COMPUTER SCIENCE

ISSN 2707-1898 (print)

Ukrainian Journal of Information Technology
http://science.lpnu.ua/uk/ujit

YKpaiHCbKUIA XKypHan iHpopmaLiMHUX TeXHONOTIN

https://doi.org/10.23939/ujit2025.01.035

<] Correspondence author
K. S. Hrishchenko
k.hrishchenko@kpi.ua

Article received 10.04.2025 p.
Article accepted 01.05.2025 p.
uDC 004.8

K. S. Hrishchenko, O. O. Pysarchuk

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

ACTION-MASKED REINFORCEMENT LEARNING TECHNOLOGY FOR ORDER SCHEDULING

The problem of high-performance and efficient order scheduling is a common combinatorial optimization problem in
various industrial contexts. Creation of a model capable of generating schedules balanced in terms of quality and
computational time poses a significant challenge due to the large action space. This study proposes a high-performant
environment and a reinforcement learning model for allocating orders to resources using a mechanism of invalid action
masking. The developed reinforcement learning solution overcomes the limitations of traditional heuristic and exact methods
regarding computation performance and efficiency. The research included the design of a Gymnasium-compatible
simulation environment, performance benchmarking, development of optimized environment state updating procedures,
feature generation strategies, and evaluation of PPO and MaskablePPO models. The environment implemented incremental
updates of the features state and action masks with extensive NumPy vectorization, significantly reducing computational
overhead and improving compatibility with deep learning policies. The invalid action masking replaced penalty-based
constraints by mandatory restrictions on the agent’s action space to feasible decisions, thus enhancing the policy’s accuracy
by focusing on valid and more optimal choices. Datasets containing up to 500 orders were generated, on which PPO and
MaskablePPO models from the Stable-Baselines3 library were trained. Each model was trained for 100,000 iterations.
Training progress was monitored using TensorBoard. The masked version required 1.49 minutes for training, while the
unmasked model completed training in 1.2 minutes. For Masked PPO, the average per-step penalty was 2.41, while for PPO
it was 325,000. These results demonstrated that the standard PPO frequently selected invalid actions, collecting heavy
penalties, whereas the MaskedPPO accumulated penalties solely related to the schedule length. As a result, on the test
dataset, MaskedPPO completed the schedule calculation in 0.18 seconds, producing a schedule with a total duration of
4.590 minutes, compared to 5.4 seconds and 5,127 minutes for standard PPO, which made invalid action attempts in 96 %
of'the cases. It was found that action masking significantly improved the model’s accuracy and convergence despite a slightly
longer training time. The results reveal the strong potential of reinforcement learning approaches for order scheduling and
combinatorial optimization problems in general. The proposed Masked PPO model resulted in reduced order allocation time
compared to the traditional exact CP-SAT method while maintaining higher schedule quality than SPT heuristic approache
on problems with 50500 jobs. This work established the foundation for future research involving more complex model
architectures based on Set Transformers, Graph Neural Networks, and Pointer Networks. These enable effective
generalization and allow the trained policies to be applied to problem instances with higher input dimensions than those seen
during training.

Keywords: production scheduling, reinforcement learning, deep learning, artificial intelligence, PPO, Maskable PPO,
resource allocation, Gymnasium, intelligent agents.

Introduction

The problem of production-schedule planning and
resource allocation is one of the most challenging core
problems in mass and small-batch manufacturing, supply
chain optimization, and project management. It concerns
assigning a graph of interdependent operations to alternative
resources while considering technological constraints,
resource availability, and expected due dates. This problem

belongs to the class of NP-complete combinatorial opti-
mization problems and is related to the traveling salesman
and vehicle routing problems. Classical solution approaches
are divided into two types: exact methods and heuristics.
Exact methods include integer programming, branch and
bound, and dynamic programming. Although they guarantee
optimality, exact methods reveal extensive computational
complexity on large-scale instances and require extensive
manual parameter tuning. As the problem size grows, their

YKpaiHCbKUI }KypHan iHbopmaLiiHux TexHonorin, 2025, 1. 7, Ne 1 (11) 35

practical application becomes difficult, whereas heuristics,
despite quick solution generation, cannot ensure acceptable
schedule quality. Consequently, approaches that balance
schedule-generation speed and quality under limited
computation time are needed, as this balance confers a
decisive competitive advantage on production planning
systems. Advances in machine-learning technologies,
particularly deep reinforcement learning, have enabled new
alternative approaches to such problems. Specifically, for the
traveling salesman problem, reinforcement-learning models
have achieved better solutions [1] than well-known
heuristics and exact methods.

The Object of study — the process of generating operation
schedules in a flexible manufacturing environment.

The Subject of study — reinforcement learning methods
with action masking for scheduling problems.

The Aim of the study — development and experimental
validation of a production-order planning technology based
on the Maskable PPO reinforcement-learning model, with an
evaluation of both schedule quality and computational
performance.

To achieve the stated aim, the following principal
research tasks have been set:

e develop a

production;

e cnable step by step planning simulation with invalid

actions masking;

e implement incremental updates of the environment

state and the action mask to improve efficiency;

e implement the computation of reward / penalty for the

model’s action;

e train the Maskable PPO model;

e cvaluate the effectiveness of the trained model.

