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This study proposes a novel numerical approach for addressing both linear and nonlinear
initial fractional order differential equations (FDEs) through the implementation of the
Jacobi–Gauss–Radau (JGR) integrated with Caputo fractional derivatives. The problem
is effectively transformed into a simplified system of FDEs, encompassing the unknown
coefficients, by employing shifted JGR points for the FDEs and their initial conditions.
For the purpose of investigating the effectiveness and accuracy of the introduced method,
some numerical illustrations are provided for various linear and nonlinear FDEs.
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1. Introduction

In recent decades, fractional calculus has garnered the attention of researchers as an efficient tool in a
range of fields, including engineering, biology, physics, mathematics, and many more [1–3]. Researchers,
scientists, and engineers have shown interest in fractional calculus because it excels at modeling real-
life problems and scientific phenomena with remarkable accuracy. Initially, when fractional calculus
was first introduced, very little attentions was given to the area. However, in recent years, it has
gained significant traction and is now extensively researched due to its practical applications in real
life. Some applications include modeling biophysical behaviors, biological tissues, diffusion processes,
gravitational forces and thermodynamics. It has also been applied to understanding properties like
thermal conductivity, elasticity, viscosity, highlighting the capability and applicability of fractional
calculus [4].

Due to increasing attention to fractional calculus, there has been a surge in the development and
analysis of numerical techniques aimed at solving fractional differential equations (FDEs). These equa-
tions are inherently more complex than typical ordinary differential equations (ODEs), often requiring
sophisticated numerical methods to approximate their solutions accurately [5]. Consequently, the lit-
erature is rich with numerical studies dedicated to solving FDEs using various methods, including the
finite difference and finite element methods, Adams–Bashforth–Moulton predictor–corrector schemes,
and splines method [6–10]. It has been a race to obtain numerical approximation as close as we could
with the exact solutions.

In addition to these methods, spectral methods are often regarded as very efficient tools in solving
a handful of types of differential equations that appear in numerous topics, especially in engineering,
mathematics and science. The efficiency of spectral methods has motivated numerous researchers
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to adopt these approaches to handle different differential equations. In particular, collocation, tau,
and Galerkin methods are some spectral methods recognized for their wide use and effectiveness [11].
Additionally, researchers in [12,13] studied the spectral tau method for dealing with FDEs. Meanwhile,
in [14], Pedas and Tamme demonstrated the numerical resolution of FDEs through spline collocation
methods. In some different works, spectral solutions for a distinct family of fractional-order initial
value problems have been achieved where the pseudo-spectral method has been used [15–19].

Within this context, Abdelkawy, in 2018, applied a mixed approach of fractional order Jacobi
orthogonal functions, which are used as a basis with shifted Jacobi polynomials, to approximate multi-
dimensional fractional diffusion equations of distributed order [20]. Then, in 2020, he used the shifted
fractional order JGR collocation and shifted Jacobi–Gauss–Lobatto collocation methods for solving
fractional order partial differential equations of distributed order [21]. A Jacobi collocation method
was developed and implemented to solve the Ginzburg–Landau equation of fractional order by Yang
et al. in 2020 [22]. In 2022, Zaky et al. employed the Jacobi collocation method to handle fractional
differential equations of Caputo–Hadamard type [23].

This paper introduces an optimized Jacobi–Gauss–Radau collocation method, specifically designed
to solve nonlinear initial value problems (IVPs) in fractional-order settings. We aim to demonstrate the
formulation of this method and to showcase its superiority through numerical testing. By comparing
its performance against established methods, we highlight the significant improvements in accuracy
and computational efficiency achieved by our proposed method.

The structure of this work is organized as follows. Section 2 presents essential preliminaries required
for readers to understand fractional calculus. This section also discusses the characteristics of Jacobi
polynomials and concludes with a description of the application of the collocation method to solve both
linear and nonlinear initial value problems (IVPs) of FDEs. Section 3 outlines the numerical results
to demonstrate the effectiveness of the proposed methodology. Section 4 provides the conclusion to
summarize the findings.

2. Preliminaries

In this section, we provide fundamental concepts and properties related to fractional derivatives and in-
tegral operators [24–26]. Then, we discuss the shifted Jacobi polynomials, highlighting their properties.
All of this will be used in the upcoming sections.

