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In the article, the mathematical model for the drying process of a porous layer subjected
to an external electric field is developed considering the coupled effects of heat, mass,
and charge transport. A system of algebraic equations is obtained to describe the dry-
ing dynamics, incorporating key physical parameters such as boundary layer thickness,
temperature, and electric field intensity. The model is validated against experimental
data, demonstrating its accuracy in predicting moisture distribution over time in a porous
materials under the action of constant electric field.
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1. Introduction

Drying of porous materials is a critical process in various industrial applications, including food pro-
cessing, pharmaceuticals, and materials engineering. Traditional drying methods rely primarily on
thermal and convective mechanisms, which can be energy-intensive and may cause undesirable changes
in material properties. Electroosmotic drying, based on the electrokinetic movement of water under
an applied electric field, has emerged as a promising alternative, offering improved drying rates and
energy efficiency [1–6]. Techniques that combine this with contact and pulse-based heating are also
under active investigation [7].

Electroosmotic drying is an advanced technique that utilizes an external constant electric field
to enhance moisture removal from porous materials. This method utilises electrokinetic effects to
improve mass transfer efficiency, reducing drying time and energy consumption. Electroosmotic drying
is possible due to the presence of a double electric layer at the interface between the pore liquid and
the solid matrix. The existence of electrically induced forces alters the dynamics of the drying process.

At the initial stage, a dried zone forms within the body only near a specific part (S1) of the surface
(S), on the side influenced by the applied electric field forces (dried zone 1). The other part of the
surface, (S2), remains wetted. If the electrical force exceeds the capillary force, which is governed by
the curvature of the liquid-gas interface, electroosmotic liquid leakage occurs through this region.

As the dried zone expands, its electrical resistance increases, leading to a voltage drop across it.
Consequently, the electric field intensity in the liquid-saturated region decreases. The reduction in
liquid content during drying also results in a decrease in the total electric charge carried by the liquid.
The ponderomotive force ρqE (where ρq is the average charge density in the diffuse layer and E is the
electric field intensity in the pores), which acts on the liquid, diminishes over time. At this stage, the
capillary force remains relatively unchanged.

When the electrical and capillary forces reach equilibrium, electroosmotic liquid leakage through
the surface (S2) ceases, and a second dried zone begins to form. From this point forward, the dried
regions expand from both (S1) and (S2), propagating inward toward each other.
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2. Problem statement

Thus, the drying process occurs in two distinct stages: an initial stage characterized by localized
electroosmotic liquid migration and a second stage where the dried zones grow deeper into the material,
eventually leading to full drying.

First stage of drying. Using the equation of state for a gas mixture and Darcy’s law, we derive
the Stefan–Maxwell equations for the key variables ρa and ρv, representing the densities of air and
vapor, respectively:

ρa
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µg
∇

(
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+
ρv
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RT +D′
∇ρa = 0,

∇ ·

[
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RT +D′
∇ρv

]

= 0,

(1)

where Kg is the permeability coefficient, dependent on pore radius and shape, µg is the dynamic
viscosity coefficient of the gas, ρa and ρv denote the air and vapor densities, Ma and Mv are the molar
masses of air and vapor, R is the universal gas constant, T is the absolute temperature, D′ is the
effective diffusion coefficient.

The equations hold within the region of dried pores, which is bounded by the surfaces S and moving
surface S∗. Notably, the system of differential Eqs. (1) exhibits nonlinearity.

On the moving surface S∗, the vapor density can be assumed to equal the saturated vapor density [8]:

ρv = ρvn. (2)

The boundary conditions at surface S depend on the modeling approach for the interaction between
the body and its environment.