Materials and methods. Based on the Gymnasium
package, a specialized simulation environment,
JobShopEnv, was developed and is compatible with
common reinforcement-learning frameworks. The
environment supports a variable number of orders and
operations, alternative resources for each operation, as well
as dependencies between operations. The internal state of the
environment includes the current time, resource availability,
the set of completed operations, and an action mask that is
updated at every step. State updates are implemented
incrementally, i.e., by updating only the dependencies in
response to an action, without recalculation of the entire state
at each step. The action space is represented as a vector that
encodes the choice of operation and its assignment to a given
resource. ActionMasker, an environment wrapper, was used
to exclude invalid actions, presenting the agent only with
allowed actions, with mask entries set to 1.

As the reinforcement learning algorithm, the Maskable
PPO model from the SB3-Contrib package was employed.
The training was conducted with a fixed number of steps for
problem instances of varying sizes, from 5 to 500 orders.
Each order in the set comprises 10 operations with variable
durations and resource requirements, so processing a set of
50 orders corresponds to scheduling 500 operations.

custom environment that models

TensorBoard monitoring functionality was used to record the
average reward, episode completion time, and the number of
steps. Experiments were also run for comparison purposes
using the PPO model provided by stable baselines3 without
action masking. The choice of Proximal Policy Optimization
(PPO) is justified by its compatibility with action-masking
mechanisms and its easy integration with environments with
a discrete action space. The alternative Soft Actor-Critic
(SAC) algorithm is oriented toward problems with
continuous action spaces and requires adaptation for
application in future research. The Advantage Actor-Critic
(A2C) algorithm is compatible with the developed discrete
environment; however, additional modifications are needed
to enforce action constraints.

A uniform setup of 100,000 training steps, initial state,
and environment parameters was maintained. Accumulated
reward, percentage of invalid actions, and episode duration
were analyzed. Profiling of environment state updates and
model action processing using the cProfile utility revealed
significant time overhead on mask computation and feature-
vector updates. Consequently, optimizations were applied:
incremental updates of the action mask and the array of
available operations. All experiments were conducted in a
Python 3.10 environment using NumPy and PyTorch
without GPU support.

Analysis of recent research and publications.
Reinforcement learning is finding increasingly broad
applications in the field of combinatorial optimization. This
growing interest has been driven by successful demonstrations
of deep reinforcement learning in gaming environments and
classical NP-hard combinatorial problems such as the
traveling salesman problem. These environments feature large
state and action spaces and exhibit clear advantages of the
considered approach over classical techniques. Study [2]
demonstrated the effectiveness of deep learning in the problem
of scheduling information transmission in a high-performance
network. The resulting model reduced data-transfer time
through optimal allocation of data channels while still
satisfying strict computation-time constraints.

Among contemporary deep reinforcement learning
algorithms, Proximal Policy Optimization (PPO) is a key in
combining training stability with efficiency [3]. PPO has
been successfully applied to various combinatorial
optimization problems due to the agent’s ability to adapt to
complex and dynamic environment conditions [4]. In the
referenced publication, the model was applied to branching
direction selection in a branch and bound algorithm. For the
set-covering problem, it was shown that PPO achieved
performance and accuracy gains over the FSB heuristic as
well as over a pre-trained GCNN model.

One of the challenges is training agents in environments
with invalid actions. Classical reinforcement-learning
approaches, such as DQN or PPO, do not support action
prohibition, which leads to the need for large penalties since
the model may select actions that violate scheduling rules.
Modifications have appeared to address this shortcoming,
notably an action mask for PPO [5], which allows for the

36 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

specification of a binary vector of permissible actions and
thus guarantees that the model will select only those actions.
In [6], the influence of different mask types on model
behavior was studied in depth, and experiments were
conducted in three distinct environments. The experimental
results showed that “standard PPO converges significantly
slowly or not at all”. This demonstrates the value of applying
a mask for successful model training in environments with a
large number of invalid actions.

The next aspect affecting the successful application of
reinforcement learning to combinatorial problems in
practice is the variable dimensions of input vectors. The
classic PPO model, like Masked-PPO, assumes a fixed
dimensions for both the action and feature vectors. In [7],
the application of transformers to adapt models to
combinatorial problems with variable dimensions was
proposed. The model’s performance substantially
exceeded that of classical CPLEX and LSTM algorithms
in terms of efficiency and solution quality. Transformers
were also successfully applied in [8] to production
scheduling. Decision Transformers allowed the problems
to be modeled as a sequential decision making process,
where the agent learns to reproduce optimal solutions via

the series of actions that led to the optimization of the
objective function. Based on this source analysis, it can
be concluded that reinforcement learning represents a new
stage in developing approaches to combinatorial
optimization problems. The development of a suitable and
optimized training environment will enable effective
model training, evaluation, and comparison.

Research results and their discussion

In the implemented technology, a reinforcement learning
(RL) approach was used to solve the production-order
scheduling problem. The technology is presented by:

e an environment that simulates the production-

planning process (Job Shop Environment);

e an agent wrapper that restricts the action space based

on a mask;

e an agent implemented based on the Proximal Policy

Optimization (PPO) model.

At each step the agent receives from the environment a
reward and a mask (action_mask) that restricts the choice of
actions and on this basis updates its policy to determine the
optimal operation allocation.

render
—p step(action)

Job Shop Environment

action

reward, mask

PPO
Agent

| S—

-

Action Mask

Wrapper

Fig. 1. Reinforcement Learning scheduling method scheme

For environment adaptation to a wide range of models,
the Gymnasium standards [9] require the implementation of
the following environment methods:

1. Method step(action) — defines the agent’s interaction
with the environment. The method receives an action from
the agent, applies it in the environment, and returns the new
state, reward, and a flag indicating whether the terminal state
has been reached. The structure of the returned data includes:

a. Feature vector — the updated environment state after
the performed action.

b. Agent reward — a numerical value indicating how
beneficial the action was for achieving the goal.

c. Done indicator signals that the environment has
reached a terminal state.

