"Zala-421-16".to_vec(), // some 
hypothetical target 
        b"SuperCam".to_vec(),    // another 
target 
        b"Lancet-3".to_vec(),    // one 
more target 
    ]; 
 
    for i in 0..drones.len() { 
        let drones = drones.clone(); 
        let targets = targets.clone(); 
        let mut raft = 
get_raft_instance(drones.clone(), 
drones[i].clone()); 
 
        // Spawn a separate thread to 
simulate that Raft can work on different 
computing units like drones or servers 
        tokio::spawn(async move { 
            let (raft_tx, mut raft_rx) = 
raft.run(); 
            
raft_tx.send(targets[i].clone()).unwrap(); 
 
            loop { 
                match raft_rx.recv().await 
{ 
                    Some(msg) => { 
                        let target = 
String::from_utf8(msg).unwrap(); 
 
                        if 
choose_target_to_attack(&target) { 
                            
println!("Consensus is reached. Drone {} 
will attack {}", i, target); 
                        } 
                    } 
                    None => break, 
                } 
            } 
        }); 
    } 
    
tokio::time::sleep(tokio::time::Duration::f
rom_secs(5)).await; 
} 
 
fn get_raft_instance(peers: Vec<String>, 
self_addr: String) -> Raft { 
    let path: PathBuf = 
PathBuf::from("./data/drones").join(&self_a
ddr); 
    let raft_config = 
RaftConfig::new(peers, self_addr, 
RaftParams::default(), Some(path)); 
    Raft::new(raft_config) 
} 
 
fn choose_target_to_attack(target: &String) 
-> bool { 
    // There can be hundreds of conditions 
for choosing the appropriate target 

    // but let's say we are interested only 
in one condition when the target is 
'Lancet-3' 
    *target == "Lancet-3" 
} 

The result of the program execution is shown in 
Listing 2. 
 
Listing 2. Result of the program execution 
/home/andryxaua/.cargo/bin/cargo run --
color=always --profile dev --package 
test_raft_for_drones --bin 
test_raft_for_drones 
 Finished `dev` profile [unoptimized 
+ debuginfo] target(s) in 0.20s 
  Running 
`target/debug/test_raft_for_drones` 
Consensus is reached. Drone 1 will attack 
Lancet-3 
Consensus is reached. Drone 0 will attack 
Lancet-3 
Consensus is reached. Drone 2 will attack 
Lancet-3 
 
Process finished with exit code 0 

D. SECURITY-ENHANCED RAFT 
ADAPTATION 

Despite the simplicity of the current implementation, 
it has limitations that warrant further research. Although 
Raft is an elegant solution for consensus in distributed 
systems, it assumes non-Byzantine failures – nodes may 
crash but not behave maliciously. For UAV interceptor 
systems exposed to cyberattacks, enhanced security is 
essential. Incorporating cryptographic safeguards allows 
Raft to handle scenarios where nodes are compromised or 
communication channels intercepted [14]. 

An important improvement is ensuring log integrity 
and authenticity. In standard Raft, the leader appends 
entries replicated to followers, but forged or altered logs – 
especially in combat – can break consensus. Therefore, 
log entries should be digitally signed and verified before 
acceptance [15]. Periodic hashing or Merkle trees can 
ensure past data hasn’t been tampered with, significantly 
reducing undetected manipulation. 

Leader election is normally based on timers and term 
numbers, therefore vulnerable to spoofing in hostile 
environments. Mutual signatures on voting messages 
ensure legitimacy and verifiable majority support, 
preventing a compromised node from seizing control [16]. 

Although Raft lacks native Byzantine fault tolerance, 
the anomaly detection mechanisms (such as monitoring 
inconsistent logs or erratic behavior) can help isolate 
compromised nodes. These measures enhance resilience 
against active interference. 

Secure communication channels are also vital. 
Encrypting Raft traffic (e. g., via TLS or DTLS) with 
identity verification prevents impersonation or injection of 
false data, upholding confidentiality and protecting the 
consensus process [17]. 
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Finally, effective key management is required. 
Lightweight approaches like short-lived certificates or 
certificate pinning support strong authentication without 
burdening drones’ limited resources. Together, these 
enhancements make Raft more resilient to both reliability 
failures and sophisticated cyber threats. 

