
 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 35

COMPUTER SCIENCE

http://science.lpnu.ua/uk/ujit

https://doi.org/10.23939/ujit2025.01.035

Article received 10.04.2025 ".

K. S. Hrishchenko Article accepted 01.05.2025 ".

k.hrishchenko@kpi.ua UD@ 004.8

K. S. Hrishchenko, O. O. Pysarchuk

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

ACTION-MASKED REINFORCEMENT LEARNING TECHNOLOGY FOR ORDER SCHEDULING

The problem of high-performance and efficient order scheduling is a common combinatorial optimization problem in

various industrial contexts. Creation of a model capable of generating schedules balanced in terms of quality and

computational time poses a significant challenge due to the large action space. This study proposes a high-performant

environment and a reinforcement learning model for allocating orders to resources using a mechanism of invalid action

masking. The developed reinforcement learning solution overcomes the limitations of traditional heuristic and exact methods

regarding computation performance and efficiency. The research included the design of a Gymnasium-compatible

simulation environment, performance benchmarking, development of optimized environment state updating procedures,

feature generation strategies, and evaluation of PPO and MaskablePPO models. The environment implemented incremental

updates of the features state and action masks with extensive NumPy vectorization, significantly reducing computational

overhead and improving compatibility with deep learning policies. The invalid action masking replaced penalty-based

constraints by mandatory restrictions on the agent’s action space to feasible decisions, thus enhancing the policy’s accuracy

by focusing on valid and more optimal choices. Datasets containing up to 500 orders were generated, on which PPO and

MaskablePPO models from the Stable-Baselines3 library were trained. Each model was trained for 100,000 iterations.

Training progress was monitored using TensorBoard. The masked version required 1.49 minutes for training, while the

unmasked model completed training in 1.2 minutes. For Masked PPO, the average per-step penalty was 2.41, while for PPO

it was 325,000. These results demonstrated that the standard PPO frequently selected invalid actions, collecting heavy

penalties, whereas the MaskedPPO accumulated penalties solely related to the schedule length. As a result, on the test

dataset, MaskedPPO completed the schedule calculation in 0.18 seconds, producing a schedule with a total duration of

4.590 minutes, compared to 5.4 seconds and 5,127 minutes for standard PPO, which made invalid action attempts in 96 %

of the cases. It was found that action masking significantly improved the model’s accuracy and convergence despite a slightly

longer training time. The results reveal the strong potential of reinforcement learning approaches for order scheduling and

combinatorial optimization problems in general. The proposed Masked PPO model resulted in reduced order allocation time

compared to the traditional exact CP-SAT method while maintaining higher schedule quality than SPT heuristic approache

on problems with 50500 jobs. This work established the foundation for future research involving more complex model

architectures based on Set Transformers, Graph Neural Networks, and Pointer Networks. These enable effective

generalization and allow the trained policies to be applied to problem instances with higher input dimensions than those seen

during training.

Keywords: production scheduling, reinforcement learning, deep learning, artificial intelligence, PPO, Maskable PPO,

resource allocation, Gymnasium, intelligent agents.

Introduction

The problem of production-schedule planning and

resource allocation is one of the most challenging core

problems in mass and small-batch manufacturing, supply

chain optimization, and project management. It concerns

assigning a graph of interdependent operations to alternative

resources while considering technological constraints,

resource availability, and expected due dates. This problem

belongs to the class of NP-complete combinatorial opti-

mization problems and is related to the traveling salesman

and vehicle routing problems. Classical solution approaches

are divided into two types: exact methods and heuristics.

Exact methods include integer programming, branch and

bound, and dynamic programming. Although they guarantee

optimality, exact methods reveal extensive computational

complexity on large-scale instances and require extensive

manual parameter tuning. As the problem size grows, their

36 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

practical application becomes difficult, whereas heuristics,

despite quick solution generation, cannot ensure acceptable

schedule quality. Consequently, approaches that balance

schedule-generation speed and quality under limited

computation time are needed, as this balance confers a

decisive competitive advantage on production planning

systems. Advances in machine-learning technologies,

particularly deep reinforcement learning, have enabled new

alternative approaches to such problems. Specifically, for the

traveling salesman problem, reinforcement-learning models

have achieved better solutions [1] than well-known

heuristics and exact methods.

The Object of study – the process of generating operation

schedules in a flexible manufacturing environment.

The Subject of study – reinforcement learning methods

with action masking for scheduling problems.

The Aim of the study – development and experimental

validation of a production-order planning technology based

on the Maskable PPO reinforcement-learning model, with an

evaluation of both schedule quality and computational

performance.

To achieve the stated aim, the following principal

research tasks have been set:

 develop a custom environment that models

production;

 enable step by step planning simulation with invalid

actions masking;

 implement incremental updates of the environment

state and the action mask to improve efficiency;

 implement the computation of reward / penalty for the

model’s action;

 train the Maskable PPO model;

 evaluate the effectiveness of the trained model.