2. Method render() — used to visualize the environment
state. It is implemented via both console and graphical
interfaces. It provides real-time observation of the agent’s
training and monitors its behavior.

3. Method close() — closes the environment after the
agent has completed training. It is necessary to properly
clean and release of resources after the work is completed.

For the production-order planning environment, the
following action encoding has been developed for the Python
method step(action): action — an integer encoding two

YKpaiHCbKUI }KypHan iHbopmaLiiHux TexHonorin, 2025, 1. 7, Ne 1 (11) 37

elements: the operation index and the resource index to
which it is assigned, action = op_id * max_alternatives +
alt_id. Where op_id — operation index, alt id — resource
index, max_alternatives — the total number of resources in
the environment. Applying the action to the environment
involves decoding it into a pair of values by the step(action)
method. The pair of values (op_id, alt id) is decoded from
action as follows:

e op id =action // max_alternatives

e alt id = action % max_alternatives.

Example of encoding: op_id = 2, max_alternatives = 5,
alt id = 4, then action =2 * 5 + 4 = 14. Reverse decoding:
op id=14//5=2,alt id=14%5=4.

Each action received by the agent is submitted to the
environment and processed. The environment rejects some
actions that violate scheduling rules with penalties applied to
the agent, whereas valid actions change the environment
state. This way, a step by step simulation of the planning
process occurs [10]. After decoding the action, the
environment in the step(action) method validates
correctness according to the following rules:

1. Whether the received operation op_id has already been
scheduled in previous steps.

2. Whether all preceding
scheduled.

3. Whether the selected resource alt id is allowed for
performing operation op_id.

operations have been

In case any of these conditions are not met, the agent
receives the maximum penalty, and the action is rejected by
the environment. As a result, the environment state remains
unchanged, and the agent must select action again. In case of
successful completion of the above checks, the environment
applies the received action and updates its internal state. The
sequence of internal state updates is:

1. Operation start time calculation based on the
completion times of preceding operations and resource
availability.

2. Operation end time calculation based on the start time
and the processing time on the selected resource.

3. Adding the operation entry to the selected resource’s
schedule.

4. Updating the resource’s available time.

5. Adding subsequent operations to the list of operations
available for allocation in the next step.

As a result of the state update, the reward for the agent is
calculated. Since the production order scheduling problem is
formulated as the minimization of total schedule completion
time, and the PPO agent minimizes the cumulative penalty
for assigning all operations within an episode implemented
as the sum of negative rewards at each step — the reward
function is defined as the negative increase in schedule
duration at the current step. The reward function at step is
expressed by the equation:

n=—C-C.), (1)
where 7. — the reward at step #; C,— the schedule duration
at the current step; C, ,— the schedule duration at the
previous step.

It is important to note that the agent cannot decrease the
schedule duration relative to the previous step, only increase
it. The only case in which the agent receives no penalty is
when an operation is added such that the schedule duration
remains unchanged. In all other cases, the agent accumulates
a penalty for the increased schedule duration. After
completing all steps of an episode, the accumulated sum of
r, will equal the negative of the total schedule duration. This
incentivizes the agent to produce a shorter overall schedule
throughout the episode. Thus, the reward function reflects
the problem objective — minimization of schedule duration
in a form compatible with the PPO model. Throughout the
training process, PPO accumulates rewards over a fixed
window of steps equal to the batch size and uses this
aggregated return to compute updates to the policy
parameters, adjusting the probability distribution for
selecting the agent’s subsequent actions.
At each step, the action mask is updated based on the
availability of operations and alternatives. The mask restricts
the agent’s action space to ensure the selection of an action
that allocates only available operations to allowed resources.
The action mask is a vector whose elements indicate the
availability of each choice for the agent. If an action is
available, the mask entry at the corresponding index is 1; if
it is not available, the entry is 0. For the scheduling
environment, the mask has dimension n_tasks *
max_alternatives, and each cell index corresponds to the
encoded action. Consider an example of filling the action
mask for n_tasks =3, max_alternatives = 5. Suppose the
current environment state is as follows:
e Operation 1 is available for allocation, allowed
resources: 4, 5.

e Operation 2 is unavailable for allocation, allowed
resources: 3, 2.

e Operation 3 is available for allocation, allowed
resources: 1, 2.

The action mask for the described state has the following
value: action_mask=10,0,0,1,1,0,0,0,0,0,1,1,0,0,0].

Visualization of the current environment state is
implemented by the render() method. The method supports
two modes: “console” — displays text-based information
about the environment state; “visual” — provides a graphical
interface. The visual mode is used to display the final state
of the environment in order to present planning results to
production stakeholders. Gantt charts give a clear view of
time intervals for each operation and resource workload,
enabling production specialists to identify delays or
scheduling issues. An example of the visualized environment
state with 7 resources and 5 scheduled orders is shown in
Fig. 2.

Text mode is required for real-time monitoring of the
environment state during training and debugging. The
console displays the environment’s key characteristics:

e Current simulation time.

Resource availability.
Allocated operations list.
List of operations available for allocation.