In the case of natural drying, where the body is in contact with a mixture of air and vapor, it can
be assumed that at a sufficient distance from the surface S, the vapor and air densities, ρve and ρae,
attain constant values corresponding to atmospheric air [8]:

lim
r→∞

ρve = ρv1, lim
r→∞

ρae = ρa1, (3)

where r represents the distance from the surface S.
In the external region relative to the body, mass transfer processes are described by the Stefan–

Maxwell equations under the assumption of constant atmospheric pressure:

∇ρae −
ρae
D′

e

ve = 0,

∇ ·

(

∇ρve −
ρve
D′

e

υe

)

= 0.
(4)

Additionally, the gas pressure in the external environment remains constant:

Pge =

(

ρae
Ma

+
ρve
Mv

)

RT = const . (5)

On the surface S, the normal component of vapor flux must be continuous:

n · jv =

(

∇ρve −
ρve
D′

e

ve

)

· n, (6)

and the component densities must be equal, following from the equality of partial pressures at the
surface S:

ρae = ρa, ρve = ρv. (7)

Equations (1)–(7) form a complete system of relations and can be used to describe mass transfer
during the natural drying of a porous body.

In studies of drying processes, particularly under intensified blowing conditions, the external prob-
lem is often formulated only for a boundary layer of finite thickness δ [9]. In this case, mass transfer
in the boundary layer is described by Eqs. (1)–(2). On the surface S of the body, the coupling condi-
tion (7) applies, while on the outer surface S∗∗ of the boundary layer, the condition is:
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ρae = ρa1, ρve = ρv1. (8)

However, it should be noted that in the first stage, the liquid moves under the influence of electric
forces toward the surface (S2) with velocity:

υL =
KL

µL

(ρqE −∇Pk) ,

where KL is the permeability coefficient of the body with respect to the liquid, µL is its dynamic
viscosity, Pk is the pressure caused by the curvature of the interface between the liquid and gas.

It is assumed that the liquid freely exits the pores. At this stage, phase transition from liquid to
vapor near the surface S2 is not considered. The liquid content in the body decreases both due to
drying from surface S1 and electroosmotic removal through surface S2. The mass balance equation is
given by:

dm

dt
= −

∫

(S1)
(jv1 · n1) dS1 −

∫

(S2)
(jv2 · n2) dS2, (9)

where n1 and n2 are the outward normals to surfaces S1 and S2; jv1 is the vapor flux through surface
S1, obtained solving the problem (1)–(4), or (1), (6), (4)–(8); jL is the liquid flux through surface S2.

The liquid flux through surface S2 is given by:

jL = ΠγLvL.

Second stage of drying. At the moment when the electric and capillary forces balance out:
∫

(Vf )
ρq E dVL − PkS

∗
1 = 0, (10)

liquid leakage ceases, and a second dried zone forms, expanding inward from surface S2. In Eq. (10),
(VL) represents the region of the body occupied by liquid; VL is its volume; S∗

1 is the surface area of
the gas-liquid interface.

The drying process of zone 2 is formulated similarly to the problem (1)–(7) for zone 1, and the new
mass balance equation is:

dmL

dt
= −

∫

(S1)
(jv1 · n1) dS1 −

∫

(S2)
(jv2 · n2) dS2.

Determination of electrical quantities. The electric field intensity is determined from the
corresponding electrostatics problems. For the first stage, the governing equation is given as:

∆ϕj = 0, Ej = −∇ϕj , (j = 1, 2),

which applies to the region (V1) (j = 1), bounded by surfaces (S1) and (S∗
1), and the region (VL)

(j = 2), occupied by liquid, with the boundary conditions:

ϕ1 = ϕ01 on the surface (S1), ϕ2 = ϕ02 on the surface (S2),

and the conjugation conditions at the interface:

ϕ1 = ϕ2, n1 · (j1 − j2)1 = 0 on the surface (S∗
1),

where jj = σjEj, (j = 1, 2). Here, j1, j2 are the current density vectors, while σ1, σ2 denote the
electrical conductivity coefficients in regions (V1) and (VL), respectively. The vector n1 represents the
normal to the interface (S∗

1).
For the second stage of drying, the electrostatics problem is formulated as:

∆ϕm = 0, Em = −∇ϕm, (m = 1, 2, 3),

for the regions (V1) (m = 1), (Vf ) (m = 2), and (V2) (m = 3), bounded by surfaces (S∗
2) and (S2),

under the boundary conditions:

ϕ1 = ϕ01 on the surface (S1), ϕ3 = ϕ02 on the surface (S2),

and the conjugation conditions:

ϕ1 = ϕ2, n1 · (j1 − j2) = 0 on the surface (S∗
1),

ϕ2 = ϕ3, n2 · (j2 − j3) = 0 on the surface (S∗
2),

where n2 is the normal to the surface (S∗
2).
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The average charge density of the diffuse layer for a binary electrolyte solution, based on the theory
of the double electric layer, is determined by the formula:

ρq =

√

2εfC Π

fRT kp

z Ff ϕ1

TΓ
,

where εf is the average absolute dielectric permittivity of the liquid phase, TΓ is the tortuosity factor,
kp is the permeability coefficient of the porous medium, ϕ1 is the surface potential at the closest
approach of ions, z = z+ = −z−, where z+ and z− are the valencies of cations and anions, Ff is the
Faraday constant, C is the electrolyte concentration, Π is the porosity of the material.

Thus, the problem of electroosmotic drying of a porous body includes the relationships given by
Eqs. (1)–(9).

It should also be noted that the use of an isothermal model for describing electroosmotic drying
requires imposing appropriate restrictions on the magnitude of the external electric field.

3. Electroosmosis drying a layer of capillary-porous material

We consider the problem of the influence of electroosmosis influence on drying a porous layer, where
free evaporation occurs on one of its surfaces into the external environment, while the other surface
is supplied with moisture from a well-permeable wet medium. This problem can model the drying of
basements after floods.

A porous layer initially saturated with moisture is examined, with one of its surfaces (Surface 1)
in contact with an environment that is a mixture of air and vapor, while Surface 2 borders a well-
permeable wet medium. The air and layer temperatures are assumed to be equal.

Since the vapor in the pores is saturated at the liquid surface, while the surrounding environment
is unsaturated, vapor outflow occurs from Surface 1 [10]. As a result, a region of dried pores filled with
a mixture of air and vapor is formed within the body, where these components are considered separate
constituents of the filling gas. During the drying process, this zone expands deeper into the material.
The coordinate of the moving boundary is denoted as z = Lm.

To intensify the drying process via electroosmotic moisture removal from the porous layer, a con-
stant potential difference is applied between Surfaces 1 and 2 [11]. Due to the influence of the electric
field on the charge of the diffuse part of the electrical double layer at the solid skeleton–pore liquid
interface, an additional (ponderomotive) force arises, inducing an electroosmotic moisture flux j3 to-
ward Surface 2 [12]. Under the action of the electric field, a directed movement of electric charges in
the diffuse part of the electrical double layer occurs, accompanied by the movement of the liquid layer
along the pore surfaces (electroosmosis).

If a well-permeable wet medium is present on the side of Surface 2, a significant portion of moisture
is absorbed into the porous layer through capillary imbibition. Capillary imbibition, driven by the
gradient of capillary pressure, results in the formation of a filtration flux j2.

As a result of the combined action of these fluxes, changes in the relative moisture content of the
porous layer occur [13]. Notably, if the dispersion of pore sizes in the porous body model is neglected,
the relative moisture content αm, defined as before, coincides with the phase interface boundary:

z̄m = Lm/L0.

The mass of liquid lost during the drying process is given by:

∆m = mLn −mL = ΠSρLL0 (1− z̄m) ,

where S is the pore area, ρL is the density of water, and Π is the porosity of the material. Given that
the rate of change of liquid mass in the layer is determined by the vapor and liquid flux j from the
layer, we arrive at the differential equation governing the relative moisture content αm in the layer,
which can also be interpreted as the equation of motion for the phase interface:

dαm

dt
=

dz̄m
dt

= −
j(z̄m)

Π ρLL0
,
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where j(z̄m) is the total flux acting in the porous medium, which is the sum of the vapor flux, the
electroosmotic flux, and the flux induced by capillary pressure, counteracting the electroosmotic flow.

The phase transition from liquid to vapor at the gas-liquid interface is accounted for by specifying
the density of the saturating vapor on this surface, which depends on the temperature and is given by
the formula:

ρn(T ) = 133 exp

[

18.681 −
4105

(T − 35)

]

Mv

RT
(kg/m3).

As a result of solving the nonlinear boundary problem, the dependence of the convective-diffusive
vapor flux on the parameters of the porous and boundary layers is determined in the form:

j1(z̄m) =
Ω

B − Γ0z̄m
, (11)

where Ω is a parameter characterizing the intensity of moisture transfer, which depends on the physical
properties of the medium and the drying conditions; B is a coefficient that depends on the effective
diffusion and permeability characteristics of the porous medium; Γ0 is a parameter characterizing the
influence of the electric field on the mass transfer process.