Materials and methods. Based on the Gymnasium

package, a specialized simulation environment,

JobShopEnv, was developed and is compatible with

common reinforcement-learning frameworks. The

environment supports a variable number of orders and

operations, alternative resources for each operation, as well

as dependencies between operations. The internal state of the

environment includes the current time, resource availability,

the set of completed operations, and an action mask that is

updated at every step. State updates are implemented

incrementally, i.e., by updating only the dependencies in

response to an action, without recalculation of the entire state

at each step. The action space is represented as a vector that

encodes the choice of operation and its assignment to a given

resource. ActionMasker, an environment wrapper, was used

to exclude invalid actions, presenting the agent only with

allowed actions, with mask entries set to 1.

As the reinforcement learning algorithm, the Maskable

PPO model from the SB3-Contrib package was employed.

The training was conducted with a fixed number of steps for

problem instances of varying sizes, from 5 to 500 orders.

Each order in the set comprises 10 operations with variable

durations and resource requirements, so processing a set of

50 orders corresponds to scheduling 500 operations.

TensorBoard monitoring functionality was used to record the

average reward, episode completion time, and the number of

steps. Experiments were also run for comparison purposes

using the PPO model provided by stable_baselines3 without

action masking. The choice of Proximal Policy Optimization

(PPO) is justified by its compatibility with action-masking

mechanisms and its easy integration with environments with

a discrete action space. The alternative Soft Actor-Critic

(SAC) algorithm is oriented toward problems with

continuous action spaces and requires adaptation for

application in future research. The Advantage Actor-Critic

(A2C) algorithm is compatible with the developed discrete

environment; however, additional modifications are needed

to enforce action constraints.

A uniform setup of 100,000 training steps, initial state,

and environment parameters was maintained. Accumulated

reward, percentage of invalid actions, and episode duration

were analyzed. Profiling of environment state updates and

model action processing using the cProfile utility revealed

significant time overhead on mask computation and feature-

vector updates. Consequently, optimizations were applied:

incremental updates of the action mask and the array of

available operations. All experiments were conducted in a

Python 3.10 environment using NumPy and PyTorch

without GPU support.

Analysis of recent research and publications.

Reinforcement learning is finding increasingly broad

applications in the field of combinatorial optimization. This

growing interest has been driven by successful demonstrations

of deep reinforcement learning in gaming environments and

classical NP-hard combinatorial problems such as the

traveling salesman problem. These environments feature large

state and action spaces and exhibit clear advantages of the

considered approach over classical techniques. Study [2]

demonstrated the effectiveness of deep learning in the problem

of scheduling information transmission in a high-performance

network. The resulting model reduced data-transfer time

through optimal allocation of data channels while still

satisfying strict computation-time constraints.

Among contemporary deep reinforcement learning

algorithms, Proximal Policy Optimization (PPO) is a key in

combining training stability with efficiency [3]. PPO has

been successfully applied to various combinatorial

optimization problems due to the agent’s ability to adapt to

complex and dynamic environment conditions [4]. In the

referenced publication, the model was applied to branching

direction selection in a branch and bound algorithm. For the

set-covering problem, it was shown that PPO achieved

performance and accuracy gains over the FSB heuristic as

well as over a pre-trained GCNN model.

One of the challenges is training agents in environments

with invalid actions. Classical reinforcement-learning

approaches, such as DQN or PPO, do not support action

prohibition, which leads to the need for large penalties since

the model may select actions that violate scheduling rules.

Modifications have appeared to address this shortcoming,

notably an action mask for PPO [5], which allows for the

 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 37

specification of a binary vector of permissible actions and

thus guarantees that the model will select only those actions.

In [6], the influence of different mask types on model

behavior was studied in depth, and experiments were

conducted in three distinct environments. The experimental

results showed that “standard PPO converges significantly

slowly or not at all”. This demonstrates the value of applying

a mask for successful model training in environments with a

large number of invalid actions.

The next aspect affecting the successful application of

reinforcement learning to combinatorial problems in

practice is the variable dimensions of input vectors. The

classic PPO model, like Masked-PPO, assumes a fixed

dimensions for both the action and feature vectors. In [7],

the application of transformers to adapt models to

combinatorial problems with variable dimensions was

proposed. The model’s performance substantially

exceeded that of classical CPLEX and LSTM algorithms

in terms of efficiency and solution quality. Transformers

were also successfully applied in [8] to production

scheduling. Decision Transformers allowed the problems

to be modeled as a sequential decision making process,

where the agent learns to reproduce optimal solutions via

the series of actions that led to the optimization of the

objective function. Based on this source analysis, it can

be concluded that reinforcement learning represents a new

stage in developing approaches to combinatorial

optimization problems. The development of a suitable and

optimized training environment will enable effective

model training, evaluation, and comparison.

Research results and their discussion

In the implemented technology, a reinforcement learning

(RL) approach was used to solve the production-order

scheduling problem. The technology is presented by:

 an environment that simulates the production-

planning process (Job Shop Environment);

 an agent wrapper that restricts the action space based

on a mask;

 an agent implemented based on the Proximal Policy

Optimization (PPO) model.