38 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

Flexible Job Shop Schedule (Gantt Chart)

64 B0 Order 4
B Order 2
54 I Order 1
[Order3
44 M Order 0

Machine

L]

0 200 400

T

600 800 1000

Time (minutes)

Fig. 2. Visual environment rendering mode — Gant chart

Run

Machine available times:

Current simulation time: 834

[136, 330, 463,

% reinforcement_learning_environment_optimized X

473, 804, 834,

Current operations (next op index for each job): [©, O,

Machine available times:

Current simulation time: 834

[13e, 338, 4863,

473, 8084, 834,

Current operations (next op index for each job): [©, ©,

Machine available times:

Current simulation time: 834

[138, 330, 463,

473, 804, 834,

Current operations (next op index for each job):

Fig. 3. Console environment rendering mode

An example of the console text-mode representation of
the current state is shown in Fig. 3.

The developed environment was used to train agents built
on the PPO and MaskablePPO models. The network
architectures of both models are identical, with the key
feature being two output heads: state value estimation
(value_net) and action probability distribution (action_net).
The output dimension of value net is always 1, while the
output dimension of action_net is determined by the problem
size: n_tasks * max_alternative. The input-layer dimension
also depends on the problem size and is calculated as:
n_tasks + max_alternatives + 1. For 500 operations and 7
resources, the network configuration is:

1. Feature processing, a Flatten layer with output
dimension — 508.

2. Dense layer with Tanh activation, output dimension —
64.

3. Dense layer with Tanh activation, output dimension —
64.

4. Linear output layer action net, output dimension —
3 500.

5. Linear output layer value net, output dimension — 1.

The difference between the models lies in how action-
selection probabilities are computed. PPO uses a standard
Softmax over the entire action output vector (including

invalid actions), whereas MaskablePPO applies the
action_mask via Masked-Softmax according to the equation:

0, if m[i]=0

¢ @

plailm)y=y = if m[i]=1>
e/

Jomlj1=1

where p(a;,m) — the probability of the agent selecting action;
a; — the action with index i; m — the vector action_mask, h; —
the model’s output for action i.

Each model was trained for 100,000 steps using the
hyperparameters specified in Table 1.

As a result of the model training experiments, employing
the Maskable PPO algorithm with incremental action-mask
updates significantly improved training stability and
convergence rate.

Table 1. PPO model hyperparameters

Hyperparameter Value
policy “MultilnputPolicy”
learning_rate le4
batch_size 64
n_steps 2048
n_epochs 10

YKpaiHCbKUI }KypHan iHbopmaLiiHux TexHonorin, 2025, 1. 7, Ne 1 (11) 39

The TensorBoard plot presented in Fig. 4 demonstrates the
dynamics of the mean reward per episode (ep _rew mean)
during training of the PPO models in two variants: PPO and
MaskedPPO. Since the problem is defined as a minimization
problem, the goal of training is to decrease the penalty’s
absolute value, bringing the negative reward closer to zero.
For comparing agent training quality, the average penalty per
step is used, computed by the equation:

r

_ L

mean T , (3)

where 7uean — the average penalty per step; ro,— the
accumulated penalty for the episode; 7 — the number of steps
in the episode.

For MaskablePPO, the mean penalty at the start of
training is 2.41 and steadily improves during training,
decreasing by 7 % over 100,000 steps. By contrast, for PPO
the value starts at 325,883 and fluctuates up to 22 % worse.
This indicates instability in the PPO training process. In the
case of PPO without masking, the penalty additionally
accounts for all unsuccessful action attempts (e.g., selecting
an occupied resource), and a fixed penalty of 100,000 is
applied for each, explaining the high per-step penalty values.
The model faces an excessively large action space [11] and,
as a result, performs a significant number of invalid actions,
accumulating excessive penalties. These excessive penalties
negatively affect the formation of associations between
actions and their outcomes, as noted in [12].

rollout/ep_rew_mean SR, S
0
-2e+8
-4e+8
-6e+8
—————
L, T R——
-8e+8
2048 X 10k 20k 30k 40k 50k 60k 70k 80k 90k 100352 X
Run Min Max Start Value End Value AValue A% Start Step End Step
® masked/_134137/PP0O_1 -4 951,8335 -4 590,8558 -4 951,8335 -4 590,8558 13609776 Vv-7% 2048 100 352
@ unmasked/_141101/PPO_1 -812943 558,56822 -667 409920 -667 409 920 -812 832 4552237 V1454225352237 122% 8192 100 352

Fig. 4. Episode penalty over training step

In the unmasked environment model training is
characterized by extremely high values of loss and value loss
on the order of 10'?, while entropy remains stable at around
—6,4, which may indicate problem complexity for the model
or convergence issues due to the large search space and lack
of efficient action constraints [13]. In contrast, in a masked
environment, loss values are much lower 10*; policy entropy
stabilizes at approximately —3.5 to —3.6. Approximate KL
divergence values remain low, indicating training stability
and the adequacy of the applied action-masking mechanism.
Meanwhile, the key performance metric (FPS) in the masked
environment is somewhat lower, a consequence of the
additional computational overhead of the masking process.
Additionally, the percentage of invalid actions is computed:

]R:%'IOO%, 4)

N
where N, — the number of invalid action attempts, N — the
total number of action attempts.

Each attempt to select an invalid action is counted
separately, even if it occurs within the same state, since such
an error leads to wasted time without advancing toward the
final solution. The experimental results are included in Table

2 for model comparison.

