
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 1, 2025

USING THE RAFT ALGORITHM TO COORDINATE INTERCEPTOR
DRONES IN A UAV DETECTION AND NEUTRALIZATION SYSTEM

Andrii Nyzhnyk1, Andrii Partyka1, Michal Podpora2

1 Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine,
2 University of Opole, 48, Oleska, 45-052 Opole, Poland

Authors’ e-mails: andrii.o.nyzhnyk@lpnu.ua, andrii.i.partyka@lpnu.ua, michal.podpora@uni.opole.pl
https://doi.org/10.23939/acps2025.01.105

Submitted on 20.04.2025

© Nyzhnyk A., Partyka A., Podpora M., 2025

Abstract: This article explores the use of the Raft
consensus algorithm to coordinate interceptor drones in
systems designed to detect and neutralize unmanned aerial
vehicles (UAVs). The modified Raft algorithm has enabled
stable and synchronized drone actions, allowing for auto-
nomous target interception. Modeling and simulation con-
firmed the system’s fault tolerance and real-time coor-
dination capabilities. In scenarios involving partial commu-
nication failures or drone loss, the system has successfully
maintained consensus and continued operation. The pro-
posed architecture has used the Rust programming language
to ensure memory safety and concurrency management. The
results have provided the effectiveness of using Raft in
distributed UAV defense systems, while offering advantages
such as leader re-election, log replication, and secure
communication channels. The paper also discusses crypto-
graphic enhancements and system resilience to potential
cyber threats. This research confirms the applicability of the
Raft algorithm for UAV interceptor swarms and gives a
foundation for further improvements in autonomous defense
systems.

Index terms: raft consensus algorithm, interceptor drones,
UAV detection and neutralization, distributed coordination,
memory-safe programming, Rust language, real-time
autonomous systems, cybersecurity in UAV networks.

I. INTRODUCTION
In the current context of armed conflicts and rapid

evolution of military technologies, unmanned aerial
vehicles (UAV) are becoming an important threat to the
security of states. From reconnaissance UAVs to barrage
munitions and FPV drones, their use on the battlefield
necessitates the development of effective defense and
countermeasures. Traditional air defense systems, such as
man-portable air defense systems, are expensive and not
always effective against small and maneuverable drones.
In this context, the use of interceptor drones becomes a
promising solution, as they can detect and neutralize
threats with high efficiency and low operating costs.

Effective coordination of interceptor drones is a
critical task, as the success of operations depends on rapid
response and coordination in real time. One possible way
to solve this problem is to use the Raft algorithm, which
ensures consensus in distributed systems [1]. Raft offers
robust mechanisms for synchronizing data and actions

between system nodes, even in the event of individual
component failures, making it an ideal choice for coor-
dinating interceptor drones in combat [2].

The purpose of this study is to develop and evaluate
the effectiveness of a drone-interceptor coordination
system based on the Raft algorithm. The paper analyzes
the principles of the algorithm and presents modeling
results that emphasize the effectiveness of the proposed
approach in the face of real-world UAV threats.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The Raft algorithm was proposed as a modern and
more robust alternative to the Paxos algorithm, due to
which Raft provides a simpler implementation of lea-
dership, voting, and log replication mechanisms than
Paxos. These aspects are crucial for coordinating actions
in systems with high reliability and responsiveness
requirements. A study by Vora et al. in 2023 [1] showed
that Raft can provide reliable consensus in systems with
frequent failures and high loads, which is especially
important for rapid response in the event of a UAV
shootdown. Chu et al. (2024) [2] studied the importance of
consensus for the coordination of autonomous vehicles,
which is similar to the task of coordinating interceptor
drones. The Raft algorithm can provide this consensus.

Additionally, Abdorrahimi et al. (2024) analyzed the
use of the Raft algorithm in the blockchain, which
confirms its reliability and efficiency in distributed
systems [3]. This study emphasizes Raft's ability to
maintain consensus in complex environments, which is
relevant for coordinating drones in combat. In addition,
Belous and Krylov (2024) explored ways to minimize
network traffic in distributed databases, which also
strengthens the argument for using similar approaches in
interceptor drone systems [4].

