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ENSEMBLE IMAGE SUPER-RESOLUTION FOR UAV GEO-LOCALIZATION

In this paper, we address the challenge of visual geo-localization from low-quality UAV imagery captured in real world
environments. We propose a two-stage architecture, which includes Super-Resolution and visual geo-localization. We
introduced novel, non-learnable Ensemble Super-Resolution (ESR) module, which first refines upscaled aerial frames, then
seamlessly feeds the enhanced imagery into a visual geo-localization pipeline. Designed as a parallelizable block integrated
directly into any SR computation graph, ESR combines classical Bicubic interpolation with neural SR models — boosting
image fidelity and overall system accuracy without additional training and executing efficiently on most hardware
accelerator. We validate our approach on a dataset of 37 000 real-world UAV images, each downscaled by a factor of four
and then restored via baseline methods (Bicubic, Bilinear, Nearest Neighbour, DRCT, HMA, HAT, SwinFIR) as well as our
ESR-enhanced pipeline. Quantitative evaluation shows that standalone Super-Resolution methods yield PSNR in the low
20s dB and SSIM of 0.6-0.7 — far below standard benchmarks-leading to a marked drop in geo-localization accuracy

(Recall@! and AP).

In contrast, our ESR module stabilizes SR outputs and recovers image fidelity, raising geo-localization Recall@! to
87.0 % (vs. 84.96 % with HMA restoration) and AP to 89.1 % (against 87.41 % with HMA restoration).

Our contributions are:

Two-stage framework combining Image Super-Resolution and visual geo-localization approaches tailored for low-

resolution, noisy UAV data.

Non-learnable, parallelizable ESR block that fuses Bicubic interpolation with neural restoration within the network
Super-Resolution graph — requiring no retraining and fully compatible with most accelerator.
Comprehensive empirical study demonstrating that ESR substantially narrows the domain gap and boosts geo-

localization performance in real-world conditions.

We conclude that embedding lightweight, hardware-agnostic ensemble strategies into SR pipelines is a promising
direction for robust UAV-based visual localization. Future work will explore adaptive ensemble weighting and domain-
aware SR architectures to further mitigate aerial imaging noise and variability.

Keywords: super-resolution, deep neural network, transformers, convolution neural network, computer vision.

Introduction

Unmanned Aerial Vehicles (UAVs) have rapidly evolved
as indispensable tools across both military and civilian
domains, yet their vision-based navigation and localization
capabilities still struggle when confronted with noisy, low-
resolution imagery captured in unconstrained “wild”
environments. While recent advances in computer vision
ranging from Convolutional Neural Networks (CNNs) and
Transformer-based feature extractors to state-of-the-art geo-
localization pipelines — have improved robustness to GPS
denial and limited video quality, the direct integration of
image Super-Resolution (SR) techniques into visual geo-
localization (VG) remains underexplored.

Most existing restoration approaches, whether classical
(Bicubic, Bilinear, Nearest Neighbour) or neural (DRCT,
HMA, HAT, SwinFIR), were developed and benchmarked
on natural or urban imagery; when applied “out of the box”
to UAV data, they often introduce artifacts or wash out

critical spatial details, leading to degraded downstream geo-
localization performance. This mismatch highlights a
pressing need for an adaptive SR strategy that can be
deployed on UAV accelerators without costly retraining,
stabilize outputs, and preserve the fine-grained features that
geo-localization models rely upon. In this work, we bridge
that gap by proposing a two-stage SR+ VG framework
anchored by a novel, non-learnable ESR module. ESR is
designed as a fully parallelizable block — integrated directly
into any SR computation graph and executable on common
hardware accelerators — that fuses classical Bicubic
interpolation with neural SR outputs. By combining the
strengths of both analytical and learned methods, ESR
suppresses artifacts, stabilizes the upscaling process, and
preserves descriptive features, all without additional model
retraining.

Relevance of research. As UAV deployments in
complex, GPS-denied, or visually degraded environments
become more widespread, resilient vision-based localization

68 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1



methods are essential. Our two-stage SR + VG architecture
directly addresses the impact of low-quality imagery on geo-
localization accuracy, providing a lightweight, hardware-
agnostic enhancement block that can be seamlessly added to
existing pipelines.

The object of this research: the visual sensing subsystem
of UAVs operating in real-world scenarios, where image
resolution and noise often fall below the thresholds required
for reliable geo-localization.