Table 2. PPO, MaskedPPO model training result comparison

Parameter PPO Masked PPO
Total Timesteps 100 352 100 352
Training time, s 120 141
Loss ran 1.21-102— 2.78-10% —
058 Tange 1.41-102 3.96:10*
2.34-10"2 — 6.33-10% -
Value Loss range 279-10" 795.10¢
Policy Gradient Loss =107 =107
Approximate KL divergence ~0 =10+
Policy entropy —6.4 -3.6
Percentage of 1I1.V2.111d actions 96 % 0%
after training
Scheduling t1m§ for 50 orders 51 0.19
after training, s

The obtained results reveal that the application of masking
significantly improves the efficiency and stability of PPO
model training, ensuring rapid convergence to an adequate
behavior policy under specified conditions. Moreover, a
substantial reduction in the percentage of invalid actions was
observed from over 96 % in the baseline PPO to 0 % in the
masked variant. As a result, the decision making time of the
trained model for a set of 50 orders decreased from 5.1 s to
0.19 s, and the demonstrated acceleration confirms the

40

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

practical feasibility of using the masking mechanism when
training PPO models for the order planning problem. To assess
the stability of the training results, both models — PPO and
Masked PPO — were evaluated over three runs with explicitly
fixed seed values. Table 3 presents the outcomes of the trained
models, demonstrating schedule quality and computational
performance.

Table 3. Performance of PPO and Masked PPO
models with different seed values

Schedule invalid Inf
Model seed duration, 1r.1va ! n. erence
. actions, % time, s
min

37 5158 86.91 4.14

PPO 73 5440 97.85 6.02

141 5287 96.26 5.39

red 37 4891 0.00 0.17

Maske
PPO 73 4932 0.00 0.18
141 4974 0.00 0.17

Masked PPO delivers stable results across all metrics —
zero percent invalid actions, and consistent schedule
durations and inference times regardless of the seed. In
contrast, the unmasked PPO model exhibits unstable
behavior, with a high percentage of invalid actions (over

rollout/ep_rew_mean

-4600
-4700
-4800
-4900

2048 x 20k 40k 60k 80K

Run Min Max v
@ 30/masked/230016_basic/PPO_1 49171 -4 551,4576
™ 231614_aggressive/PPO_1 48116932 -45756255

@® 30/masked/230610_precise/PPO_1 -4 857,7522 -4 614,1642

85 %), leading to longer computation times and significantly
extended schedule durations.

Three configuration sets from Table 4 were tested to
assess the impact of hyperparameters on the stability and
training speed of the Masked PPO model.

Table 4. Hyperparameter sets for sensitivity analysis

of the Masked PPO model
Set learning_rate batch_size n_steps
basic 1-107 64 2048
aggressive 4-107 32 1024
precise 5:107° 512 4096

Fig. 5 shows the mean reward per episode ep_rew mean
over the number of training steps.

The plot shows the aggressive configuration is
characterized by a rapid initial increase in mean reward during
the early training steps. In contrast, the precise configuration
demonstrates a more stable trajectory and ensures predictable
result quality as the number of training steps increases. Despite
its high peak reward, the basic configuration exhibits greater
variability and less predictable convergence compared to the
precise. Plots illustrating changes in the loss function (loss)
were also generated for each model configuration to evaluate
the convergence of the training process.

av
[IR
100k 120k 140k 160k 180k 200k
Start Value End Value AValue A% Start Step End Step
-4 829,3335 -4 568,1632 +261,1703 ¥-5% 2048 200704
-4 661,1665 -4 601,1294 60,0371 v-1% 2048 200 704
-4 841,1665 -4 614,1642 +227,0023 ¥-5% 2048 200 704

Fig. 5. Dependence of the mean reward (ep_rew_mean) on training steps for the aggressive, precise, basic sets

train/loss B o::
3.5e+4
3e+4
2.5e+4
2e+4
4096 x 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Run » Min Max Start Value End Value AValue A% Start Step End Step

@® 30/masked/230016_basic/PPO_1 20837,1788 35292,3423 34 981,793 22251,3435 127304494 V-36% 4096 200704

® 30/masked/230610_precise/PPO_1 267585139 35792,8762 33467,2969 28464,1462 ¥5003,1507 Vv-15% 4096 200 704

@ 30/masked/231614_aggressive/PPO_1 17 559,1038 35116,5393 304163262 18110,5235 123058026 +-40% 4096 200704

Fig. 6. Dependence of the loss function value on training steps for the aggressive, precise, and basic configurations

YKpaiHCbKUI }KypHan iHbopmaLiiHux TexHonorin, 2025, 1. 7, Ne 1 (11)

41

train/policy_gradient_loss

ra
[

D18

-0.005

4096x 20k 40k 60k 80k

100k 120k 140k 160k 180k 200k

Run + Min Max Start Value End Value AValue 2% Start Step End Step
® 30/masked/230016_basic/PPO_1 -0,007 -0,0031 -0,0031 -0,0063 +0,0032 +101% 4096 200704
® 30/masked/230610_precise/PPO_1 -0,0033 -0,0012 -0,0012 -0,0029 +0,0017 134% 4096 200704
@® 30/masked/231614_aggressive/PP0O_1 -00126 -0,0064 -0,0065 -0,0075 ¥+ 0,001 M15% 4096 200704

Fig. 7. Dependence of the policy gradient loss (policy gradient loss) on training steps for the aggressive,

precise, and basic configurations

The aggressive configuration demonstrates the fastest
decrease in loss value (—40 %), indicating a high learning
performance. At the same time, spikes in the loss trajectory
suggest that this configuration delivers learning speed but
not overall model stability or effectiveness. In addition to the
overall loss value (loss), the dynamics of policy gra-
dient_loss were analyzed; this metric reflects the magnitude
of gradients applied to update the policy parameters and
characterizes the intensity of the agent’s policy changes
during training.