Compared to these works, our approach integrates
Raft into an interceptor drone system with enhanced fault
tolerance, aiming at combat-grade reliability in contested
environments. The proposed model builds upon these
foundations and addresses unique constraints of aerial
interception in real-time scenarios. Also, this study
contributes to the cybersecurity field since the proposed
approach uses a memory-safe language (Rust) to address

Using the Raft Algorithm to Coordinate Interceptor Drones in a UAV Detection and Neutralization System 106

the common vulnerabilities associated with embedded
systems and real-time coordination logic.

III. SCOPE OF WORK AND OBJECTIVES
This study focuses on the design and evaluation of a

distributed coordination system for interceptor drones
based on the Raft consensus algorithm. The scope of work
includes simulation of drone swarms executing coor-
dinated interception missions in hostile environments with
potential communication loss or partial drone failure.

The main objectives of this research are as follows:
(1) to adapt and evaluate the Raft consensus algorithm in
the context of UAV threat response; (2) to implement a
prototype drone coordination system using memory-safe
Rust programming language; (3) to test the system’s fault
tolerance, leader election process, and ability to maintain
consensus under varying conditions; (4) to propose
security-enhanced modifications of the Raft algorithm for
use in cyber-physical military systems.

The study also addresses integration challenges,
implementation constraints, and real-world applicability
for both military and civilian UAV countermeasure
scenarios.

IV. CREATING A SYSTEM ARCHITECTURE
The system’s architecture involves a distributed

network of interceptor drones, each with its own sensors
and communication means to interact with other drones
and the central server (see Fig. 1). The main task is to
quickly detect and neutralize enemy UAVs, while
maintaining coherence of actions even in the event of
failures or temporary loss of communication.

Fig. 1. System architecture of Raft-based UAV interceptor

coordination system

The central server collects and processes data, pro-
viding basic information about targets and coordinating
the initial planning of the operation, while interceptor
drones directly detect objects in their range and apply
interception means. Each drone constantly exchanges
position, status, and threat information, automatically
matching roles and tasks in changing environments [5].

An adapted Raft algorithm is used to coordinate the
system. One of the drones in the “cluster” acts as a leader,
distributing tasks and agreeing on the choice of target. If
the leader loses connection with the network, the drones
use timers to initiate the election of a new leader based on
a majority vote mechanism. Each decision made is

recorded in a log that the leader sends to other drones,
reflecting the current state of the entire group (including
drone positions, battery level, signal strength, etc.). In the
event of critical changes, such as switching attention to
another target or choosing the best one among several, a
voting mechanism is used to maintain the system’s
stability despite the failure of individual elements. Thanks
to this architecture, drones retain high autonomy and can
continue to perform combat missions even in the face of
significant network failures or lack of communication
with the server.

A. HOW THE RAFT ALGORITHM WORKS IN
DRONE COORDINATION SYSTEMS

The Raft algorithm solves the problem of achieving
consensus in distributed systems, which is critical for real-
time coordination of interceptor drones. It is based on a
centralized control model: a leader is elected who makes
decisions and sends change logs to other nodes. In case of
loss of communication with the leader, an election process
based on random timers is initiated: nodes that do not
receive a signal become candidates and collect the
majority vote. This ensures rapid recovery of the system
after failures and allows drones to respond quickly to new
threats or the disappearance of enemy objects [6].

Raft uses a quorum rule (more than half) to make
decisions. A candidate for leadership must receive votes
from at least half of the nodes plus one. The same applies
to confirmation of operations: new entries in the change
logs are considered valid only if they are supported by a
majority. This eliminates the “bifurcation” of system
states and guarantees consistency, because without a
quorum, contradictory records are not moved forward [7].
Also, Raft is usually implemented on an odd number of
nodes (3, 5, 7, etc.), which minimizes the risk of an equal
distribution of votes [8]. This way, even if a certain
number of drones fail or lose connection, the rest can
continue to perform the common task.