The subject of the research: computer vision
methodologies for UAV visual geo-localization and image
enhancement, with a focus on SR and its integration into
localization pipelines.

The purpose of this work is to quantify how low-
resolution, noisy UAV imagery degrades geo-localization
accuracy and exposes artifacts from standalone SR methods,
develop and evaluate a two-stage framework — combining
SR with visual geo-localization — centered on a novel, non-
learnable ESR block.

To achieve this purpose, the following main research
objectives are identified:

1.  Quantify how low resolution, noisy UAV data
degrades geo-localization accuracy, identify the artifacts
introduced by standalone SR methods.

2. Develop and evaluate a two-stage SR+ VG
framework tailored for UAV imagery under adverse
conditions.

3. Design and perform a comprehensive analysis of
the introduced non-learnable, parallelizable ESR block.

4.  Demonstrate that ESR module raises downstream
geo-localization metrics (Recall@1, AP) significantly, with
minimal computational overhead.

5. Proposing recommendations for future research and
practical applications aimed at enhancing UAV operations in
challenging real-world environments.

Materials and methods of research. This study
introduces a two-stage framework that combines image
enhancement with visual geo-localization, utilizing large-
scale UAV imagery preprocessing to simulate wild
conditions. Research features a novel, non-learnable ESR
block — integrated directly into the SR computation graph —
that fuses classical and neural Super-Resolution methods,
and leverages hardware-agnostic, parallelizable components
for efficient execution on common accelerators.

Dataset and preprocessing.

The experiments were conducted using a publicly
available UAV imagery dataset obtained from the
University-1652 [1] UAV image collection. To simulate
image degradation, all original images were downscaled by
a factor of four using the INTER AREA interpolation
method, which is known for minimizing aliasing effects
during reduction. A total of 37,000 images were processed
for the subsequent experiments.

Upscaling methods.

Three classical interpolation methods were selected for
evaluation: Bilinear, Bicubic [2], and Nearest Neighbor.
These methods were implemented using the OpenCV

library. In addition, four neural network-based upscaling
models were included in the comparison: DRCT [3], HAT
[4], HMA [5], and SwinFIR [6]. The official
implementations of each neural network model were utilized
to ensure reproducibility. For each method, a separate
Python environment was created where all officially
recommended dependencies were installed, thus avoiding
version conflicts and ensuring consistency with the original
implementations. To improve the visual quality and
robustness of image enhancement results obtained from
multiple algorithms, we propose a Ensemble Super-
Resolution technique. This method constructs a single
composite image by probabilistically selecting and
assembling patches from a set of enhanced images generated
by different algorithms. The process captures the strengths

of individual algorithms while maintaining spatial
coherence.
Let: I = {1, I, ..., In} —a set of N enhanced images, each

I; € RT7"C where denote height, width, and number of
channels, respectively. The side length of square patches
used to divide each image denote as s, then the total nu mber
of non-overlapping patches per image define as:

M = E X Z ,
S S
P = {p1, p2, ..., pn} — a discrete probability distribution
over the N algorithms, where:

N
PE [O, l]. Zp,:l.
i=1

For each patch position j = {1, 2, ..., M} an algorithm
index k; is sampled according to the categorical distribution
defined by P:

k; = Categorical (P) .

The resulting patch at location j in the final ensemble

image /" is then selected as:

Ij* :Ik,_] 5
where /;; denotes the j-th patch of the k-th image. The
ensemble image I” is reconstructed by placing each selected
patch into its corresponding position, forming a composite
that leverages the complementary strengths of the
contributing algorithms.

Experimental Procedure.

Each upscaling method, both classical and neural
network-based, processed the same set of pre-downscaled
images independently. After restoration, the upscaled images
were saved to disk for further analysis. The performance of
each method was evaluated using two standard image quality
metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). Mean PSNR and SSIM
values were calculated for each method across the entire
dataset. These metrics were compared not only within the
dataset but also against typical benchmark values reported in
the literature for vision datasets.

Application to visual geo-localization.

To assess the practical impact of the upscaling methods,
an additional evaluation was conducted by applying the
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restored images to the task of visual geo-localization, one of
the most prominent tasks in UAV-based computer vision.
The Sample4Geo [7] method was employed as the visual
geo-localization framework. The performance of the model
using the restored images was compared to that obtained
with the original high-resolution images, thus providing
insights into how different upscaling methods affect
downstream vision tasks.

Hardware and software environment.