The precise configuration maintains the greatest stability,
maintaining a consistent gradient magnitude with only minor
fluctuations throughout training, indicating cautious policy
updates. In contrast, the aggressive configuration exhibits
high initial gradient dynamics and intensity, but after a sharp
decline in policy gradient loss values, training slows
markedly, potentially signaling a degradation of update
efficiency.

Table 5. Comparison of schedule quality and computation time

The trained PPO and Masked PPO models were also
compared with classical methods on extended input datasets.
Specifically, CP-SAT (Google OR-Tools) was employed as
the exact approach, and the shortest processing time
dispatching rule (SPT) served as the heuristic method. The
results are presented in Table 5.

As shown in Table 5, CP-SAT successfully found
solutions for problems with 50 and 100 orders; for 500 orders,
a solution was not obtained within the imposed time limit of 5
minutes. CP-SAT solutions serve as the standard for schedule
quality. The Masked PPO model delivers the best balance
between solution speed and schedule quality across all
problem sizes, outperforming the SPT heuristic and standard
PPO. Moreover, its computation time is substantially lower
than that of CP-SAT. As the problem scale grows, the model
maintains a low solution time while its schedule quality
remains acceptable and only marginally below that of CP-
SAT. This demonstrates the production applicability of the
approach for medium- and large-scale planning problems,
especially when CP-SAT cannot meet strict time constraints.

Discussion of research results. Employing the Proximal
Policy Optimization (PPO) algorithm, a production-order
scheduling model was developed in two operational modes:
PPO without action masking and MaskedPPO with action
masking. The PPO model is characterized by instability in the
training process and high loss values, on the order of 10'2
while the proportion of invalid actions on application reaches
96 %, and the scheduling time for 50 orders is 5.1 seconds.
With the masking approach, a stable model variant was
obtained, featuring significantly lower losses (on the order
of 10%, the absence of invalid actions, and reduced
computation time to 0.19 s for the same 50 orders.

The scientific novelty of the obtained research — for the
first time, a reinforcement-learning training environment has
been formalized and developed that effectively enforces
constraints on operation sequencing and allocation to
alternative resources with varying performance and applies

Number Number Schedule Compu-
of of Method duration, | tation time,
orders operations min s
CP-SAT 4 620 11.2
SPT 5332 0.02
50 500 PPO 5127 5.1
Masked
PPO 4951 0.18
CP-SAT 9451 347
SPT 11720 0.051
100 1000 PPO 12 234 14.1
Masked
PPO 10202 0.51
CP-SAT | Mot Not found
found
SPT 65 678 0.324
500 5000
PPO 66 129 81.2
Masked
PPO 57 053 2.4
42

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

mechanisms of incremental state updating and invalid action
masking to accelerate the training process. The performance
of production plan computation is improved relative to
classical exact approaches through the application of the
Masked PPO reinforcement learning model.

The practical significance of the research— high
efficiency of model training within the developed
environment. Applying the proposed technology in
production planning information systems significantly
reduces scheduling time and produces schedules with
durations close to optimal.

Conclusions

An environment that simulates the real production-
planning process was implemented, and a model for efficient
production order scheduling based on the Maskable PPO
reinforcement learning method was developed. The research
aim was achieved by constructing an optimized environment
supporting dynamic action masking and incremental state
updates. The resulting framework enabled rapid and efficient
training of scheduling models.

Experimental results confirmed the advantage of the
action masking approach over classical implementations,
particularly in convergence rate and training stability.
Employing incremental mask and internal state updates
introduced only a minor performance overhead for action
mask generation. These findings establish a basis for the
development of specialized models and the integration of
reinforcement-learning techniques into production-planning
systems. The trained Maskable PPO model scheduled 50
orders in just 0.18 seconds, demonstrating its suitability for
environments with highly dynamic production processes.
Future research will investigate Set Transformers and
attention-based graph neural networks. Application of the
mentioned architectures will enable the model to generalize:
training can be performed on small schedules, while it can be
applied to handle significantly larger and more complex
configurations.

References

[17 K.Li, T. Zhang, R. Wang, Y. Wang, Y. Han and L. Wang
(Dec. 2022). Deep Reinforcement Learning for
Combinatorial Optimization: Covering Salesman Problems,
in /[EEE Transactions on Cybernetics, 52(12), 13142—13155.
https://doi.org/ 10.1109/TCYB.2021.3103811

[2] Kim, H., Kim, Y.-J., & Kim, W.-T. (2024). Deep
reinforcement learning-based adaptive scheduling for
wireless time-sensitive networking. Sensors, 24(16), 52-81.
https://doi.org/ 10.3390/s24165281

(11]

[12]

[13]

(14]

Cheng, Y., Huang, L., & Wang, X. (2022). Authentic
Boundary Proximal Policy Optimization. /[EEE Transactions
on Cybernetics, 52(9), 9428-9438. https://doi.org/10.1109/
TCYB. 2021.3051456

Zhang, T., Banitalebi-Dehkordi, A., & Zhang, Y. (2022,
August). Deep reinforcement learning for exact
combinatorial optimization: Learning to branch. /n 2022 26th
International Conference on Pattern Recognition (ICPR) (pp.
3105-3111). IEEE. https://doi.org/10.1109/ICPR56361.
2022.9956256