2.1. The fractional integral and derivative

We begin this subsection by introducing the Riemann–Liouville fractional integral operator. This
serves as a basis for the reader to fully understand this paper.

Definition 1. The Riemann–Liouville fractional integral operator of order υ ∈ R
+ and defined on

the usual Lebesgue space L1[a, b] is denoted by Iυa and defined as:

IυaZ(x) =
1

Γ(υ)

∫ x

a

Z(ζ)

(x− ζ)1−υ
dζ, υ > 0, a 6 x 6 b,

I0aZ(x) = Z(x).

The operator Iυa has the following properties:

Iυa I
µ
a = Iυ+µ

a , Iυa I
µ
a = Iµa I

υ
a ,

Next, we have the definition for Caputo differential operator.

Definition 2. The fractional differential operator in Caputo sense is defined as following:

cD
υ
af(x) =

1

Γ(s− υ)

∫ x

a

f(ζ)

(x− ζ)υ−s+1
dζ, a ≺ x 6 b,

where s− 1 ≺ υ ≺ s, s ∈ N .
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Some properties of Caputo fractional derivative operator are

IαaD
α
a f(x) = f(x)−

m−1
∑

i=0

f (i)(o+)
xj

i!
,

Dα
ax

γ =







0, γ ∈ N0, γ ≺ [α],
Γ(γ + 1)

Γ(γ − α+ 1)
xγ−α, γ ∈ N0, γ > [α]′.

2.2. Some results on Jacobi polynomials

The Jacobi polynomials, denoted by P
(η,δ)
r (x), (r = 0, 1, 2, . . .) of degree r, defined on the interval

[−1, 1]. The formula presented here can be obtained by means of Rodrigue’s formula as follows [11,27,
28]:

P (λ,γ)
r (x) =

(−1)r

2r(1− x)λ(1 + x)γr!
×

dr

dxr

[

(1− x)λ+r(1 + x)γ+r
]

,

where r = 0, 1, 2, . . . and λ, γ ≻ −1. The q-th derivative of P
(η,δ)
i (x) is given as follows

dq

dxq
P (λ,γ)
r (x) =

Γ(λ+ γ + r + 1)

2q Γ(λ+ γ + r − 1)
P

(λ+q,γ+q)
r−q (x),

In addition to this, the Jacobi polynomial discussed satisfies the orthogonality relation given by

(

P
(λ,γ)
k (x).P

(λ,γ)
L (x)

)

ω(λ,γ) =

∫ 1

−1
P

(λ,γ)
k (x)P

(λ,γ)
L (x)ω(λ,γ)dx = hk σLk,

where σLk denotes the Kronecker delta function. Then, we have

ω(λ,γ)(x) = (1− x)λ(1 + x)γ ; hk =
2λ+γ+1Γ(k + λ+ 1)Γ(k + γ + 1)

(2k + λ+ γ + 1)k!Γ(k + λ+ γ + 1)
.

To utilize the Jacobi polynomials on the said interval [0, l], we have to change the variable τ = 2x−l
l

.
Thus, we get polynomials termed the shifted Jacobi polynomials.

Suppose the shifted Jacobi polynomials p
(λ,γ)
i

(

2x−l
l

)

are introduced by p
(λ,γ)
l,i (τ), which can be

produced using the recurrence formula:

p
(λ,γ)
l,r+1(τ) =

(

a(λ,γ)r (t)− b(λ,γ)r (t)
)

p
(λ,γ)
l,r (τ)− c(λ,γ)r (τ) p

(λ,γ)
l,r−1(τ), r = 1, 2, . . . ,

where

a(λ,γ)r =
(2r + λ+ γ + 1)(2r + λ+ γ + 2)

2(r + 1)(r + λ+ γ + 1)
,

b(λ,γ)r =
(γ2 + λ2)(2r + λ+ γ + 1)

2(r + 1)(r + λ+ γ + 1)(2r + λ+ γ)
,

c(λ,γ)r =
(r + λ)(r + γ)(2r + λ+ γ + 2)

(r + 1)(r + λ+ γ + 1)(2r + λ+ γ)
.