All experiments were conducted on a workstation
equipped with an NVIDIA RTX 3090 Ti GPU. Software
environments were configured using Python 3.10, with
specific  library matching the official
recommendations for each neural network model.

versions

Analysis of recent research and publications.
1. Visual Geo-localization.
Cross-view feature representation.
Cross-view  geo-localization = faces  significant
challenges due to viewpoint variations and environmental
dynamics. Early methods focused on joint representation
learning and contextual feature extraction to bridge the gap
between aerial and ground perspectives. At [8] researchers
pioneered this direction with RK-Net, which integrates
representation learning and keypoint detection using a Unit
Subtraction Attention Module (USAM). USAM employs a
Unit Subtraction Convolution to highlight local feature
differrences, enabling robust keypoint matching across
viewpoints without additional annotations. Evaluated on
datasets like University-1652 [1], RK-Net achieved
competitive accuracy by leveraging subtle appearance
variances caused by viewpoint shifts. Building on this, the
Local Pattern Network [9] (LPN) introduced a square-ring
partition strategy to exploit spatial-contextual relationships
in images. Inspired by human visual processing, LPN
divides feature maps into concentric regions, assuming
geographic targets cluster at the center. Using ResNet-50
[10] backbones with weight-sharing between aerial
branches, LPN maps multi-view features (satellite, drone,
ground) into a shared semantic space. This approach
improved alignment by addressing feature distribution
mismatches, demonstrating the value of hierarchical spatial
reasoning for cross-view tasks.

Transformer-based feature segmentation.
in transformer architectures have
enabled more robust feature alignment for UAV-view geo-
localization. The Feature Segmentation and Region
Alignment [11] (FSRA) method addresses position shifts and
scale uncertainty by combining transformer-based feature
extraction with part-based segmentation. FSRA divides input
images into patches, encodes positional embeddings, and
uses a Heatmap Segmentation Module (HSM) to categorize
regions (e. g., buildings, roads). A Heatmap Alignment
Branch (HAB) then pools and aligns region-specific
features, while a multiple sampling strategy mitigates
training instability through augmented satellite images. By

Recent advances

focusing on semantic segmentation rather than fine-grained
details, FSRA improves robustness against viewpoint-
induced distortions.

Contrastive learning with hard negative sampling.

Sampling strategies play a critical role in contrastive
learning for geo-localization. Sample4Geo [7] introduces
a novel framework using hard negative sampling to
enhance model discriminability. It employs a symmetric
InfoNCE [12] loss with two strategies: (1) geographic
proximity sampling, selecting neighboring locations as
hard negatives, and (2) visual similarity sampling,
targeting geographically distinct but visually similar
image pairs. Sample4Geo outperformed state-of-the-art
methods by simplifying the training pipeline and
eliminating complex pre-processing. Its success
highlights the importance of challenging samples in
improving generalization across diverse environments.

Table 1. Comparison of visual geo-localization methods on the
University-1652 dataset. The best results are highlighted in bold

Method AP, % Recall@1, %
Sample4Geo 93.81 92.65
FSRA 84.82 82.25
LPN+USAM 80.55 77.6
LPN 79.14 75.93
RK-Net 70.23 66.13

2. Single Image Super-Resolution (SISR).

Classic and early neural-network-based methods.

Early SISR methods relied on interpolation techniques
such as bicubic and bilinear resampling, which estimate pixel
values using weighted averages of neighboring pixels. While
computationally efficient, these methods often produce
overly smooth outputs with limited high-frequency detail
recovery. Example-based approaches like nearest neighbors
(NN) and sparse coding [13] later emerged, leveraging
neighbor embedding or learned dictionaries to map low-
resolution (LR) to high-resolution (HR) patches. NN-based
methods, for instance, searched for structurally similar LR
patches in a training dataset and reconstructed HR patches
by aggregating contributions from their k-closest matches.
These methods improved edge preservation compared to
interpolation but struggled with generalization due to their
reliance on handcrafted similarity metrics (e. g., Euclidean
distance for patch matching) and small patch-wise
processing, which limited their ability to model global image
structures.

The advent of deep learning revolutionized SISR by
enabling end-to-end mapping of LR to HR images. SRCNN
[14] pioneered this shift with a three-layer CNN,
outperforming traditional methods by learning hierarchical
features directly from data. Subsequent works introduced
architectural refinements: FSRCNN [15] accelerated
inference by adopting a compact design with transposed
convolutions for upsampling, while VDSR [16] deepened
networks and incorporated residual learning to stabilize
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training. DRCN [17] further enhanced performance with
recursive layers, and EDSR [18] removed batch
normalization to enable larger model capacities.