At each step the agent receives from the environment a

reward and a mask (action_mask) that restricts the choice of

actions and on this basis updates its policy to determine the

optimal operation allocation.

Fig. 1. Reinforcement Learning scheduling method scheme

For environment adaptation to a wide range of models,

the Gymnasium standards [9] require the implementation of

the following environment methods:

1. Method step(action) – defines the agent’s interaction

with the environment. The method receives an action from

the agent, applies it in the environment, and returns the new

state, reward, and a flag indicating whether the terminal state

has been reached. The structure of the returned data includes:

a. Feature vector – the updated environment state after

the performed action.

b. Agent reward – a numerical value indicating how

beneficial the action was for achieving the goal.

c. Done indicator signals that the environment has

reached a terminal state.

2. Method render() – used to visualize the environment

state. It is implemented via both console and graphical

interfaces. It provides real-time observation of the agent’s

training and monitors its behavior.

3. Method close() – closes the environment after the

agent has completed training. It is necessary to properly

clean and release of resources after the work is completed.

For the production-order planning environment, the

following action encoding has been developed for the Python

method step(action): action – an integer encoding two

38 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

elements: the operation index and the resource index to

which it is assigned, action = op_id * max_alternatives +

alt_id. Where op_id – operation index, alt_id – resource

index, max_alternatives – the total number of resources in

the environment. Applying the action to the environment

involves decoding it into a pair of values by the step(action)

method. The pair of values (op_id, alt_id) is decoded from

action as follows:

 op_id = action // max_alternatives

 alt_id = action % max_alternatives.

Example of encoding: op_id = 2, max_alternatives = 5,

alt_id = 4, then action = 2 * 5 + 4 = 14. Reverse decoding:

op_id = 14 // 5 = 2, alt_id = 14 % 5 = 4.

Each action received by the agent is submitted to the

environment and processed. The environment rejects some

actions that violate scheduling rules with penalties applied to

the agent, whereas valid actions change the environment

state. This way, a step by step simulation of the planning

process occurs [10]. After decoding the action, the

environment in the step(action) method validates

correctness according to the following rules:

1. Whether the received operation op_id has already been

scheduled in previous steps.

2. Whether all preceding operations have been

scheduled.

3. Whether the selected resource alt_id is allowed for

performing operation op_id.

In case any of these conditions are not met, the agent

receives the maximum penalty, and the action is rejected by

the environment. As a result, the environment state remains

unchanged, and the agent must select action again. In case of

successful completion of the above checks, the environment

applies the received action and updates its internal state. The

sequence of internal state updates is:

1. Operation start time calculation based on the

completion times of preceding operations and resource

availability.

2. Operation end time calculation based on the start time

and the processing time on the selected resource.

3. Adding the operation entry to the selected resource’s

schedule.

4. Updating the resource’s available time.

5. Adding subsequent operations to the list of operations

available for allocation in the next step.

As a result of the state update, the reward for the agent is

calculated. Since the production order scheduling problem is

formulated as the minimization of total schedule completion

time, and the PPO agent minimizes the cumulative penalty

for assigning all operations within an episode implemented

as the sum of negative rewards at each step – the reward

function is defined as the negative increase in schedule

duration at the current step. The reward function at step is

expressed by the equation:

1()t t tr -= - - , (1)

where
tr – the reward at step t;

t – the schedule duration

at the current step;
1t - – the schedule duration at the

previous step.

It is important to note that the agent cannot decrease the

schedule duration relative to the previous step, only increase

it. The only case in which the agent receives no penalty is

when an operation is added such that the schedule duration

remains unchanged. In all other cases, the agent accumulates

a penalty for the increased schedule duration. After

completing all steps of an episode, the accumulated sum of

rt will equal the negative of the total schedule duration. This

incentivizes the agent to produce a shorter overall schedule

throughout the episode. Thus, the reward function reflects

the problem objective – minimization of schedule duration

in a form compatible with the PPO model. Throughout the

training process, PPO accumulates rewards over a fixed

window of steps equal to the batch_size and uses this

aggregated return to compute updates to the policy

parameters, adjusting the probability distribution for

selecting the agent’s subsequent actions.

At each step, the action mask is updated based on the

availability of operations and alternatives. The mask restricts

the agent’s action space to ensure the selection of an action

that allocates only available operations to allowed resources.

The action mask is a vector whose elements indicate the

availability of each choice for the agent. If an action is

available, the mask entry at the corresponding index is 1; if

it is not available, the entry is 0. For the scheduling

environment, the mask has dimension n_tasks *

max_alternatives, and each cell index corresponds to the

encoded action. Consider an example of filling the action

mask for n_tasks = 3, max_alternatives = 5. Suppose the

current environment state is as follows:

 Operation 1 is available for allocation, allowed

resources: 4, 5.

 Operation 2 is unavailable for allocation, allowed

resources: 3, 2.

 Operation 3 is available for allocation, allowed

resources: 1, 2.

The action mask for the described state has the following

value: action_mask = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0].

