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ENSEMBLE IMAGE SUPER-RESOLUTION FOR UAV GEO-LOCALIZATION 

In this paper, we address the challenge of visual geo-localization from low-quality UAV imagery captured in real world

environments. We propose a two-stage architecture, which includes Super-Resolution and visual geo-localization. We

introduced novel, non-learnable Ensemble Super-Resolution (ESR) module, which first refines upscaled aerial frames, then

seamlessly feeds the enhanced imagery into a visual geo-localization pipeline. Designed as a parallelizable block integrated

directly into any SR computation graph, ESR combines classical Bicubic interpolation with neural SR models – boosting

image fidelity and overall system accuracy without additional training and executing efficiently on most hardware

accelerator. We validate our approach on a dataset of 37 000 real-world UAV images, each downscaled by a factor of four

and then restored via baseline methods (Bicubic, Bilinear, Nearest Neighbour, DRCT, HMA, HAT, SwinFIR) as well as our

ESR-enhanced pipeline. Quantitative evaluation shows that standalone Super-Resolution methods yield PSNR in the low

20s dB and SSIM of 0.6–0.7 – far below standard benchmarks-leading to a marked drop in geo-localization accuracy

(Recall@1 and AP).

In contrast, our ESR module stabilizes SR outputs and recovers image fidelity, raising geo-localization Recall@1 to

87.0 % (vs. 84.96 % with HMA restoration) and AP to 89.1 % (against 87.41 % with HMA restoration).

Our contributions are:

Two-stage framework combining Image Super-Resolution and visual geo-localization approaches tailored for low-

resolution, noisy UAV data.

Non-learnable, parallelizable ESR block that fuses Bicubic interpolation with neural restoration within the network

Super-Resolution graph – requiring no retraining and fully compatible with most accelerator.

Comprehensive empirical study demonstrating that ESR substantially narrows the domain gap and boosts geo-

localization performance in real-world conditions.

We conclude that embedding lightweight, hardware-agnostic ensemble strategies into SR pipelines is a promising

direction for robust UAV-based visual localization. Future work will explore adaptive ensemble weighting and domain-

aware SR architectures to further mitigate aerial imaging noise and variability.

Keywords: super-resolution, deep neural network, transformers, convolution neural network, computer vision.

Introduction 

Unmanned Aerial Vehicles (UAVs) have rapidly evolved

as indispensable tools across both military and civilian

domains, yet their visionqbased navigation and localization

capabilities still struggle when confronted with noisy, low-

resolution imagery captured in unconstrained “wild”

environments. While recent advances in computer vision

ranging from Convolutional Neural Networks (CNNs) and

Transformer-based feature extractors to state-of-the-art geo-

localization pipelines – have improved robustness to GPS

denial and limited video quality, the direct integration of

image Super-Resolution (SR) techniques into visual geo-

localization (VG) remains underexplored.

Most existing restoration approaches, whether classical

(Bicubic, Bilinear, Nearest Neighbour) or neural (DRCT,

HMA, HAT, SwinFIR), were developed and benchmarked

on natural or urban imagery; when applied “out of the box”

to UAV data, they often introduce artifacts or wash out

critical spatial details, leading to degraded downstream geo-

localization performance. This mismatch highlights a

pressing need for an adaptive SR strategy that can be

deployed on UAV accelerators without costly retraining,

stabilize outputs, and preserve the fine-grained features that

geo-localization models rely upon. In this work, we bridge

that gap by proposing a two-stage SRr+sVG framework

anchored by a novel, non-learnable ESR module. ESR is

designed as a fully parallelizable block – integrated directly

into any SR computation graph and executable on common

hardware accelerators – that fuses classical Bicubic

interpolation with neural SR outputs. By combining the

strengths of both analytical and learned methods, ESR

suppresses artifacts, stabilizes the upscaling process, and

preserves descriptive features, all without additional model

retraining.

Relevance of research. As UAV deployments in

complex, GPS-denied, or visually degraded environments

become more widespread, resilient vision-based localization
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methods are essential. Our two-stage SRt+uVG architecture

directly addresses the impact of low-quality imagery on geo-

localization accuracy, providing a lightweight, hardware-

agnostic enhancement block that can be seamlessly added to

existing pipelines.

The object of this research: the visual sensing subsystem

of UAVs operating in real-world scenarios, where image

resolution and noise often fall below the thresholds required

for reliable geo-localization.

The subject of the research: computer vision

methodologies for UAV visual geo-localization and image

enhancement, with a focus on SR and its integration into

localization pipelines.

The purpose of this work is to quantify how low-

resolution, noisy UAV imagery degrades geo-localization

accuracy and exposes artifacts from standalone SR methods,

develop and evaluate a two-stage framework – combining

SR with visual geo-localization – centered on a novel, non-

learnable ESR block.