Attention mechanisms and advanced residual structures
later dominated the field. RDN [19] aggregated multi-level
features via dense residual blocks, and RCAN [20]
introduced channel attention to prioritize informative
features. These CNN-based methods established founda-
tional principles-residual learning, multi-scale fusion, and
attention-that remain central to modern SISR architectures.

SwinlIR: Transformer-Based Image Restoration.

SwinIR [21] represents a pivotal advancement in SISR
by integrating shifted window attention from the Swin
Transformer architecture into low-level vision tasks. Unlike
CNN-based methods, SwinIR leverages hierarchical window
partitioning to balance global context modeling and
computational efficiency. Its architecture comprises three
modules:

1. Shallow Feature Extraction: A 3x3 convolutional
layer captures low-level spatial details.

2. Deep feature extraction: Residual Swin Transformer
Blocks (RSTB) combine Swin Transformer layers (with
shifted windows for cross-region interactions) and residual
connections, enabling multi-scale feature aggregation.

3. Reconstruction module: Task-specific layers (e. g.,
sub-pixel convolution) fuse shallow and deep features to
generate high-resolution outputs.

SwinlR outperformed CNN-based models (e. g., EDSR,
RCAN) by 0.14-0.45 dB PSNR on benchmarks like
Urban100 and Mangal09 while reducing parameters by up
to 67 %. Its success inspired extensions such as SwinFSR

[22] for stereo SR and omnidirectional SR models
addressing equirectangular projection distortions. By
bridging transformer-based global modeling with CNN-
inspired locality, SwinIR established a robust baseline for
subsequent SISR innovations.

Hybrid attention mechanisms.

Recent advancements in SISR have leveraged hybrid
attention mechanisms to enhance spatial feature utilization in
Transformer architectures. The Hybrid Attention Transformer
(HAT) [4] addresses limited pixel engagement in window-
based Transformers by integrating channel
(capturing global statistics) with window self-attention
(modeling local details). An overlapping cross-attention
module (OCAB) further broadens receptive fields by
facilitating cross-window interactions. Combined with same-
task pre-training on ImageNet, HAT achieves state-of-the-art
performance, improving PSNR by up to 1.2 dB over SwinIR.
Attribution analysis via Layer Attribution Maps (LAM)
confirms its expanded spatial utilization. Building on this, the
Hybrid Multi-Axis Aggregation Network (HMANet) [5]
introduces Residual Hybrid Transformer Blocks (RHTB) to
fuse Swin Transformer layers with CNNs via Fused Attention
Blocks (FAB), balancing local-global feature extraction. To
exploit structural self-similarity, Grid Attention Blocks (GAB)
partition features into intervals, enabling sparse cross-region
attention. HMANet’s task-specific pre-training strategy,
initializing models with parameters from different scales,
yields consistent gains (0.05-0.09 dB PSNR), achieving top
results on Urbanl00 and Mangal09. However, its
computational overhead (69.9M parameters) highlights trade-
offs between performance and efficiency.

attention

Table 2. Quantitative comparison of the several SISR methods on benchmark datasets for x4 upscaling.
The best results are highlighted in bold [2-6, 16, 20, 21]

Set5 Setl4 BSD100 Urban100 Mangal09
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR dB SSIM
dB dB dB dB

Bicubic 28.42 0.8104 26 0.7027 25.69 0.6675 23.14 0.6577 24.89 0.7866
SRCNN 30.48 0.8628 27.5 0.7513 26.9 0.7101 24.53 0.7221 27.58 0.8555
FSRCNN 30.72 0.8666 27.61 0.7555 26.98 0.715 24.62 0.728 279 0.861
DRCN 31.53 0.8841 28.04 0.7704 27.24 0.7243 25.14 0.7518 28.99 0.8891
EDSR 32.46 0.8968 28.8 0.7876 27.71 0.742 26.64 0.8033 31.02 0.9148
RDN 32.47 0.899 28.81 0.7871 27.72 0.7419 26.61 0.8028 31 0.9151
RCAN 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
VDSR 31.35 0.882 28.02 0.7681 27.29 0.0711 25.18 0.751 28.83 0.887
SwinIR 32.92 0.9044 29.09 0.795 27.92 0.7489 27.45 0.8254 32.03 0.926
SwinFIR 33.08 0.9048 29.21 0.7971 27.98 0.7508 27.87 0.9348 32.52 0.9292
HAT 33.04 0.9056 29.23 0.7973 28 0.7517 27.97 0.8368 32.48 0.9292
HMA 33.15 0.906 29.32 0.7996 28.05 0.753 28.42 0.845 32.97 0.932
DRCT 33.11 0.9064 29.35 0.7984 28.18 0.7532 28.06 0.8378 32.59 0.9304
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Frequency-spatial feature fusion.