Visualization of the current environment state is

implemented by the render() method. The method supports

two modes: “console” – displays text-based information

about the environment state; “visual” – provides a graphical

interface. The visual mode is used to display the final state

of the environment in order to present planning results to

production stakeholders. Gantt charts give a clear view of

time intervals for each operation and resource workload,

enabling production specialists to identify delays or

scheduling issues. An example of the visualized environment

state with 7 resources and 5 scheduled orders is shown in

Fig. 2.

Text mode is required for real-time monitoring of the

environment state during training and debugging. The

console displays the environment’s key characteristics:

 Current simulation time.

 Resource availability.

 Allocated operations list.

 List of operations available for allocation.

 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 39

Fig. 2. Visual environment rendering mode – Gant chart

Fig. 3. Console environment rendering mode

An example of the console text-mode representation of

the current state is shown in Fig. 3.

The developed environment was used to train agents built

on the PPO and MaskablePPO models. The network

architectures of both models are identical, with the key

feature being two output heads: state value estimation

(value_net) and action probability distribution (action_net).

The output dimension of value_net is always 1, while the

output dimension of action_net is determined by the problem

size: n_tasks * max_alternative. The input-layer dimension

also depends on the problem size and is calculated as:

n_tasks + max_alternatives + 1. For 500 operations and 7

resources, the network configuration is:

1. Feature processing, a Flatten layer with output

dimension – 508.

2. Dense layer with Tanh activation, output dimension –

64.

3. Dense layer with Tanh activation, output dimension –

64.

4. Linear output layer action_net, output dimension –

3 500.

5. Linear output layer value_net, output dimension – 1.

The difference between the models lies in how action-

selection probabilities are computed. PPO uses a standard

Softmax over the entire action output vector (including

invalid actions), whereas MaskablePPO applies the

action_mask via Masked-Softmax according to the equation:

, [] 1

0, [] 0

(|) , [] 1
i

j

h

i
h

j m j

if m i

ep a m if m i
e

=

=ì
ïï

= í =
ï
ïî
å

, (2)

where p(ai,m) – the probability of the agent selecting action;

ai – the action with index i; m – the vector action_mask, hi –

the model’s output for action i.

Each model was trained for 100,000 steps using the

hyperparameters specified in Table 1.

As a result of the model training experiments, employing

the Maskable PPO algorithm with incremental action-mask

updates significantly improved training stability and

convergence rate.

Table 1. PPO model hyperparameters

Hyperparameter Value

policy “MultiInputPolicy”

learning_rate 1 e-4

batch_size 64

n_steps 2048

n_epochs 10

40 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

The TensorBoard plot presented in Fig. 4 demonstrates the

dynamics of the mean reward per episode (ep_rew_mean)

during training of the PPO models in two variants: PPO and

MaskedPPO. Since the problem is defined as a minimization

problem, the goal of training is to decrease the penalty’s

absolute value, bringing the negative reward closer to zero.

For comparing agent training quality, the average penalty per

step is used, computed by the equation:

ep

mean

r
r

T
=

, (3)

where rmean – the average penalty per step; rep – the

accumulated penalty for the episode; T – the number of steps

in the episode.

For MaskablePPO, the mean penalty at the start of

training is 2.41 and steadily improves during training,

decreasing by 7 % over 100,000 steps. By contrast, for PPO

the value starts at 325,883 and fluctuates up to 22 % worse.

This indicates instability in the PPO training process. In the

case of PPO without masking, the penalty additionally

accounts for all unsuccessful action attempts (e.g., selecting

an occupied resource), and a fixed penalty of 100,000 is

applied for each, explaining the high per-step penalty values.

The model faces an excessively large action space [11] and,

as a result, performs a significant number of invalid actions,

accumulating excessive penalties. These excessive penalties

negatively affect the formation of associations between

actions and their outcomes, as noted in [12].

Fig. 4. Episode penalty over training step

In the unmasked environment model training is

characterized by extremely high values of loss and value loss

on the order of 1012, while entropy remains stable at around

–6,4, which may indicate problem complexity for the model

or convergence issues due to the large search space and lack

of efficient action constraints [13]. In contrast, in a masked

environment, loss values are much lower 104; policy entropy

stabilizes at approximately –3.5 to –3.6. Approximate KL

divergence values remain low, indicating training stability

and the adequacy of the applied action-masking mechanism.

Meanwhile, the key performance metric (FPS) in the masked

environment is somewhat lower, a consequence of the

additional computational overhead of the masking process.

Additionally, the percentage of invalid actions is computed:

·100%invN
IR

N
= , (4)

where Ninv – the number of invalid action attempts, N – the

total number of action attempts.

Each attempt to select an invalid action is counted

separately, even if it occurs within the same state, since such

an error leads to wasted time without advancing toward the

final solution. The experimental results are included in Table

2 for model comparison.

Table 2. PPO, MaskedPPO model training result comparison

Parameter PPO Masked PPO

Total Timesteps 100 352 100 352

Training time, s 120 141

Loss range
1.21·10!" –

1.41·10!"