3.1. Capillary moisture flow

The transfer caused by capillary imbibition is considered. The capillary pressure is determined by the
Laplace equation:

Pk = PL − Pg =
−2σLg cos θ

R̄
,

where θ is the angle formed by the meniscus surface with the solid surface, PL and Pg are the pres-
sures in the liquid and gas phases, respectively, σLg is the surface tension coefficient at the liquid-gas
interface [14].

In the Laplace equation, R̄ represents the equivalent Kelvin radius. The flux j2 caused by capillary
imbibition is determined using Poiseuille’s equation [15]:

j2 = ΠρL
KL

µL

PK

L0z̄m
, (12)

where KL is the permeability of the liquid, µL is the dynamic viscosity of the liquid.

3.2. Electroosmotic moisture flow

The liquid flow caused by the action of an external constant electric field is considered under the
condition of the presence of a dried pore zone. The effect of the electric field on the pore liquid is
associated with the presence of a double electric layer near the pore surface. The skeleton material
is assumed to be hydrophilic, and the minimum transverse pore size is significantly larger than the
thickness of the diffuse part of the double electric layer δe = 1/Ke, where for a symmetric binary
electrolyte solution:

Ke =
√

2πF 2
f Z

2C0/ε(1)RT,

where Ff is Faraday’s constant, Z is valence of ions considering their charge sign, C0 is electrolyte
solution concentration, ε(1) is absolute dielectric permeability of the liquid.

Then, on average, the charge density ρe in the diffuse part of the double electric layer is determined
as:

ρe = ρe0 e
−Ke(R̄−r),

where ρe0 is charge density value on the surface of capillaries, r is running radial coordinate.
For the assumed condition of the smallness of the double electric layer thickness compared to the

capillary radius, KeR̄ ≫ 1.
The force density across the capillary section:

fe = ρeEL,

where EL = UL/Lm is electric field intensity, UL is voltage applied to the liquid-filled part of the
capillary.
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The average force density:

f̄e =
2ρe0EL

KeR̄
−

2ρe0EL

(KeR̄)2
(1− e−KeR̄).

For the earlier assumption R̄Ke ≫ 1, we obtain:

f̄e ≈
2ρe0EL

KeR̄
=

2η̄EL

R̄
,

where η̄ = ρe0/Ke.
The force acting on the charge in the capillary:

F̄e = f̄eSLm.

The average pressure caused by electrical forces:

P̄e = F̄e/S = f̄eLm.

The gradient of this pressure:

∇P̄e =
(

dP̄e/dz
)

ez, dP̄e/dz = −P̄e/Lm = −F̄e/SLm = −f̄e.

Considering that the current forces Ig and IL in the dried and liquid-saturated pore regions are equal,
i.e., Ig = IL, according to Ohm’s law:

Ig = Ug/Rg, IL = UL/RL,

we obtain Ug/UL = Rg/RL. Here: Rg = ρ∗g(L0 −Lm)/S, RL = ρ∗LLm/S, where ρ∗g, ρ
∗
L are the specific

resistances of these regions.
As the voltage U between the layer surfaces is U = Ug + UL, then:

U

UL

= 1 +
ρ∗g (1− z̄m)

ρ∗Lz̄m
= 1 +

(1− z̄m)

ερz̄m
. (13)

Here ερ = ρ∗L/ρ
∗
g is the ratio of specific resistances in the liquid and dried zones, and z̄m = Lm/L0.

From Eq. (13), it follows that

UL = ερUz̄m/ [(1− z̄m) + ερz̄m] .

Then the electric field intensity in the liquid zone is:

EL = UL/Lm = ερU/L0 [(1− z̄m) + ερz̄m] .

The formulas for determining the pressure gradient and the magnitude of the electroosmotic flow j3
are given as follows:

dP̄e

dz
= −f̄e = −

2η̄

R̄

ερU

L0 [ερz̄m + (1− z̄m)]
;

j3 = ΠρLυ3, υ3 =
KL

µL

dPe

dz
= −

KL

µL

2η̄

R̄

ερU

L0 [ερz̄m + (1− z̄m)]
.