The shifted Jacobi polynomials P
(λ,γ)
l,r (τ) of degree r is written with the following explicit analytical

form:

P
(λ,γ)
l,r (τ) =

r
∑

s=0

(−1)r+s Γ(r + γ + 1)Γ(r + s+ λ+ γ + 1)

Γ(s+ γ + 1)Γ(r + λ+ γ + 1)(r − s)!s!ls
τ s,

and the orthogonality condition is
∫ l

0
P

(λ,γ)
l,r (τ)P

(λ,γ)
l,z (τ)ω

(λ,γ)
l,z (τ) dt = h

(λ,γ)
l,z δr,z,

where ω
(λ,γ)
l,z (τ) = τγ(l − τ)λ, and

h
(λ,γ)
l,z =

lλ+γ+1 Γ(z + λ+ 1)Γ(z + γ + 1)

(2z + λ+ γ + 1) z! Γ(z + λ+ γ + 1)
.
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Then, the function y(t) is assumed to be square-integrable over the interval [0, l] and they may be
represented in the form of shifted Jacobi polynomials as follows:

y(t) =

∞
∑

k=0

ck P
(λ,γ)
l,k (t),

and the coefficients ck are defined as follows:

ck =
1

h
(λ,γ)
l,k

∫ l

0
y(t)P

(λ,γ)
l,k (t)ω

(λ,γ)
l,k (t) dt, k = 0, 1, . . . .

Next, y(t) is approximated by the first (q + 1)-terms,

yq(t) =

q
∑

k=0

ck P
(λ,γ)
l,k (t).

2.3. The collocation method

To further illustrate the proposed methodology, following fractional order linear differential equation
is considered,

n
∑

k=0

Dvky(x) = f(x), k − vk 6 k + 1, (1)

with the following initial conditions,

y(i) = βi, i = 0, 1, . . . , s. (2)

By using approximation on the interval [0, l] that has been partitioned using a truncated series of
shifted Jacobi polynomials, the solution of y(x) in (1) can be obtained:

yq(x) =

q
∑

z=0

cz P
(λ,γ)
l,z (x), (3)

and cz denotes the unknown coefficients.
Next, by taking (3) into (1) and (2), we have

P
(λ,γ,vk)
l,z (x) = DvkP

(λ,γ)
l,z (x), P

(λ,γ,z)
l,z (0) =

di

dxj
P

(λ,γ)
l,z (0),

q
∑

z=0

cz

n
∑

k=0

P
(λ,γ,vk)
l,z (x) = f(x),

q
∑

z=0

P
(λ,γ,i)
l,z (0) = Bi, i = 0, . . . , s,

that can be used for solving a system of equations with s+1 equations together with q+1 unknowns.
For us to obtain the remaining q − s equations, one of the types of collocation points is used, that is,
the JGR points xi (i = 1, . . . , q − s). Here, the method has successfully reduced the solution of (1) to
the solution of EC = B where E, C and B are defined as follows:

E =

(

e1
e2

)

,

where

e1(q−s)(q+1) =
s

∑

k=0

P
(λ,γ,vk)
l,z (xi), i = 1, . . . , q − s, z = 0, 1, . . . , q,

e2(s+1)(q+1) = P
(λ,γ,i)
l,z (0), i = 1, . . . , s, z = 0, 1, . . . , q,

C =











c0
c1
...
cn











,
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and vector

B =

(

b1
b2

)

where b1(s+1)×1 = βi, i = 0, 1, . . . , s and b2(q−s)×1 = f(xi), i = 1, . . . q− s. More details can be read in
the following studies [11, 29, 30].

The JGR quadrate nodes are the zeros of P
(λ,γ+1)
N (x) and we have the weights to be

ω̄
(λ,γ)
N,0 =

2λ+γ+1Γ(γ + 1)Γ(N + 1)Γ(N + 1 + λ)

Γ(N + γ + 2)Γ(N + λ+ γ + 2)
,

ω̄
(λ,γ)
N,j =

1

1 + t
(λ,γ)
N,j

C
∼(λ+γ+1)
N−1

[

∂tP
(λ,γ+1)
N (tN,j)(λ,γ)

]2
,

where

C
∼(λ+γ+1)
N−1 =

2λ+γ+1 Γ(N + λ+ 2)Γ(N + γ + 2)

(N + 1)! Γ(2N + λ+ γ + 2)
.

Note: the nodes of the shifted JGR on the said interval [0, l] are x
(λ,γ)
l,i = l

2(x
(λ,γ)
i +1), where x

(λ,γ)
i

are the JGR quadrate nodes.