2.78·10# –

3.96·10#

Value Loss range
2.34·10!" –

2.79·10!"

6.33·10# –

7.25·10#

Policy Gradient Loss $ 10–6 $10–3

Approximate KL divergence $ 0 $10–4

Policy entropy –6.4 –3.6

Percentage of invalid actions

after training
96 % 0 %

Scheduling time for 50 orders

after training, s
5.1 0.19

The obtained results reveal that the application of masking

significantly improves the efficiency and stability of PPO

model training, ensuring rapid convergence to an adequate

behavior policy under specified conditions. Moreover, a

substantial reduction in the percentage of invalid actions was

observed from over 96 % in the baseline PPO to 0 % in the

masked variant. As a result, the decision making time of the

trained model for a set of 50 orders decreased from 5.1 s to

0.19 s, and the demonstrated acceleration confirms the

 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 41

practical feasibility of using the masking mechanism when

training PPO models for the order planning problem. To assess

the stability of the training results, both models – PPO and

Masked PPO – were evaluated over three runs with explicitly

fixed seed values. Table 3 presents the outcomes of the trained

models, demonstrating schedule quality and computational

performance.

Table 3. Performance of PPO and Masked PPO

models with different seed values

Model seed

Schedule

duration,

min

invalid

actions, %

Inference

time, s

PPO

37 5158 86.91 4.14

73 5440 97.85 6.02

141 5287 96.26 5.39

Masked

PPO

37 4891 0.00 0.17

73 4932 0.00 0.18

141 4974 0.00 0.17

Masked PPO delivers stable results across all metrics –

zero percent invalid actions, and consistent schedule

durations and inference times regardless of the seed. In

contrast, the unmasked PPO model exhibits unstable

behavior, with a high percentage of invalid actions (over

85 %), leading to longer computation times and significantly

extended schedule durations.

Three configuration sets from Table 4 were tested to

assess the impact of hyperparameters on the stability and

training speed of the Masked PPO model.

Table 4. Hyperparameter sets for sensitivity analysis

of the Masked PPO model

Set learning_rate batch_size n_steps

basic 1·10–4 64 2048

aggressive 4·10–4 32 1024

precise 5·10–5 512 4096

Fig. 5 shows the mean reward per episode ep_rew_ mean

over the number of training steps.

The plot shows the aggressive configuration is

characterized by a rapid initial increase in mean reward during

the early training steps. In contrast, the precise configuration

demonstrates a more stable trajectory and ensures predictable

result quality as the number of training steps increases. Despite

its high peak reward, the basic configuration exhibits greater

variability and less predictable convergence compared to the

precise. Plots illustrating changes in the loss function (loss)

were also generated for each model configuration to evaluate

the convergence of the training process.

Fig. 5. Dependence of the mean reward (ep_rew_mean) on training steps for the aggressive, precise, basic sets

Fig. 6. Dependence of the loss function value on training steps for the aggressive, precise, and basic configurations

42 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

Fig. 7. Dependence of the policy gradient loss (policy_gradient_loss) on training steps for the aggressive,

precise, and basic configurations

The aggressive configuration demonstrates the fastest

decrease in loss value (–40 %), indicating a high learning

performance. At the same time, spikes in the loss trajectory

suggest that this configuration delivers learning speed but

not overall model stability or effectiveness. In addition to the

overall loss value (loss), the dynamics of policy_ gra-

dient_loss were analyzed; this metric reflects the magnitude

of gradients applied to update the policy parameters and

characterizes the intensity of the agent’s policy changes

during training.

The precise configuration maintains the greatest stability,

maintaining a consistent gradient magnitude with only minor

fluctuations throughout training, indicating cautious policy

updates. In contrast, the aggressive configuration exhibits

high initial gradient dynamics and intensity, but after a sharp

decline in policy_gradient_loss values, training slows

markedly, potentially signaling a degradation of update

efficiency.

Table 5. Comparison of schedule quality and computation time

Number
of

orders

Number
of

operations
Method

Schedule
duration,

min

Compu-
tation time,

s

50 500

CP-SAT 4 620 11.2

SPT 5 332 0.02

PPO 5 127 5.1

Masked
PPO

4 951 0.18

100 1000

CP-SAT 9 451 34.7

SPT 11 720 0.051

PPO 12 234 14.1

Masked
PPO

10 202 0.51

500 5000

CP-SAT
Not

found
Not found

SPT 65 678 0.324

PPO 66 129 81.2

Masked
PPO

57 053 2.4

The trained PPO and Masked PPO models were also

compared with classical methods on extended input datasets.

Specifically, CP-SAT (Google OR-Tools) was employed as

the exact approach, and the shortest processing time

dispatching rule (SPT) served as the heuristic method. The

results are presented in Table 5.