Raft is fault tolerant: it can function correctly even if
up to half of the nodes fail. This is especially important
when drones operate in environments with a high risk of
damage, as the algorithm allows them to maintain data
integrity and maintain uninterrupted coordination. In large
clusters, the leader election time can increase, which
affects system performance, so it is recommended to
optimize timer parameters for scalability [9]. Thanks to
the election mechanisms, log replication, and quorum use,
Raft is the best choice for building fault-tolerant systems,
including UAV detection and neutralization systems.

B. CHOOSING A PROGRAMMING LANGUAGE
AND DEVELOPMENT TOOLS

Software for the flight controller or for the control
station is written using low-level programming languages.
They allow you to use the limited resources of the
microcontroller and the system as a whole very efficiently.
The disadvantage of this approach is that the developer,
having gained full control of the system, can implicitly
create an error in the system, which will lead to incorrect

Andrii Nyzhnyk, Andrii Partyka, Michal Podpora 107

program execution or vulnerability [10]. The most com-
mon problem in low-level systems is the problem of
proper memory management.

Dynamic memory errors remain one of the most
common sources of software vulnerabilities. Attackers
actively exploit them to gain unauthorized access to
systems, steal data, disrupt software operations, and per-
form other criminal acts [11]. These types of vulne-
rabilities are very difficult to reproduce and quickly fix. In
high-level systems, this problem is dealt with at the level
of the operating system and antiviruses, but unfortunately,
it is impossible to run a full-fledged operating system in
microcontrollers to counteract these problems.

Despite being a long-standing issue with significant
consequences, memory management vulnerabilities
remain widespread even in large-scale projects. Reports
by Google, Microsoft, Mozilla, and others show that up to
70 % of critical security flaws in software (both
proprietary and open-source) are caused by improper
memory handling (see Fig. 2).

Fig. 2. Percentage of vulnerabilities related to memory

management

This data shows that the problem of secure memory
management remains acute and requires careful attention
from developers and cybersecurity professionals. There-
fore, to write software for a drone interception system,
you should use Rust or similar programming languages
that guarantee secure memory management in low-level
systems.

Rust was chosen to write the software for the drone
interceptor coordination system because it provides a high
level of memory safety and prevents common errors asso-
ciated with improper management of dynamic memory,
such as buffer overflows or working with uninitialized
variables. Rust’s performance is comparable to languages
like C and C++, which is crucial for resource-intensive
tasks related to real-time drone coordination. In addition,
its strong type system allows many errors to be detected at
compile time, reducing the risk of vulnerabilities in the
executable code. An important advantage is also the built-
in mechanisms for safe parallelism and competition,
which allow for the efficient processing of a large number
of tasks simultaneously, which is critical for a system that
often has to work under a significant load [12].

C. EXPERIMENT SETUP AND EVALUATION
The software development process began with the

design of the high-level structure of the system, where the
main components and data model for the exchange of
messages between the drones and the central server were
defined [13].

To evaluate the performance and feasibility of the
proposed coordination system based on the Raft
algorithm, a series of simulations were conducted using a
prototype implementation written in Rust. The simulation
environment was designed to emulate a swarm of three
interceptor drones operating in a shared airspace, tasked
with detecting and neutralizing multiple enemy UAV
targets.

Each drone was represented as an independent node
running a separate instance of the Raft protocol using the
raft-lite library. Communication between drones was
modeled over the loopback interface (127.0.0.1) using
asynchronous message passing powered by the Tokio
runtime. The drones communicated and reached
consensus on which enemy target to intercept based on
pre-defined conditions (e. g., prioritizing specific UAV
models such as Lancet-3).

The available drones and targets list was hard-coded
to simulate a realistic scenario with limited coordination
time. The primary metric for evaluating the system’s
correctness was its ability to reach a consensus quickly. A
successful consensus was recorded when all nodes
decided to intercept the same high-priority target.