To achieve this purpose, the following main research

objectives are identified:

1. Quantify how low resolution, noisy UAV data

degrades geo-localization accuracy, identify the artifacts

introduced by standalone SR methods.

2. Develop and evaluate a two-stage SRv+wVG

framework tailored for UAV imagery under adverse

conditions.

3. Design and perform a comprehensive analysis of

the introduced non-learnable, parallelizable ESR block.

4. Demonstrate that ESR module raises downstream

geo-localization metrics (Recall@1, AP) significantly, with

minimal computational overhead.

5. Proposing recommendations for future research and

practical applications aimed at enhancing UAV operations in

challenging real-world environments.

Materials and methods of research. This study

introduces a two-stage framework that combines image

enhancement with visual geo-localization, utilizing large-

scale UAV imagery preprocessing to simulate wild

conditions. Research features a novel, non-learnable ESR

block – integrated directly into the SR computation graph –

that fuses classical and neural Super-Resolution methods,

and leverages hardware-agnostic, parallelizable components

for efficient execution on common accelerators.

Dataset and preprocessing.

The experiments were conducted using a publicly

available UAV imagery dataset obtained from the

University-1652 [1] UAV image collection. To simulate

image degradation, all original images were downscaled by

a factor of four using the INTER_AREA interpolation

method, which is known for minimizing aliasing effects

during reduction. A total of 37,000 images were processed

for the subsequent experiments.

Upscaling methods.

Three classical interpolation methods were selected for

evaluation: Bilinear, Bicubic [2], and Nearest Neighbor.

These methods were implemented using the OpenCV

library. In addition, four neural network-based upscaling

models were included in the comparison: DRCT [3], HAT

[4], HMA [5], and SwinFIR [6]. The official

implementations of each neural network model were utilized

to ensure reproducibility. For each method, a separate

Python environment was created where all officially

recommended dependencies were installed, thus avoiding

version conflicts and ensuring consistency with the original

implementations. To improve the visual quality and

robustness of image enhancement results obtained from

multiple algorithms, we propose a Ensemble Super-

Resolution technique. This method constructs a single

composite image by probabilistically selecting and

assembling patches from a set of enhanced images generated

by different algorithms. The process captures the strengths

of individual algorithms while maintaining spatial

coherence.

Let: I = {I1, I2, …, IN} – a set of N enhanced images, each

Ij   RHUWUC, where denote height, width, and number of

channels, respectively. The side length of square patches

used to divide each image denote as s, then the total nu mber

of non-overlapping patches per image define as:

H W
M

S S
= ´ ,

P = {p1, p2,…, pN} – a discrete probability distribution

over the N algorithms, where:

.

For each patch position j = {1, 2, …, M} an algorithm

index kj is sampled according to the categorical distribution

defined by P:

( )jk Categorical P» .

The resulting patch at location j in the final ensemble

image I* is then selected as:

,j k jI I*
= ,

where Ik.j denotes the j-th patch of the kj-th image. The

ensemble image I* is reconstructed by placing each selected

patch into its corresponding position, forming a composite

that leverages the complementary strengths of the

contributing algorithms.

Experimental Procedure.

Each upscaling method, both classical and neural

network-based, processed the same set of pre-downscaled

images independently. After restoration, the upscaled images

were saved to disk for further analysis. The performance of

each method was evaluated using two standard image quality

metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Measure (SSIM). Mean PSNR and SSIM

values were calculated for each method across the entire

dataset. These metrics were compared not only within the

dataset but also against typical benchmark values reported in

the literature for vision datasets.

Application to visual geo-localization.

To assess the practical impact of the upscaling methods,

an additional evaluation was conducted by applying the
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restored images to the task of visual geo-localization, one of

the most prominent tasks in UAV-based computer vision.

The Sample4Geo [7] method was employed as the visual

geo-localization framework. The performance of the model

using the restored images was compared to that obtained

with the original high-resolution images, thus providing

insights into how different upscaling methods affect

downstream vision tasks.

Hardware and software environment.

All experiments were conducted on a workstation

equipped with an NVIDIA RTX 3090 Ti GPU. Software

environments were configured using Python 3.10, with

specific library versions matching the official

recommendations for each neural network model.

Analysis of recent research and publications.

1. Visual Geo-localization.

Cross-view feature representation.