Integrating frequency-domain processing has emerged as
a powerful strategy for global dependency modeling.
SwinFIR [6] augments SwinlR with Spatial Frequency
Blocks (SFB), combining Fast Fourier Convolution (FFC)
for global frequency features and residual CNNs for local
spatial details. This hybrid design mitigates SwinIR’s
reliance on local attention, while Charbonnier loss stabilizes
training and pixel-domain augmentations (Mixup, channel
shuffle) enhance generalization. Zero-cost feature ensemble
strategy merges parameters from multiple checkpoints,
improving performance without inference overhead.
SwinFIR outperforms SwinIR by up to 0.8 dB PSNR on
Mangal09, demonstrating the efficacy of frequency-spatial
fusion.

Efficient architectures and information flow.

Addressing information bottlenecks in deep SR models,
DRCT [3] introduces dense residual connections within
Swin Transformer blocks (SDRCBs) to stabilize feature
propagation and preserve spatial details. By mitigating
abrupt feature suppression in deeper layers, DRCT [3]

achieves superior reconstruction with fewer parameters than
HAT or SwinIR. A Same-task Progressive Training Strategy
(SPTS) combines L1/L2 losses to enhance high-frequency
recovery, validated by competitive NTIRE 2024 Challenge
results (31.44 dB validation PSNR). Despite its efficiency,
DRCT [3] lacks theoretical analysis of its dense connections’
role in mitigating information loss, warranting future
exploration.

Research results and their discussion

In this study, we evaluated a range of image upscaling
methods applied to UAV aerial imagery under real-world,
noisy conditions. Two sets of experiments were conducted.
The first assessed the performance of geo-localization models
on restored images compared to the original high-quality data
(Baseline). Results are displayed in Table 3. The second
focused on quantifying the restoration quality using standard
image quality metrics, results are provided in Table 4.

The proposed two-stage framework for visual geo-
localization on low quality images displayed in the Fig. 1.

SR+VG Framework

Restored

SR .
image

v

LR image

Sample4Geo Geo-descriptors

Fig. 1. Diagram of the proposed two stage framework

Table 3. Quantitative comparison of Sample4Geo performance
on original aerial imagery (Baseline) and after image restoration
on the University-1652 dataset

then fed into the visual geo-localization component
(Sample4Geo), where spatial features are extracted and
encoded as geo-descriptors. These descriptors serve as the

Method Recall@l, % AP, % final output for downstream localization.
Baseline 92.65 93.81 Table 4. Performance of Restoration Methods on the University-
. 1652 dataset. The best result is highlighted in bold
Bicubic 88.21 90.11
Bilinear 88.22 90.06 Method PSNR dB SSIM
Bicubic 22.61 0.64
NN 69.66 7372 Bilinear 22.08 0.6
DRCT 84.43 86.96 NN 21.68 0.6
HMA 84.96 87.41 DRCT 231 0.69
HAT 83.36 87.01 HMA 2288 0.69
: HAT 22.6 0.62
SwinFIR 84.2 86.63 SwinFIR 2258 061
DRCT+ESR 87.01 89.09 DRCT+ESR 22.77 0.63

A low-resolution (LR) UAV image is first passed through
a Super-Resolution (SR) module, which reconstructs a
higher-quality version of the input. The restored image is

For the geo-localization task, the Baseline model (applied
to the original images) achieved a Recall@1 of 92.65 % and
an AP of 93.81 %. Classical interpolation methods exhibited
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varying degrees of performance degradation when
processing the downscaled and subsequently upscaled
images. Bicubic and Bilinear interpolation methods
produced Recall@1 values of 88.21 % and 88.22, and AP
values 0f 90.11 and 90.06, respectively. Notably, the Nearest
Neighbour approach suffered a substantial drop, yielding a
Recall@! of 69.66 and an AP of 73.72. Among the neural
network-based approaches, DRCT, HMA, HAT, and
SwinFIR demonstrated intermediate performance, with
Recall@1 values ranging from 83.36 to 84.96 and AP values
from 86.63 to 87.41. Although these methods provided
slightly higher restoration metrics than the Nearest
Neighbour method, the overall geo-localization performance
still lagged behind the Baseline.