The simulation results demonstrated the system’s
ability to coordinate actions under various conditions,
including partial node delays and message handling
asynchrony. All three drones successfully reached
consensus on the selected target, confirming the system’s
correctness and fault tolerance within the constraints of
the simulated environment. The program code is shown in
Listing 1.

Listing 1. Program code
use raft_lite::config::{RaftConfig,
RaftParams};
use raft_lite::raft::Raft;
use std::path::PathBuf;

#[tokio::main]
async fn main() {
 // To simplify this example, the HTTP
protocol is used.
 // The protocol is just a transport
layer, so anything suitable can be used.
 // The list of drone interceptors
available in that area
 let drones = vec![
 "127.0.0.1:1024".to_string(), //
drone 1
 "127.0.0.1:1025".to_string(), //
drone 2
 "127.0.0.1:1026".to_string(), //
drone 3
];

Using the Raft Algorithm to Coordinate Interceptor Drones in a UAV Detection and Neutralization System 108

 // The list of enemy drones that must
be intercepted
 let targets = vec![
 b"Zala-421-16".to_vec(), // some
hypothetical target
 b"SuperCam".to_vec(), // another
target
 b"Lancet-3".to_vec(), // one
more target
];

 for i in 0..drones.len() {
 let drones = drones.clone();
 let targets = targets.clone();
 let mut raft =
get_raft_instance(drones.clone(),
drones[i].clone());

 // Spawn a separate thread to
simulate that Raft can work on different
computing units like drones or servers
 tokio::spawn(async move {
 let (raft_tx, mut raft_rx) =
raft.run();

raft_tx.send(targets[i].clone()).unwrap();

 loop {
 match raft_rx.recv().await
{
 Some(msg) => {
 let target =
String::from_utf8(msg).unwrap();

 if
choose_target_to_attack(&target) {

println!("Consensus is reached. Drone {}
will attack {}", i, target);
 }
 }
 None => break,
 }
 }
 });
 }

tokio::time::sleep(tokio::time::Duration::f
rom_secs(5)).await;
}

fn get_raft_instance(peers: Vec<String>,
self_addr: String) -> Raft {
 let path: PathBuf =
PathBuf::from("./data/drones").join(&self_a
ddr);
 let raft_config =
RaftConfig::new(peers, self_addr,
RaftParams::default(), Some(path));
 Raft::new(raft_config)
}

fn choose_target_to_attack(target: &String)
-> bool {
 // There can be hundreds of conditions
for choosing the appropriate target

 // but let's say we are interested only
in one condition when the target is
'Lancet-3'
 *target == "Lancet-3"
}

The result of the program execution is shown in
Listing 2.

Listing 2. Result of the program execution
/home/andryxaua/.cargo/bin/cargo run --
color=always --profile dev --package
test_raft_for_drones --bin
test_raft_for_drones
 Finished `dev` profile [unoptimized
+ debuginfo] target(s) in 0.20s
 Running
`target/debug/test_raft_for_drones`
Consensus is reached. Drone 1 will attack
Lancet-3
Consensus is reached. Drone 0 will attack
Lancet-3
Consensus is reached. Drone 2 will attack
Lancet-3

Process finished with exit code 0

D. SECURITY-ENHANCED RAFT
ADAPTATION

Despite the simplicity of the current implementation,
it has limitations that warrant further research. Although
Raft is an elegant solution for consensus in distributed
systems, it assumes non-Byzantine failures – nodes may
crash but not behave maliciously. For UAV interceptor
systems exposed to cyberattacks, enhanced security is
essential. Incorporating cryptographic safeguards allows
Raft to handle scenarios where nodes are compromised or
communication channels intercepted [14].

An important improvement is ensuring log integrity
and authenticity. In standard Raft, the leader appends
entries replicated to followers, but forged or altered logs –
especially in combat – can break consensus. Therefore,
log entries should be digitally signed and verified before
acceptance [15]. Periodic hashing or Merkle trees can
ensure past data hasn’t been tampered with, significantly
reducing undetected manipulation.