(14)

3.3. Solution of the problem

The determination of the change in relative moisture content during the drying process is reduced to
the Cauchy problem [16,17], where the convective-diffusion flow is determined from Eq. (11), and the
capillary and electroosmotic flows are determined from Eqs. (12) and (14), respectively,

dz̄m
dt

= −
Ω

B − Γ0z̄m
+

K̃

z̄m
+

K̃1

(1− z̄m) +K2z̄m
, z̄m(0) = 1;

K̃ =
KL

µLR̄

2σLg
L2
0

, K̃1 =
KL

µL

2η̄ερE

R̄L0
.

(15)

Equation (15) can be written as follows

a32z̄
3
m + a22z̄

2
m + a12z̄m

a21z̄2m + a11z̄m + a01

dz̄m
dt

= 1;

a21 = Ω(1−K2) + K̃Γ0(1−K2)− K̃1Γ0,
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a11 = −Ω− K̃B(1−K2)− K̃Γ0 + K̃1B,

a01 = K̃B, a32 = Γ0(1−K2), a22 = −B(1−K2)− Γ0, a12 = B,

or
[

a32
a21

z̄m
2

+
a42z̄

2
m + a41z̄m

a21z̄2m + a11z̄m + a01

]

dz̄m = dt;

a42 = a22 −
a32a11
a21

, a41 = a12 −
a32a01
a21

.

The solution of Eq. (15) using the initial condition z̄m(0) = 1 has the form
1

2

a32
a21

(

z̄2m − 1
)

+
a42
a21

(z̄m − 1) +

(

−
a42a11
2a221

+
a41
2a21

)

ln |f2 (z̄m)|+ f (z̄m) = t,

where

f(z̄m) =

(

a42(a
2
11 − 2a21a01)

2a221
−

a41a11
2a21

)

f1(z̄m),

f1(z̄m) =
2

√

4a21a01 − a211

(

arctan
2a21z̄m + a11
√

4a21a01 − a211
− arctan

2a21 + a11
√

4a21a01 − a211

)

,

|f2(z̄m)| =

∣

∣

∣

∣

a21z̄
2
m + a11z̄m + a01

a21 + a11 + a01

∣

∣

∣

∣

,

if 4a21a01 > a211. Otherwise,

f1(z̄m) =
1

√

a211 − 4a21a01
ln |f3(z̄m)| ,

where if a211 > 4a21a01.
In the following section, a numerical analysis of the drying process in a porous layer of cement

stone, considering the effects of an external constant electric field, is carried out.

3.4. Results and discussion

Based on the formulas obtained in the previous section, a quantitative analysis of the influence of
geometric and physical parameters on the drying a porous layer of cement stone is carried out.

Table 1. Consideration of Capillary Imbibition (t = 104 s, L0 = 0.1 m).

δ T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K
αm = z̄m 0.0001 0.573 0.428 0.254 0.082

0.001 0.591 0.445 0.27 0.091
0.01 0.727 0.59 0.416 0.209
0.1 0.967 0.933 0.875 0.784

Table 1 shows the dependence of relative moisture content at a fixed point in time on temperature
and boundary layer thickness during capillary infiltration under natural drying (without an electric
field). The influence of an external constant electric field is illustrated by the data given in Tables 2
and 3 for different boundary layer thicknesses.

Table 2. Influence of Electric Field Intensity on Relative Moisture Content at E = 200 V/m.

δ (m) T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K
αm = z̄m 0.0001 0.561 0.415 0.242 0.075

0.001 0.577 0.432 0.257 0.083
0.01 0.705 0.569 0.396 0.193
0.1 0.914 0.873 0.81 0.718

In Figures 1 and 2, the dynamics of relative moisture content dependence on time is shown for
δ = 0.001 m and δ = 0.1 m, respectively, for T = 300 K, 310 K, 320 K, and 330 K.

From the provided quantitative data, it follows that the intensity of drying significantly depends on
the thickness of the boundary layer. When the thickness of the boundary layer increases by a factor of
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100, the relative moisture content increases by a factor of 10 or more. At a boundary layer thickness
of δ = 0.1 m and temperatures of 300 K, 310 K, and 320 K, the relative moisture content decreases by
no more than 10% over approximately 3 hours.