As shown in Table 5, CP-SAT successfully found

solutions for problems with 50 and 100 orders; for 500 orders,

a solution was not obtained within the imposed time limit of 5

minutes. CP-SAT solutions serve as the standard for schedule

quality. The Masked PPO model delivers the best balance

between solution speed and schedule quality across all

problem sizes, outperforming the SPT heuristic and standard

PPO. Moreover, its computation time is substantially lower

than that of CP-SAT. As the problem scale grows, the model

maintains a low solution time while its schedule quality

remains acceptable and only marginally below that of CP-

SAT. This demonstrates the production applicability of the

approach for medium- and large-scale planning problems,

especially when CP-SAT cannot meet strict time constraints.

Discussion of research results. Employing the Proximal

Policy Optimization (PPO) algorithm, a production-order

scheduling model was developed in two operational modes:

PPO without action masking and MaskedPPO with action

masking. The PPO model is characterized by instability in the

training process and high loss values, on the order of 1012,

while the proportion of invalid actions on application reaches

96 %, and the scheduling time for 50 orders is 5.1 seconds.

With the masking approach, a stable model variant was

obtained, featuring significantly lower losses (on the order

of 104), the absence of invalid actions, and reduced

computation time to 0.19 s for the same 50 orders.

The scientific novelty of the obtained research – for the

first time, a reinforcement-learning training environment has

been formalized and developed that effectively enforces

constraints on operation sequencing and allocation to

alternative resources with varying performance and applies

 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 43

mechanisms of incremental state updating and invalid action

masking to accelerate the training process. The performance

of production plan computation is improved relative to

classical exact approaches through the application of the

Masked PPO reinforcement learning model.

The practical significance of the research – high

efficiency of model training within the developed

environment. Applying the proposed technology in

production planning information systems significantly

reduces scheduling time and produces schedules with

durations close to optimal.

Conclusions

An environment that simulates the real production-

planning process was implemented, and a model for efficient

production order scheduling based on the Maskable PPO

reinforcement learning method was developed. The research

aim was achieved by constructing an optimized environment

supporting dynamic action masking and incremental state

updates. The resulting framework enabled rapid and efficient

training of scheduling models.

Experimental results confirmed the advantage of the

action masking approach over classical implementations,

particularly in convergence rate and training stability.

Employing incremental mask and internal state updates

introduced only a minor performance overhead for action

mask generation. These findings establish a basis for the

development of specialized models and the integration of

reinforcement-learning techniques into production-planning

systems. The trained Maskable PPO model scheduled 50

orders in just 0.18%seconds, demonstrating its suitability for

environments with highly dynamic production processes.

Future research will investigate Set Transformers and

attention-based graph neural networks. Application of the

mentioned architectures will enable the model to generalize:

training can be performed on small schedules, while it can be

applied to handle significantly larger and more complex

configurations.

References

[1] K. Li, T. Zhang, R. Wang, Y. Wang, Y. Han and L. Wang

(Dec. 2022). Deep Reinforcement Learning for

Combinatorial Optimization: Covering Salesman Problems,

in IEEE Transactions on Cybernetics, 52(12), 13142–13155.

https://doi.org/ 10.1109/TCYB.2021.3103811

[2] Kim, H., Kim, Y.-J., & Kim, W.-T. (2024). Deep

reinforcement learning-based adaptive scheduling for

wireless time-sensitive networking. Sensors, 24(16), 52–81.

https://doi.org/ 10.3390/s24165281

[3] Cheng, Y., Huang, L., & Wang, X. (2022). Authentic

Boundary Proximal Policy Optimization. IEEE Transactions

on Cybernetics, 52(9), 9428–9438. https://doi.org/10.1109/

TCYB. 2021.3051456

[4] Zhang, T., Banitalebi-Dehkordi, A., & Zhang, Y. (2022,

August). Deep reinforcement learning for exact

combinatorial optimization: Learning to branch. In 2022 26th

International Conference on Pattern Recognition (ICPR) (pp.

3105–3111). IEEE. https://doi.org/10.1109/ICPR56361.

2022.9956256

[5] Zhang, Y., Zhang, Z., & Zhang, L. (2020). Implementing

action mask in proximal policy optimization (PPO)

algorithm. Procedia Computer Science, 176, 2749–2758.

https://doi.org/ 10.1016/j.procs.2020.09.122

[6] Wang, Z., Li, X., Sun, L., Zhang, H., Liu, H., & Wang, J.

(2024). Learning State-Specific Action Masks for Reinfor-

cement Learning. Algorithms, 17(2), 60. https:// doi.org/

10.3390/ a17020060

[7] Jung, M., Lee, J., & Kim, J. (2024). A lightweight CNN-

transformer model for learning traveling salesman problems.

Applied Intelligence, 54, 7982–7993. https://doi.org/10.1007/

s10489-024-05603-x

[8] Waubert de Puiseau, C., Wolz, F., Montag, M., Peters, J.,

Tercan, H., & Meisen, T. (2025). Applying Decision

Transformers to Enhance Neural Local Search on the Job

Shop Scheduling Problem. AI, 6(3), 48. https://doi.org/

10.3390/ai6030048

[9] Krishnan, S., Boroujerdian, B., Fu, W., Chen, Y., Sharma, P.,

& Bindel, D. (2021). Air Learning: A deep reinforcement

learning gym for autonomous aerial robot visual navigation.