Leader election is normally based on timers and term
numbers, therefore vulnerable to spoofing in hostile
environments. Mutual signatures on voting messages
ensure legitimacy and verifiable majority support,
preventing a compromised node from seizing control [16].

Although Raft lacks native Byzantine fault tolerance,
the anomaly detection mechanisms (such as monitoring
inconsistent logs or erratic behavior) can help isolate
compromised nodes. These measures enhance resilience
against active interference.

Secure communication channels are also vital.
Encrypting Raft traffic (e. g., via TLS or DTLS) with
identity verification prevents impersonation or injection of
false data, upholding confidentiality and protecting the
consensus process [17].

Andrii Nyzhnyk, Andrii Partyka, Michal Podpora 109

Finally, effective key management is required.
Lightweight approaches like short-lived certificates or
certificate pinning support strong authentication without
burdening drones’ limited resources. Together, these
enhancements make Raft more resilient to both reliability
failures and sophisticated cyber threats.

E. LIMITATIONS AND DIRECTIONS FOR
FURTHER RESEARCH

Despite the demonstrated reliability of the Raft-based
coordination system, several important considerations
remain for future development. First, real-time constraints
and computational overhead present a delicate balance:
while cryptographic operations and frequent inter-drone
communications bolster security and consensus fidelity,
they can also create bottlenecks in time-critical scenarios.
Optimizing cryptographic routines and refining the
frequency of message exchanges may alleviate delays,
particularly on resource-limited UAV platforms.

Another significant factor involves managing hard-
ware constraints. Interceptor drones must often operate
under tight energy budgets, while simultaneously sup-
porting flight stability, sensor input processing, and
communication tasks. Although Rust’s memory safety and
asynchronous design improve efficiency, real-world trials
could reveal unforeseen interactions – such as competition
over CPU or battery resources. Investigating lightweight
consensus variants or partial replication schemes could
help resolve potential conflicts in these constrained
environments.

Equally crucial is the challenge of integrating this
system into broader defense and surveillance infrastruc-
tures. UAV-based interceptors seldom function in iso-
lation, but rather in tandem with radar networks, data
fusion platforms, and advanced decision-making modules.
The way UAV-based interceptors work is similar to that
of SCADA systems [18]. Ensuring seamless data exchan-
ge and interoperability with these external components
would enable a more robust air defense ecosystem.
Furthermore, because battle conditions can fluctuate
dramatically, future research might incorporate adaptive
swarm strategies or even self-organizing algorithms that
dynamically reassign roles among drones when conditions
such as GPS reliability, terrain, or threat density change.

In addition, although the proposed system incor-
porates basic resilience against compromised nodes, in-
depth handling of Byzantine threats remains ripe for
exploration. Malicious drones may behave unpredictably,
sending conflicting or deceptive information that requires
sophisticated anomaly detection or Byzantine fault
tolerance techniques. Investigating machine-learning-
driven intrusion detection or consensus protocols with
partial Byzantine coverage would refine the system’s
capacity to cope with actively malicious behavior.

Lastly, prolonged field tests under varied environ-
mental and electromagnetic conditions are essential to
validate the current design. Laboratory simulations, while
informative, cannot fully capture the unpredictability of
real-world interference, GPS spoofing, or large-scale

electromagnetic disruption. Conducting extended trials
with multiple drones in operationally relevant settings
would offer invaluable insights, revealing performance
thresholds, refining fault-tolerance measures, and con-
firming the system’s viability in genuine high-stakes
environments.

V. CONCLUSION
The proposed system based on the Raft algorithm

has showed high efficiency in solving the problem of
coordinating distributed UAV defense systems. The use of
the Raft algorithm allowed for a reliable consensus
between drones, which, in turn, increases the overall
efficiency and speed of the system’s response to threats.