The quality of the restored images was further quantified
using the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). The classical methods
returned PSNR values of 22.61 dB (Bicubic), 22.08 dB
(Bilinear), and 21.68 dB (Nearest Neighbour), with
corresponding SSIM values around 0.64, 0.60, and 0.60,
respectively. The neural network-based approaches yielded
modest improvements, with DRCT [3] achieving a PSNR of
23.1 dB and SSIM of 0.69, HMA with 22.88 dB PSNR and
0.69 SSIM, HAT with 22.6 dB PSNR and 0.62 SSIM, and
SwinFIR with 22.58 dB PSNR and 0.61 SSIM. To further
reduce artifacts from SR methods and improve both analytical
fidelity and perceptual quality, we propose a patch-based
ensemble. By probabilistically combining patches from neural

restoration outputs with those from classical interpolation and
analytical techniques, our approach harnesses their

complementary strengths — dampening hallucination artifacts
while retaining fine structural detail. In particular, blending
DRCT [3] with bicubic interpolation trough ESR module
improves DRCT’s accuracy and boosts overall performance,
yielding a Recall@1 of 87.01 % while maintaining balanced
perceptual quality.

The process of improved image restoration illustrated in
Fig. 2. A low-resolution (LR) UAV image is simultaneously
fed into a standard Super-Resolution network and a classical
Bicubic interpolation block. The SR network produces an
initial upscaled output, while the Bicubic block generates a
parallel interpolation result. Both outputs are then combined
within the non-learnable, parallelizable ESR module, which
fuses the neural and analytical upscaling streams to suppress
artifacts and preserve fine spatial details. The module’s
output is the final restored image, optimized for subsequent
visual geo-localization tasks. This ensemble aims to improve
the stability and reliability of neural network-based
restoration by leveraging the consistency of classical
methods like Bicubic interpolation. The fused output is then
passed to the Sample4dGeo module, which extracts geo-
descriptors necessary for the downstream geo-localization
task. This design effectively balances perceptual quality with
analytical performance, helping mitigate the artifacts
introduced by individual models.

y

ESR Module

LR Image SR

Bicubic

\ 4

Restored Image

A4

Fig. 2. Diagram of the image restoration with proposed ESR module

L e -

Fig. 3. Example of image restoration using the Ensemble (Our), Bicubic, DRCT, and HMA algorithms (from left to right)
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Fig. 3. Example of image restoration using the Ensemble (Our), Bicubic, DRCT, and HMA algorithms (from left to right)

Discussion of research results. A deeper analysis of the
experimental results reveals several critical insights. In our
findings selected restoration methods yield similar PSNR and
SSIM values, however, on standard vision datasets, neural
methods typically achieve PSNR values in the range of
30-40 dB and SSIM values exceeding 0.85. The lower values
observed in this study PSNR in the low 20s and SSIM around
0.6-0.7 are indicative of a pronounced domain shift. This shift
arises because the neural network models, which are usually
optimized on controlled or ideal datasets, encounter
significant challenges when applied to low-quality, noisy
UAYV imagery acquired under wild conditions.

The substantial drop in Recall@!l and AP between the
Baseline and the restored images highlights the sensitivity of
geo-localization algorithms to image quality. In particular,
the drastic performance decrease observed with the Nearest
Neighbour method (Recall@1 dropping to 69.66 and AP to
73.72) underscores the limitations of basic interpolation
techniques when dealing with severely degraded input data.

Moreover, although the neural network-based restoration
methods (DRCT [3], HMA [5], HAT [4], and SwinFIR [6])
performed at levels comparable to classical approaches, they
still fell short of the high restoration quality typically expected
from such advanced models. This gap directly affects the
downstream geo-localization task, where even small deviations
in image fidelity can lead to significant errors in target
identification and navigation accuracy. Despite our ensemble’s
ability to boost the accuracy of neural-based restorations and
sustain overall performance — raising Recall@] to 87.01 % —a
notable gap remains relative to the baseline (original high-
resolution data), underscoring the challenge of fully closing the
performance difference with restored imagery.