Zhang, Y., Zhang, Z., & Zhang, L. (2020). Implementing
action mask in proximal policy optimization (PPO)
algorithm. Procedia Computer Science, 176, 2749-2758.
https://doi.org/ 10.1016/j.procs.2020.09.122

Wang, Z., Li, X., Sun, L., Zhang, H., Liu, H., & Wang, J.
(2024). Learning State-Specific Action Masks for Reinfor-
cement Learning. Algorithms, 17(2), 60. https:// doi.org/
10.3390/ 217020060

Jung, M., Lee, J., & Kim, J. (2024). A lightweight CNN-
transformer model for learning traveling salesman problems.
Applied Intelligence, 54, 7982—7993. https://doi.org/10.1007/
$10489-024-05603-x

Waubert de Puiseau, C., Wolz, F., Montag, M., Peters, J.,
Tercan, H., & Meisen, T. (2025). Applying Decision
Transformers to Enhance Neural Local Search on the Job
Shop Scheduling Problem. A/, 6(3), 48. https://doi.org/
10.3390/2i6030048

Krishnan, S., Boroujerdian, B., Fu, W., Chen, Y., Sharma, P.,
& Bindel, D. (2021). Air Learning: A deep reinforcement
learning gym for autonomous aerial robot visual navigation.
Machine Learning, 110(9), 2501-2540. https://doi.org/
10.1007/ s10994-021-06006-6

Han, B., & Yang, J.-J. (2021). A deep reinforcement learning
based solution for flexible job shop scheduling problem.
International Journal of Simulation Modelling, 20(2), 375—
386. https://doi.org/10.2507/1ISIMM20-2-CO7

Zhang, X., Wang, Y., & Wang, J. (2022). Entropy regularized
reinforcement learning with policy gradient. Information
Sciences, 607, 1063-1079. https://doi.org/10.1016/j.ins.
2022.06.057

Eschmann, J. (2021). Reward function design in
reinforcement learning. In Reinforcement Learning Algo-
rithms: Analysis and Applications (pp. 25-33). Springer.
https://doi.org/10.1007/ 978-3-030-41188-6_3

Hou, Y., Liang, X., Zhang, J., Yang, Q., Yang, A., & Wang,
N. (2023). Exploring the use of invalid action masking in
reinforcement learning: A comparative study of on-policy
and off-policy algorithms in real-time strategy games.
Applied Sciences, 13(14), 82-83. https://doi.org/10.3390/
app13148283

Sahu, A., Venkatraman, V., & Macwan, R. (2023).
Reinforcement learning environment for cyber-resilient
power distribution system. /[EEE Access, 11,127216-127228.
https://doi.org/10.1109/ACCESS.2023.3282182

YKpaiHCbKUI }KypHan iHbopmauiiHux TexHonorii, 2025, 1. 7, Ne 1 (11) 43

K. C. I'piyenko, 0. O. Ilucapuyk

Hayionanonuti mexuiunuii ynisepcumem Yxpainu “Kuiscokuti nonimexuiunuii incmumym imeni leops Cikopcvroeo”, m. Kuis, Yxpaina