During the study, software architecture was deve-
loped that takes into account the specifics of parallel and
asynchronous operations that are critical for the operation
of distributed systems in real time. The use of the Rust
programming language, which ensured memory safety
and high performance, avoided typical problems asso-
ciated with resource management and reduces the risk of
errors during program code execution. The simulation
results showed that integrating Raft into a drone
coordination system not only improved the stability of the
system, but also significantly reduced the time required to
reach a consensus on target selection. This was especially
important in a rapidly changing situation on the bat-
tlefield, where every second could be crucial.

Additionally, a series of tests were conducted to
confirm the system’s ability to operate in difficult con-
ditions, such as partial loss of communication or physical
destruction of individual drones. Results showed that the
system has a high degree of reliability and can function
even in the event of unforeseen circumstances.

The results obtained indicated the potential of the
proposed approach for use in real-world conditions, both
in the military and civilian protection against UAV
threats. Further research should focus on improving the
algorithms for prioritizing and optimizing the energy
consumption of interceptor drones, increasing efficiency
of the system.

References
[1] Vora, S., Thakkar, N., & Gor, R. (2023). A study of

performance measures and throughput of Raft consensus
algorithm. International Journal of Research in Applied
Science and Engineering Technology, 11, 862–869. DOI:
https://doi.org/10.22214/ijraset.2023.54751.

[2] Chu, D., Zhao, C., Wang, R., Xiao, Q., Wang, W., & Cao, D.
(2024). A survey of multi-vehicle consensus in uncertain
networks for autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 25(12), 19319–19341.
DOI: https://doi.org/10.1109/TITS.2024.3465046.

[3] Abdorrahimi, B., Nekouie, A., Rahmani, A., Lansky, J.,
Nulíček, V., Hosseinzadeh, M., & Moattar, M. (2024).
Blockchain technology and raft consensus for secure
physician prescriptions and improved diagnoses in
electronic healthcare systems. Scientific Reports, 14, 2594.
DOI: https://doi.org/10.1038/s41598-024-66746-y.

Using the Raft Algorithm to Coordinate Interceptor Drones in a UAV Detection and Neutralization System 110

[4] Belous, R., & Krylov, Y. (2024). Minimisation of network
traffic in the Raft-like consensus algorithm. Municipal
Economy of Cities, 4, 2–6. DOI: https://doi.org/10.33042/
2522-1809-2024-4-185-2-6.

[5] Zabunov, S., & Mardirossian, G. (2024). Four innovative
drone interceptors. Proceedings of the Bulgarian Academy
of Sciences, 77(2), 238–245. DOI: https://doi.org/10.7546/
CRABS.2024.02.09.

[6] Li, Y., Fan, Y., Zhang, L., & Crowcroft, J. (2023). Raft
consensus reliability in wireless networks: Probabilistic
analysis. IEEE Internet of Things Journal, 10(14), 12839–
12853. DOI: https://doi.org/10.1109/JIOT.2023.3257402.

[7] Huang, S., Yao, H., Wang, X., Mai, T., Wang, Z., & Guo, S.
(2025). Graph attentional based agglomerative cluster for
UAV swarm networks. IEEE Transactions on Network
Science and Engineering, 1–18. DOI: https://doi.org/
10.1109/TNSE.2025.3559215.

[8] Kumar, V., Asthana, A., & Tripathi, G. (2025). Enhancing
data security in IoT-based UAV networks through
blockchain integration. Engineering, Technology & Applied
Science Research, 15(2), 21800–21804. DOI:
https://doi.org/10.48084/etasr.9922.

[9] Mariani, S., Cabri, G., & Zambonelli, F. (2021).
Coordination of autonomous vehicles: Taxonomy and
survey. ACM Computing Surveys, 54(1), 1–33. DOI:
https://doi.org/10.1145/3431231.

[10] Abdullayeva, F., & Valikhanli, O. (2024). A survey on
UAVs security issues: Attack modeling, security aspects,
countermeasures, open issues. Control and Cybernetics,
52(4), 405–439. DOI: https://doi.org/10.2478/candc-2023-
0044.