Machine Learning, 110(9), 2501–2540. https://doi.org/

10.1007/ s10994-021-06006-6

[10] Han, B., & Yang, J.-J. (2021). A deep reinforcement learning

based solution for flexible job shop scheduling problem.

International Journal of Simulation Modelling, 20(2), 375–

386. https://doi.org/10.2507/IJSIMM20-2-CO7

[11] Zhang, X., Wang, Y., & Wang, J. (2022). Entropy regularized

reinforcement learning with policy gradient. Information

Sciences, 607, 1063–1079. https://doi.org/10.1016/j.ins.

2022.06.057

[12] Eschmann, J. (2021). Reward function design in

reinforcement learning. In Reinforcement Learning Algo-

rithms: Analysis and Applications (pp. 25–33). Springer.

https://doi.org/10.1007/ 978-3-030-41188-6_3

[13] Hou, Y., Liang, X., Zhang, J., Yang, Q., Yang, A., & Wang,

N. (2023). Exploring the use of invalid action masking in

reinforcement learning: A comparative study of on-policy

and off-policy algorithms in real-time strategy games.

Applied Sciences, 13(14), 82–83. https://doi.org/10.3390/

app13148283

[14] Sahu, A., Venkatraman, V., & Macwan, R. (2023).

Reinforcement learning environment for cyber-resilient

power distribution system. IEEE Access, 11, 127216–127228.

https://doi.org/10.1109/ACCESS.2023.3282182

44 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

!. ". $%')*,-., 0. 0. 2357%9:-

"$&')+$,-+.0 135+'7+.0 8+':3;=.131 ?@;$A+. “D.A:=-@.0 E),'135+'7+.0 '+=1.181 'G3+' HJ);K '@);=-@)J)”, G. D.A:, ?@;$A+$

!#%')+),-/ '0240''/ 5 6-789-6+#''/; -5 ;0=8)? 7-@
7+/ 6+0'B20''/ 50;)2+#'C

&()+-+./+12-4(567 9 7:7-4(567 .;<625<66> ?<@+5;76A – .+B(/76< -+@CD6<4+/6< +.4(@D?<FD96< ?<1<G<, H+

5(6(-<I 5 /D?6+@<6D46(J -+647-)4<J. L+C21+5< @+17;D, ?1<46+N :+/@25<4(?C<;<6)+5<6D ?< >-D)4Q 4<

+CG();Q5<;A6(@(5(4/<4<@(/+?-;<1(, – D)4+46(9 5(-;(- G7/7? @<)B4<C6(9 ./+)4D/ 1+.2)4(@(J 1D9. R /+C+4D

?<./+.+6+5<6+ 5()+-+./+12-4(567)7/71+5(H7 4< @+17;A 6<5G<66> ? .D1-/D.;766>@ 1;> /+?.+1D;2 ?<@+5;76A 6<

/7)2/)(D? @<)-25<66>@ 671+.2)4(@(J 1D9. S+?/+C;767 /DB766> 6< +)6+5D 6<5G<66> ? .D1-/D.;766>@ 1+;<I

+C@7U766> 4/<1(FD96(J 75/()4(G6(J 4< 4+G6(J .D1J+1D5)4+)+56+ B5(1-+)4D /+?/<J26-D5 4< 7:7-4(56+)4D.

V+);D1U766> .7/71C<G<;+ ./+I-425<66>)2@D)6+W+ D? D647/:79)+@ Gymnasium)7/71+5(H<, <6<;D? ./+12-4(56+)4D

)7/71+5(H<, /+?/+C;766> +.4(@D?+5<6(J ./+F712/ +6+5;766>)4<62 4< :+/@25<66> +?6<-, +FD6Q5<66> >-+)4D

6<5G<66> @+17;79 PPO 4< MaskablePPO. V;>)7/71+5(H< /7<;D?+5<6+ D6-/7@76467 +6+5;766> +?6<-)4<62 4< @<)-(

1D9 D? B(/+-(@ ?<)4+)25<66> 57-4+/(?<FDN NumPy, H+ 1<;+ ?@+W2 D)4+46+ ?@76B(4(+CG();Q5<;A6D 5(4/<4(6<

.D14/(@<66> <-42<;A6+W+)4<62 4< .D15(H(;+)2@D)6D)4A D? .+;D4(-<@(W;(C(66+W+ 6<5G<66>. X<)-25<66>

671+.2)4(@(J 1D9 ?<@D6(;+ .+;D4(-2 B4/<:D5, +C@7U2QG(@6+U(62 5(C+/2 @+17;D ;(B7 -+/7-46(@(, G(@

.D15(H(;+ 4+G6D)4A @+17;D, ?+)7/71(5B()A 6< 5(C+/D +.4(@<;A6DB(J 4< -+/7-46DB(J 1D9. Z:+/@+5<6+ 6<C+/(

1<6(J /+?@D/+@ 1+ 500 ?<@+5;76A, 6< >-(J ?1D9)676+ 6<5G<66> PPO 4< MaskablePPO @+17;79, 6<1<6(J .<-74+@

Stable-Baselines3. &(-+6<6+ 100 000 D47/<FD9 1;> 6<5G<66> -+U6+N @+17;D. X+6D4+/(6W ./+F7)2 6<5G<66>

?<C7?.7G76+ ?< 1+.+@+W+Q ?<)+CD5 TensorBoard. \<) 6<5G<66> 57/)DN ? @<)-25<66>@)4<6+5(5 1,49 J5, @+17;A C7?