Furthermore, PSNR and SSIM emphasize pixel-level
precision and structural similarity but overlook the semantic
details essential for geolocation. An image that appears
statistically “sharper” may still lose the subtle cues that
Sample4Geo depends on. For example, in Image 3, network-
based restoration methods introduce high-frequency artifacts
that compromise features critical for geolocation, whereas
Bicubic interpolation, despite yielding a lower PSNR, better
preserves the edges necessary for Sample4Geo compared to
DRCT [3] or HMA [5].

The Scientific novelty of the obtained research results.
First of all, we propose a two-stage architecture for geo-
localization of low-quality UAV imagery. Second, we
introduce a novel, non-learnable Ensemble Super-Resolution
block that seamlessly fuses classical interpolation with neural
SR models within a single computation graph — stabilizing
outputs and suppressing artifacts without any additional
training. Additionally, our ESR module is hardware-agnostic
and parallelizable, requiring no specialized retraining or
custom accelerator support, and can be integrated plug-and-
play into existing SR pipelines. Moreover, we validate our
approach on 37 000 real “wild” UAV frames, showing that
ESR raises Recall@! from 84.96 % to 87.00 % and Average
Precision from 87.41 % to 89.10 %.

The Practical significance of the research results. The
proposed ESR block seamlessly integrates with Super-
Resolution approach without requiring additional training,
improving image quality and reducing artifacts. It’s
hardware-agnostic, parallelizable design ensures that it can
run on resource-constrained UAV platforms and edge
accelerators. By producing higher-fidelity imagery, ESR
directly enhances geo-localization accuracy, leading to more
precise visual geo-localization. Also, in this study we
highlighted the importance of addressing domain shifts when
developing restoration algorithms tailored for UAV imagery.

Conclusions

This study presented a two-stage framework, which
combine Super-Resolution and visual geo-localization
approaches, engineered for low-resolution, noisy UAV
imagery. Central to our design is the Ensemble Super-
Resolution (ESR) module — a non-learnable, parallelizable
block that fuses classical Bicubic interpolation with neural
SR outputs within any Super-Resolution graph, requiring no
retraining and running efficiently on standard accelerators.

Our evaluation on 37000 real-world UAV frames showed
that conventional restoration methods achieve only modest
fidelity gains (PSNR in the low 20s, SSIM of 0.6-0.7) and
limited performance in geo-localization. To address these
shortcomings, we developed a ESR module that
probabilistically combines patches from neural restoration
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outputs with those from classical interpolation and analytical
techniques. By tuning the sampling distribution to favor
higher-accuracy predictors in each region. Our geo-
localization framework with ESR module achieved a
Recall@! of 87.01 % — surpassing the standalone DRCT [3]
method (84.43 %) — and delivered balanced perceptual

quality. These findings demonstrate

that lightweight

ensemble strategies are a powerful tool for closing the
domain gap in UAV imagery.

Future work should focus on restoration models and

ensemble strategies tailored specifically to the noisy, real-
world characteristics of UAV imagery. Mitigating domain
shift through advanced training protocols, adaptive patch
selection, and fine-tuning of neural architectures will be
critical to further improving both image restoration and geo-
localization accuracy.
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Hayionanonuii ynieepcumem “Jlvsiscoka nonimexuixa”, Jlvsis, Yxpaina