[11] Culic, I., Vochescu, A., & Radovici, A. (2022). A low-
latency optimization of a Rust-based secure operating

system for embedded devices. Sensors, 22(22), 8700. DOI:
https://doi.org/10.3390/s22228700.

[12] Oorschot, P. (2023). Memory errors and memory safety: A
look at Java and Rust. IEEE Security & Privacy, 21(3), 62–
68. DOI: https://doi.org/10.1109/MSEC.2023.3249719.

[13] Hai, X., Qiu, H., Wen, C., & Feng, Q. (2023). A novel
distributed situation awareness consensus approach for
UAV swarm systems. IEEE Transactions on Intelligent
Transportation Systems, 24(2), 14706–14717. DOI:
https://doi.org/10.1109/TITS.2023.3300871.

[14] Yuan, H., Li, F., Diao, R., & Shu, T. (2024). Double‐layer
Byzantine fault‐tolerant grouping consensus algorithm
based on Raft. IET Blockchain, 4(6), 555–569. DOI:
https://doi.org/10.1049/blc2.12073.

[15] Yang, H., Feng, Y., & Zhang, W. (2024). LRD-Raft: Log
replication decouple for efficient and secure consensus in
consortium blockchain-based IoT. IEEE Internet of Things
Journal, 12(7), 8807–8820. DOI: https://doi.org/10.1109/
JIOT.2024.3506601.

[16] Cui, Y., Liang, Y., Luo, Q., Shu, Z., & Huang, T. (2024).
Resilient consensus control of heterogeneous multi-UAV
systems with leader of unknown input against Byzantine
attacks. IEEE Transactions on Automation Science and
Engineering, 22, 5388–5399. DOI: https://doi.org/10.1109/
TASE.2024.3420697.

[17] Tian, S., Zhang, C., & Bei, G. (2023). VSSB-Raft: A secure
and efficient zero trust consensus algorithm for blockchain.
ACM Transactions on Sensor Networks, 20(2), 1–22. DOI:
https://doi.org/10.1145/3611308.

[18] Nyzhnyk, A., Partyka, A., & Podpora, M. (2024). Increase
the cybersecurity of SCADA and IIoT devices with secure
memory management. CEUR Workshop Proceedings,
3800, 32–41.

Andrii Nyzhnyk was born in
Lviv region, Ukraine, on October
15, 1997. He received his M.Sc.
degree in cybersecurity at Lviv
Polytechnic National University,
where he is currently pursuing
postgraduate studies at the
Department of Information Sec-
urity. His research interests inc-
lude secure distributed systems,
UAV defense technologies, and
cyber-physical system resilience.

Andrii Partyka was born in
Lviv, Ukraine, on April 14, 1984.
He received the Specialist degree
in Physical and Biomedical
Electronics and the qualification of
Physics Teacher at Lviv Poly-
technic National University, Lviv,
Ukraine, in 2006. From 2006 to
2009, he pursued postgraduate
studies. In 2013, he defended his
Ph. D. thesis in the specialty of So-

lid-State Electronics. Since 2010, he has been affiliated with
the Department of Information Protection. His research
interests encompass cybersecurity, cloud technologies and
their protection, security models and access control to cloud
resources, ethical hacking, and computer networks

Michal Podpora received an
M. Sc. degree in Computer Engi-
neering and a Ph. D. in Control
Engineering and Robotics from
the Opole University of Techno-
logy and in 2021 his habilitation in
Cybernetics from the VSB-Tech-
nical University of Ostrava. He is
currently employed as an Asso-
ciate Professor with the Institute of
Computer Science, University of

Opole, as a Humanoid Robot Developer with Research
Department at Weegree, and as AI agentic systems consultant.
His main research interests include artificial intelligence in
robotics, cognitive systems, multiagent knowledge processing,
computer vision, smart infrastructure, embedded systems, IoT,
and cybersecurity.