TEXHOJIOT'I1 HABYAHHA 3 MIAKPIIIJIEHHAM I3 MACKOIO 11
A1 IIJIAHYBAHHA 3AMOBJIEHD

BucokonpoaykTHBHE i e(eKTHBHE IUIaHYBaHHS 3aMOBJICHb — IMOIIMPEHAa KOMOIHATOpPHA ONTHMI3alliiiHa 3aja4a, 110
BUHUKAE B pPI3HOMAHITHUX KOHTekcrax. I[loOymoBa wmozemni, 3maTHoOi ¢GopmyBath 30anaHCOBaHI 3a SIKICTIO Ta
00YHCITIOBaIbBHUMH BUTpPATaMU PO3KIIAJIM, — ICTOTHHI BHUKJIMK 4Yepe3 MACIITAOHWI MPOCTIp JOMYyCTUMHX Iiil. Y poOoTi
3aIPOMIOHOBAHO BHUCOKOIPOIYKTUBHE CEPEIOBHIIE Ta MOJENb HABUYAHHS 3 IJKPIIUICHHSAM IJISl PO3IOIITY 3aMOBJICHb HA
pecypcu i3 MacKyBaHHSM HEJOMYyCTUMHX Jild. Po3poliieHe pillieHHS Ha OCHOBI HaBYaHHS 3 MIAKPIIUICHHSIM J0Ja€e
OOMEKEHHS TPAJUIIHHUX EBPUCTHYHMX Ta TOYHHX IMIiJXOJIB CTOCOBHO IIBHIKOCTI PO3PaxyHKIB Ta €(EKTHBHOCTI.
Jocnikenns nependadano NPOEKTYBaHHS CyMICHOTO 13 iHTepdeiicom Gymnasium cepeoBHIla, aHali3 IPOAYKTUBHOCTI
CepeoBHUIa, PO3POOJICHHS ONTHUMI30BAHUX IPOLEAYP OHOBJICHHS CTaHy Ta ()OPMYBaHHs O3HAK, OLIHIOBaHHS SKOCTI
HaBuaHHs MoJiesielt PPO ta MaskablePPO. Jlns cepenoBuiia peaniz3oBaHO iHKPEMEHTHE OHOBIICHHS O3HAK CTAHY Ta MAacKU
JI i3 MIUPOKUM 3aCTOCYBaHHs BekTopm3auii NumPy, 1o fajso 3MOry iCTOTHO 3MEHIIMTH OOYHCIIOBAJIbHI BHTpPATH Ha
HiITPUMAHHS aKTyaJbHOIO CTaHy Ta MiABUIIWIO CYMICHICTh i3 MOJITUKAMKU TIJIMOMHHOTO HaBYaHHsS. MacKyBaHHS
HEJOIMYCTUMUX [ifl 3aMiHWIO HOJITUKY WITpadiB, OOMEXYIOUM MHOXUHY BHOOPY MOJEIi JIMIIE KOPEKTHUMH, YUM
HiJIBUIIMIIO TOYHICTh MOJIEN, 30CEPENUBIINCh HA BHOOPI ONTUMANBHIMUX Ta KopekTHimwmx niid. Cpopmoano Habopu
JaHux posmipom o 500 3amMoBiIeHb, Ha SIKHX 3aiiicHeHO HaB4aHHs PPO ta MaskablePPO mopeneit, HagaHuX MakeToM
Stable-Baselines3. Bukonano 100 000 itepariiii s HaBuaHHS KOXHOT Mozedi. MOHITOPHHI TIpOLECY HaBUAHHS
3abe3neyeHo 3a gornoMororw 3acobiB TensorBoard. Yac HaBuaHHsS Bepcii 3 MacKyBaHHsM cTaHOBUB 1,49 XB, Mozenb 0e3
MacKu BUTpatuiia Ha HaBuaHHs 1,2 xB. Jlns Masked PPO cepenniii mrpad Ha kpoui cranoBuB 2,41, Tomi sik mis PPO —
325000. Pe3ynbpTaTi €KCIIEPUMEHTIB CBIZUaTh MO Te, 1110 3Bn4aiiHa PPO yacto BuOMpasna HenomycTumi fii, HAKOIHY yFOur
mrpadu 3a HuX, Tol sk MaskedPPO nakonmuuia mrpad nuiie 3a JOBKHUHY CKIAJICHOTO PO3KIaay. 3aBsKH 1IbOMY Ha
tectoBoMy Habopi manux MaskedPPO 3uilicHuna posmonin 3amoBiieHb 3a 0,18 ¢, oTpUMaBIIN PO3KIIAL TPHUBATICTIO
4590 xB, a 3Buuaitna PPO 3a 5,4 c — posknan TtpuBaiicTio 5 127 xB, 3nificHuBIIM 96 % NOMHIKOBHX CHIPOO iH.
BceraHoBieHO, 1110 MacKyBaHHS HEJOIYCTUMMX il MOKPALIMIO SKICTh MO, 3a0e3MeYMBIIN BUILY 301KHICTh TONpPHU
JIOBINUH Yac HaBuaHHs. [IPOJEMOHCTPOBAHO 3HAYHMI MOTEHIIAN MMiJXOAy HABUAHHS i3 MiAKPIMJICHHSIM Yy IJIaHyBaHHI Ta
pO3MOALI 3aMOBJIEHb 1 ONTHUMI3AlifHUX KOMOIHATOPHUX 3aaa4 3arajioM. 3anpornoHoBaHa wmojens Masked PPO
3a0e3neunsia pPo3MOALT 3aMOBJICHb LIBUALIE 3a Tpamuuiiinuii tounuii meron CP-SAT, 30epiriu SIKICTb OTPUMAaHOIO
po3kiany, Buiy 3a eBpuctuky SPT Ha 3anauax i3 50-500 3amMoBiIeHHSMH. 3aK/IaJI€HO OCHOBY JUIS TOJANIBIINX JOCIHIPKEHb,
po3pobieHHs cxnagHimux Moneneil Ha ocHoBi Set Transformers, Graph Neural Networks, Pointer Networks, ski
3a0e311euyI0Th €(PEKTHUBHE y3arajJbHEHHS, MOXK/IUBICTh 3aCTOCYBAHHs MOJIEII Ha 3a1a4ax i3 OLIbIIOI PO3MIPHICTIO BXIHUX
BEKTOpIB, HIX ITi]] 4aC HAaBYAHHSI.

Knrwuosi cnosa: nnanyBaHHs BUPOOHMIITBA, HABYAHHS 13 MIJAKPIIUICHHSIM, INIMOWHHE HABYAHHS, INTYYHUH 1HTEICKT,
PPO, Maskable PPO, posnoain pecypciB, Gymnasium, iHTeJIEKTyalbHi areHTH.

IH$popmaLia npo asTopiB:

Koctantun Cepriitoeuu lpiweHKo, acnipaHT, Kadeapa obuncntosanbHoi TexHiku. Email: k.hrishchenko@kpi.ua; https://orcid.org/0009-
0008-9251-0222

OneKcii OneKkcaHapoBuy [McapuyK, [JOKTOP TeXHIYHWX HayK, npodecop Kadbeapu obuncnoBanbHoOi TexHikn. Email:
platinumpa2212@gmail.com; https://orcid.org/0000-0001-5271-0248

LiutyBaHHa 3a ACTY: piweHko K. C., Mucapuyk O. O. TexHoNOrif HaBYaHHA 3 NiAKPINAEHHAM i3 MAacKOto A ANA NAaHYBaHHA 3aMOB/EHb.
YKpaiHcokul ¥ypHan iHgpopmayiliHux mexHonoeil. 2025, 1. 7, Ne 1. C. 35-44.

Citation APA: Hrishchenko, K., & Pysarchuk, O. (2025). Action-masked reinforcement learning technology for order scheduling. Ukrainian
Journal of Information Technology, 7(1), 35—44. https://doi.org/10.23939/ujit2025.01.035

44 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