@<)-(5(4/<4(;< 6< 6<5G<66> 1,2 J5. V;> Masked PPO)7/716D9 B4/<: 6< -/+FD)4<6+5(5 2,41, 4+1D >- 1;> PPO –

325%000. S7?2;A4<4(7-).7/(@764D5)5D1G<4A ./+ 47, H+ ?5(G<96< PPO G<)4+ 5(C(/<;< 671+.2)4(@D 1DN, 6<-+.(G2QG(

B4/<:(?< 6(J, 4+1D >- MaskedPPO 6<-+.(G(;< B4/<: ;(B7 ?< 1+5U(62)-;<176+W+ /+?-;<12.]<51>-(FA+@2 6<

47)4+5+@2 6<C+/D 1<6(J MaskedPPO ?1D9)6(;< /+?.+1D; ?<@+5;76A ?< 0,18), +4/(@<5B(/+?-;<1 4/(5<;D)4Q

4 590 J5, < ?5(G<96< PPO ?< 5,4) – /+?-;<1 4/(5<;D)4Q 5 127 J5, ?1D9)6(5B(96 % .+@(;-+5(J)./+C 1D9.

&)4<6+5;76+, H+ @<)-25<66> 671+.2)4(@(J 1D9 .+-/<H(;+ >-D)4A @+17;D, ?<C7?.7G(5B(5(H2 ?CDU6D)4A .+./(

1+5B(9 G<) 6<5G<66>. L/+17@+6)4/+5<6+ ?6<G6(9 .+476FD<; .D1J+12 6<5G<66> D? .D1-/D.;766>@ 2 .;<625<66D 4<

/+?.+1D;D ?<@+5;76A D +.4(@D?<FD96(J -+@CD6<4+/6(J ?<1<G ?<W<;+@.]<./+.+6+5<6< @+17;A Masked PPO

?<C7?.7G(;< /+?.+1D; ?<@+5;76A B5(1B7 ?< 4/<1(FD96(9 4+G6(9 @74+1 CP-SAT, ?C7/DWB(>-D)4A +4/(@<6+W+

/+?-;<12, 5(H2 ?< 75/()4(-2 SPT 6< ?<1<G<J D? 50–500 ?<@+5;766>@(.]<-;<176+ +)6+52 1;> .+1<;AB(J 1+);D1U76A,

/+?/+C;766>)-;<16DB(J @+17;79 6< +)6+5D Set Transformers, Graph Neural Networks, Pointer Networks, >-D

?<C7?.7G2Q4A 7:7-4(567 2?<W<;A6766>, @+U;(5D)4A ?<)4+)25<66> @+17;D 6< ?<1<G<J D? CD;AB+Q /+?@D/6D)4Q 5JD16(J

57-4+/D5, 6DU .D1 G<) 6<5G<66>.

 !"#$&')!$&+: .;<625<66> 5(/+C6(F45<, 6<5G<66> D? .D1-/D.;766>@, W;(C(667 6<5G<66>, B42G6(9 D647;7-4,

PPO, Maskable PPO, /+?.+1D; /7)2/)D5, Gymnasium, D647;7-42<;A6D <W764(.

 "#$&()+,. /&$)01$&,0:

2$31."15" 68&:,;$05< =&,>8"?$, $)B2"$(;, !$4<C"$ 5DE,)1FG$1+(5& ;<9(2!,. Email: k.hrishchenko@kpi.ua; https://orcid.org/0009-

0008-9251-0222

@B8?3,; @B8?3)"C&$05< D53)&<E?, C5!;5" ;<9(2E(,9 ($/!, B"54<)5" !$4<C", 5DE,)1FG$1+(5& ;<9(2!,. Email:

platinumpa2212@gmail.com; https://orcid.org/0000-0001-5271-0248

G51E0)"". H) I6JL: H"2I<(!5 J. @., K,)$"E/! L.L. N<9(515>2P ($GE$((P Q B2C!"2B1<((P7 2Q 7$)!5F C2- C1P B1$(/G$((P Q$75G1<(+.

 !"$&()+!,. /0"($2 3(56"8$93.(,: <>:(626@3.. 2025, ;. 7, ? 1. @. 35–44.

Citation APA: Hrishchenko, K., & Pysarchuk, O. (2025). Action-masked reinforcement learning technology for order scheduling. Ukrainian

Journal of Information Technology, 7(1), 35–44. https://doi.org/10.23939/ujit2025.01.035