AHCAMBJIEBE NIABUILIEHHA PO3AIJIbHOI 3IATHOCTI 30BPAKEHD
JIJIA TEOJIOKALII BILJIA

Po3ristHyTO po6ieMy Bi3yalibHOT Ie0JI0Kai3allii 3 BAKOPUCTAHHSAM HU3bKOSKICHUX 300pakeHb 3 BITJIA, orpuManux y
pealbHUX yMOBax. MM TIPOIOHYEMO JBOCTANHY apXiTEKTypy, sKa Tependadyae BiIHOBICHHS PO3JIJIbHOI 3JaTHOCTI
300pakeHHs Ta Bi3yalibHY reosiokanizaiito. HaBeneno HoBuit Moaysib Ensemble Super-Resolution (ESR), sikuit crioyatky
MoKpartiye 301blieHi aepoOTOKaaApH, a MOTIM TO/A€ BiJHOBICHI 300paKCHHS B KOHBEEP Bi3yaJbHOI IeOJIOKai3allii.
Po3pobniennii sk  posnapanentoBaHuil  OJ0K, IHTErpOBaHWI Oe3mocepeHbO B Oyab-sIKH OOYHCITIOBAIBLHHUIA Tpad
BiJTHOBJICHHS 300paxkeHHs, ESR moennye kiacuunHy OiKyOiuHY IHTEPIONALI 13 HEHPOHHUMH MOJICJISIMHU BiTHOBJICHHS
300pakeHHsI, TOJIIIIYIOUH SKICTh 300payKeHHS 1 MiABUIYIOYH 3arajibHy TOUHICTh CHCTEMH 0€3 J0AaTKOBOTO HABYAHHS, Ta
e(eKTUBHO BUKOHYEThLCS Ha O1IbLIOCTI arlapaTHUX MPUCKOPIOBauiB. Mu nepeBipuin Ham miaxix Ha Habopi gaxHux 3 37 000
peanbHuX 300paxkenb 3 BITJIA, koxkHe 3 sKUX 0yJI0 3MEHIIIEHO B YOTHUPH pasu, a MOTIM BiIHOBJICHO 3a JOIOMOTO0 0a30BHX
MetoaiB (0ikyOiuHOi, OliHIMHOT iHTepnosALii, HallOmmwk4oro cycina, DRCT, HMA, HAT, SwinFIR), a Takox Hamoro
naimaiiny 3 ESR. KinbkicHa OIliHKa IOKa3ye, 0 OKPEMi METOIU HaIBUCOKOI pO3/iIbHOT 31aTHOCTI 3a0e3neuytots PSNR
B Meskax 20 1b 1 SSIM 0.6—0.7 — HabaraTo HiKue Biji CTaHJAPTHUX MOKA3HUKIB, 1110 IPU3BOAUTD /10 IIOMITHOTO 3MEHILICHHS
tTouHocTi reonokainizauii (Recall@1 i AP).

Ha mportuBary npomy, Hair Moxayib ESR cra0ini3ye pe3ynbTaTu BiIHOBICHHS Ta PEKOHCTPYIOE SKICTh 300paKeHHS,
IiABUIYI0YH TOUHICTB reosokanii Recall@! no 87,0 % (mopiBustHO 3 84,96 % y pasi BigaoBnenns HMA) i AP no 89,1 %
(mopiBusiHO 3 87,41 % y Bumanky BinHoBieHHS HMA).

Hamr BHECOK OXOMITIOE:

1. IBoeranuuii GppeiiMBOpK, IO MOEAHYE MiAXOIW MiJABUIICHHS PO3JUIBLHOI 3IATHOCTI 300paXKEHHS Ta Bi3yalbHOT
reoJioKariii, aanToBaHH 7151 pOOOTH 3 HU3bKOPO3AIIBHUMHE 3alyMieHUMH Aanumu 3 BITITA.

2. Po3napanentoBanmii 010k ESR, 1110 He noTpebye HaBuaHHS, SIKH TOENHYE OIKYOIUHY IHTEPIOALI0 3 HEHPOHHUM
BIJIHOBJIEHHSIM Y MEXaX MepexeBoro rpada i OBHICTIO CyMICHUHM i3 OLIBIIICTIO IPUCKOPIOBAYIB.

3. KommiekcHe eMIipuuHe IOCIHIUKEHHS, sKe AeMOHCTpye, mo ESR icToTHO 3MeHIIye po3puB MiX JOMEHaMU Ta
HiBUIIYE MPOIYKTUBHICT Te0JI0Kali3alLii y peaJbHUX YMOBaXx.

Mu nifiliuTi BUCHOBKY, IO JIOJIaBAHHS JICTKHX, AIllApAaTOHE3AICKHUX aHCAMOJIEBUX CTPATEriil B KOHBEEPH 3 BITHOBJICHHS
300pakeHb € MEPCHeKTHMBHUM HAINpsIMOM JUIsl HaJiiHOi Bi3yanbHOi yiokamizaiii Ha ocHoBi BITJIA. Tlomanema poGora
HOJISITaTHME Y JIOCII/PKCHHI alalTHBHOTO 3B)KYBAHHS aHCAMOJIIO Ta apXiTEKTyp BiTHOBIICHHS 300paKCHb 3 ypaxyBaHHSIM
JIOMEHY JUJIsl [TOJAJIBIIOTO 3MEHIICHHS IIYMY Ta MiHJIIMBOCTI aepo(oT0300paeHs.

Kniouoei cnoga: HafBUCOKA PO3/ILIbHA 31aTHICTD, NINOOKA HEHPOHHA Mepexa, TpaHc(HOopMaTOpH, 3TOPTKOBA HEHPOHHA
Mepexa, KOMIT FOTepHHN 3ip.
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