E. LIMITATIONS AND DIRECTIONS FOR 
FURTHER RESEARCH 

Despite the demonstrated reliability of the Raft-based 
coordination system, several important considerations 
remain for future development. First, real-time constraints 
and computational overhead present a delicate balance: 
while cryptographic operations and frequent inter-drone 
communications bolster security and consensus fidelity, 
they can also create bottlenecks in time-critical scenarios. 
Optimizing cryptographic routines and refining the 
frequency of message exchanges may alleviate delays, 
particularly on resource-limited UAV platforms. 

Another significant factor involves managing hard-
ware constraints. Interceptor drones must often operate 
under tight energy budgets, while simultaneously sup-
porting flight stability, sensor input processing, and 
communication tasks. Although Rust’s memory safety and 
asynchronous design improve efficiency, real-world trials 
could reveal unforeseen interactions – such as competition 
over CPU or battery resources. Investigating lightweight 
consensus variants or partial replication schemes could 
help resolve potential conflicts in these constrained 
environments. 

Equally crucial is the challenge of integrating this 
system into broader defense and surveillance infrastruc-
tures. UAV-based interceptors seldom function in iso-
lation, but rather in tandem with radar networks, data 
fusion platforms, and advanced decision-making modules. 
The way UAV-based interceptors work is similar to that 
of SCADA systems [18]. Ensuring seamless data exchan-
ge and interoperability with these external components 
would enable a more robust air defense ecosystem. 
Furthermore, because battle conditions can fluctuate 
dramatically, future research might incorporate adaptive 
swarm strategies or even self-organizing algorithms that 
dynamically reassign roles among drones when conditions 
such as GPS reliability, terrain, or threat density change. 

In addition, although the proposed system incor-
porates basic resilience against compromised nodes, in-
depth handling of Byzantine threats remains ripe for 
exploration. Malicious drones may behave unpredictably, 
sending conflicting or deceptive information that requires 
sophisticated anomaly detection or Byzantine fault 
tolerance techniques. Investigating machine-learning-
driven intrusion detection or consensus protocols with 
partial Byzantine coverage would refine the system’s 
capacity to cope with actively malicious behavior. 

Lastly, prolonged field tests under varied environ-
mental and electromagnetic conditions are essential to 
validate the current design. Laboratory simulations, while 
informative, cannot fully capture the unpredictability of 
real-world interference, GPS spoofing, or large-scale 

electromagnetic disruption. Conducting extended trials 
with multiple drones in operationally relevant settings 
would offer invaluable insights, revealing performance 
thresholds, refining fault-tolerance measures, and con-
firming the system’s viability in genuine high-stakes 
environments. 

V. CONCLUSION 
The proposed system based on the Raft algorithm 

has showed high efficiency in solving the problem of 
coordinating distributed UAV defense systems. The use of 
the Raft algorithm allowed for a reliable consensus 
between drones, which, in turn, increases the overall 
efficiency and speed of the system’s response to threats. 

During the study, software architecture was deve-
loped that takes into account the specifics of parallel and 
asynchronous operations that are critical for the operation 
of distributed systems in real time. The use of the Rust 
programming language, which ensured memory safety 
and high performance, avoided typical problems asso-
ciated with resource management and reduces the risk of 
errors during program code execution. The simulation 
results showed that integrating Raft into a drone 
coordination system not only improved the stability of the 
system, but also significantly reduced the time required to 
reach a consensus on target selection. This was especially 
important in a rapidly changing situation on the bat-
tlefield, where every second could be crucial. 

Additionally, a series of tests were conducted to 
confirm the system’s ability to operate in difficult con-
ditions, such as partial loss of communication or physical 
destruction of individual drones. Results showed that the 
system has a high degree of reliability and can function 
even in the event of unforeseen circumstances. 

The results obtained indicated the potential of the 
proposed approach for use in real-world conditions, both 
in the military and civilian protection against UAV 
threats. Further research should focus on improving the 
algorithms for prioritizing and optimizing the energy 
consumption of interceptor drones, increasing efficiency 
of the system. 
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