3. Examples and comparisons

Within this particular section, we consider the infinity norm to illustrate the efficiency and accuracy
of the method proposed in this work for some numerical examples. Maple Software (Version 2017) has
been used in this paper to obtain the results. For this purpose, 32-digit precision is considered.

Example 1. Suppose we have an IVP of fractional order linear differential equation given by

D2y + sin (x)D
1

2 y + xy = x(x8 − x7) + 56x6 − 42x5 +
2048 sin(x)x

13

2 (16x− 15)

6435i
√
Π

,

x ∈ [0, 1], y(0) = y′(0) = 0.

The exact solution is y(x) = x8 − x7 [18].

Table 1. Comparison of our method and Q-SJT method [18]
at different values of q using maximum absolute error Example 1.

q Q-SJT (λ = γ = 0) [9] Proposed method(λ = 0, γ = 0.0001)
4 3.3× 10−2 6.3× 10−2

8 9.0× 10−10 1.3× 10−29

12 1.8× 10−13 7.1× 10−30

16 8.8× 10−16 3.8× 10−30

We can observe from Table 1 that the error for the proposed method is extremely small compared to
the quadrature shifted Jacobi tau (Q-SJT) method in [18], indicating that the approximated solution
obtained using the JGR collocation method is significantly similar to the exact solution. In addition,
Figure 1 gives the graphical illustration for the approximate solution together with the exact solution.

Example 2. Next, let us consider an IVP of the nonlinear FDE given by

D
3

2 y +D
1

2 y +Dy + y + ey =
4
√
x

√
π

+
3x

3

2

8
√
π
+ 2x+ ex

2

, x ∈ [0, 1], y(0) = y′(0) = 0.

From [31], we know that the exact solution is y(x) = x2.
We see from Table 2 that our method is superior to the Spectral Adomian Decomposition method

(SADM) using the Legendre polynomial [31]. Figure 2 illustrates the comparison done between the
approximate solution using the proposed method and the exact solution.
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Fig. 1. The exact and approximate solutions
for Example 1.

Fig. 2. A comparison between the exact and
the approximate solutions for Example 2.

Table 2. A comparison between SADM using Legendre
polynomials and our proposed method for Example 2.

SADM by Legendre Polynomial [31] Proposed Method (λ = γ = 0)
K L∞ q L∞

10 1.0× 10−5 4 1.3× 10−31

20 1.6× 10−9 7 1.2× 10−31

30 3.0× 10−13 14 2.4× 10−32

4. Conclusion

In this research, we introduced a direct approach for solving linear and nonlinear IVPs involving
fractional-order differential equations, formulated using the Caputo–type fractional derivative. Our
algorithm leverages the Jacobi–Gauss–Radau (JGR) collocation method, providing highly accurate
numerical solutions. The precision and effectiveness of our approach are demonstrated through com-
parative analysis, where the results closely align with the exact solutions, indicating the effectiveness
of the introduced method in handling fractional-order differential equations.

The convergence analysis of the current approach is based on operator theory, polynomial ap-
proximation theory for orthogonal polynomials, and the Lebesgue constants, which correspond to the
Lagrange interpolation polynomials. These methods provide spectral accuracy and exponential rates
of convergence for problems in simple geometries.

Given the efficiency and accuracy demonstrated, this method holds significant potential for fu-
ture applications, including solving one- and two-dimensional partial integro-differential equations and
fractional partial integro-differential equations.
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Чисельне розв’язування дробових диференцiальних рiвнянь
методом колокацiї Якобi–Гаусса–Радау
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11800 USM, Пенанг, Малайзiя

У цьому дослiдженнi пропонується новий чисельний пiдхiд для розв’язування як
лiнiйних, так i нелiнiйних диференцiальних рiвнянь дробового порядку (FDE) че-
рез реалiзацiю методу Якобi–Гаусса–Радау (JGR), iнтегрованого з дробовими похiд-
ними Капуто. Задача фактично перетворюється на спрощену систему FDE, що мi-
стить невiдомi коефiцiєнти, шляхом використання змiщених точок JGR для FDE та
їх початкових умов. З метою дослiдження ефективностi та точностi запропонованого
методу наведено числовi iлюстрацiї для рiзних лiнiйних i нелiнiйних ФДУ.

Ключовi слова: дробовi диференцiальнi рiвняння; чисельний розв’язок; Якобi–

Гаусс–Радау, метод колокацiї; спектральнi методи; дробове числення.
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