Table 3. Influence of Electric Field Intensity on Relative Moisture Content at E = 400 V/m.

δ (m) T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K
αm = z̄m 10−4 0.524 0.377 0.206 0.059

10−2 0.647 0.511 0.343 0.149

An electric field intensity of E = 200 V/m and E = 400 V/m (these are not high fields) counteracts
liquid infiltration through wall 2, leading to a resultant reduction in relative moisture content of up to
40%.
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Fig. 1. Dependence of relative moisture content on
time at different temperatures for δ = 0.001m.

Fig. 2. Dependence of relative moisture content on
time at different temperatures for δ = 0.1m.

One of the primary findings is the strong dependence of drying intensity on the thickness of the
boundary layer. As shown in Table 1, increasing the boundary layer thickness by a factor of 100 can
lead to a tenfold increase in relative moisture content. This indicates that a thicker boundary layer
significantly slows the drying process by impeding moisture transport. At a boundary layer thickness
of δ = 0.1 m, the reduction in moisture content over approximately three hours does not exceed 10%
at temperatures of 300 K, 310 K, and 320 K. These findings emphasize the importance of controlling
the boundary layer characteristics to optimize drying rates.

The role of temperature in accelerating the drying process is evident from Figures 1 and 2. Higher
temperatures enhance drying efficiency by increasing vapor pressure gradients and molecular diffusion.
The relative moisture content at the final stage of drying is significantly lower at T = 330 K compared
to T = 300 K for all considered boundary layer thicknesses. This confirms that temperature is a critical
parameter in determining the speed of moisture removal, with higher temperatures leading to more
efficient drying.

The introduction of an external electric field has been shown to affect the drying dynamics signif-
icantly. The data presented in Tables 2 and 3 demonstrate that applying an electric field intensity of
E = 200 V/m.

The numerical modeling results indicate that electroosmotic drying offers significant advantages
over both convective and natural drying methods. Specifically, applying an electric field intensity
of 200 V/m and 400 V/m effectively enhances moisture removal by reducing capillary-held liquid,
leading to a fourfold decrease in relative moisture content compared to convective drying experiments
conducted over the same time period [18–22].

4. Conclusions

The findings reveal the significant influence of geometric and physical parameters on drying kinetics.
A key observation is that increasing the boundary layer thickness significantly slows drying, while
higher temperatures accelerate moisture removal. Applying an electric field intensity of 200 V/m and
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400 V/m effectively reduces capillary-held liquid, leading to a decrease in relative moisture content by
approximately 40%. This confirms that electroosmotic drying enhances drying efficiency, particularly
for cementitious and other porous materials where capillary drying alone is insufficient.

From a practical perspective, the results indicate that electroosmotic drying offers a promising
alternative to conventional drying methods, providing a more energy-efficient solution for industrial
applications. Future research should explore the combined effects of alternating electric fields and dif-
ferent frequencies to optimize drying performance further while minimizing energy consumption. This
study establishes a strong foundation for developing advanced drying technologies based on electroki-
netic principles.
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Сушiння капiлярно-пористих матерiалiв
у зовнiшньому постiйному електричному полi
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У статтi розроблено математичну модель процесу сушiння пористого шару пiд впли-
вом зовнiшнього електричного поля з урахуванням зв’язаних ефектiв переносу тепла,
маси та заряду. Отримано систему алгебраїчних рiвнянь для опису динамiки сушiння,
що включає ключовi фiзичнi параметри, такi як товщина граничного шару, темпера-
тура та iнтенсивнiсть електричного поля. Модель пiдтверджено експериментальними
даними, що демонструє її точнiсть у прогнозуваннi розподiлу вологи з часом в шарi
пористого матерiалу пiд дiєю зовнiшнього електричного поля сталої дiї.

Ключовi слова: електроосмотична сушка; пористi матерiали; вiдведення воло-

ги; капiлярнi ефекти; тепломасообмiн; напруженiсть електричного поля; кiнетика

сушiння; математичне моделювання, енергоефективне сушiння, екологiчнiсть.
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