Cross-view geo-localization faces significant

challenges due to viewpoint variations and environmental

dynamics. Early methods focused on joint representation

learning and contextual feature extraction to bridge the gap

between aerial and ground perspectives. At [8] researchers

pioneered this direction with RK-Net, which integrates

representation learning and keypoint detection using a Unit

Subtraction Attention Module (USAM). USAM employs a

Unit Subtraction Convolution to highlight local feature

differrences, enabling robust keypoint matching across

viewpoints without additional annotations. Evaluated on

datasets like University-1652 [1], RK-Net achieved

competitive accuracy by leveraging subtle appearance

variances caused by viewpoint shifts. Building on this, the

Local Pattern Network [9] (LPN) introduced a square-ring

partition strategy to exploit spatial-contextual relationships

in images. Inspired by human visual processing, LPN

divides feature maps into concentric regions, assuming

geographic targets cluster at the center. Using ResNet-50

[10] backbones with weight-sharing between aerial

branches, LPN maps multi-view features (satellite, drone,

ground) into a shared semantic space. This approach

improved alignment by addressing feature distribution

mismatches, demonstrating the value of hierarchical spatial

reasoning for cross-view tasks.

Transformer-based feature segmentation.

Recent advances in transformer architectures have

enabled more robust feature alignment for UAV-view geo-

localization. The Feature Segmentation and Region

Alignment [11] (FSRA) method addresses position shifts and

scale uncertainty by combining transformer-based feature

extraction with part-based segmentation. FSRA divides input

images into patches, encodes positional embeddings, and

uses a Heatmap Segmentation Module (HSM) to categorize

regions (e. g., buildings, roads). A Heatmap Alignment

Branch (HAB) then pools and aligns region-specific

features, while a multiple sampling strategy mitigates

training instability through augmented satellite images. By

focusing on semantic segmentation rather than fine-grained

details, FSRA improves robustness against viewpoint-

induced distortions.

Contrastive learning with hard negative sampling.

Sampling strategies play a critical role in contrastive

learning for geo-localization. Sample4Geo [7] introduces

a novel framework using hard negative sampling to

enhance model discriminability. It employs a symmetric

InfoNCE [12] loss with two strategies: (1) geographic

proximity sampling, selecting neighboring locations as

hard negatives, and (2) visual similarity sampling,

targeting geographically distinct but visually similar

image pairs. Sample4Geo outperformed state-of-the-art

methods by simplifying the training pipeline and

eliminating complex pre-processing. Its success

highlights the importance of challenging samples in

improving generalization across diverse environments.

Table 1. Comparison of visual geo-localization methods on the
University-1652 dataset. The best results are highlighted in bold

Method AP, % Recall@1, %

Sample4Geo 93.81 92.65

FSRA 84.82 82.25

LPN+USAM 80.55 77.6

LPN 79.14 75.93

RK-Net 70.23 66.13

2. Single Image Super-Resolution (SISR).

Classic and early neural-network-based methods.

Early SISR methods relied on interpolation techniques

such as bicubic and bilinear resampling, which estimate pixel

values using weighted averages of neighboring pixels. While

computationally efficient, these methods often produce

overly smooth outputs with limited high-frequency detail

recovery. Example-based approaches like nearest neighbors

(NN) and sparse coding [13] later emerged, leveraging

neighbor embedding or learned dictionaries to map low-

resolution (LR) to high-resolution (HR) patches. NN-based

methods, for instance, searched for structurally similar LR

patches in a training dataset and reconstructed HR patches

by aggregating contributions from their k-closest matches.

These methods improved edge preservation compared to

interpolation but struggled with generalization due to their

reliance on handcrafted similarity metrics (e. g., Euclidean

distance for patch matching) and small patch-wise

processing, which limited their ability to model global image

structures.

The advent of deep learning revolutionized SISR by

enabling end-to-end mapping of LR to HR images. SRCNN

[14] pioneered this shift with a three-layer CNN,

outperforming traditional methods by learning hierarchical

features directly from data. Subsequent works introduced

architectural refinements: FSRCNN [15] accelerated

inference by adopting a compact design with transposed

convolutions for upsampling, while VDSR [16] deepened

networks and incorporated residual learning to stabilize
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training. DRCN [17] further enhanced performance with

recursive layers, and EDSR [18] removed batch

normalization to enable larger model capacities.

Attention mechanisms and advanced residual structures

later dominated the field. RDN [19] aggregated multi-level

features via dense residual blocks, and RCAN [20]

introduced channel attention to prioritize informative

features. These CNN-based methods established founda-

tional principles-residual learning, multi-scale fusion, and

attention-that remain central to modern SISR architectures.

SwinIR: Transformer-Based Image Restoration.

SwinIR [21] represents a pivotal advancement in SISR

by integrating shifted window attention from the Swin

Transformer architecture into low-level vision tasks. Unlike

CNN-based methods, SwinIR leverages hierarchical window

partitioning to balance global context modeling and

computational efficiency. Its architecture comprises three

modules:

1. Shallow Feature Extraction: A 3x3 convolutional

layer captures low-level spatial details.

2. Deep feature extraction: Residual Swin Transformer

Blocks (RSTB) combine Swin Transformer layers (with

shifted windows for cross-region interactions) and residual

connections, enabling multi-scale feature aggregation.

3. Reconstruction module: Task-specific layers (e. g.,

sub-pixel convolution) fuse shallow and deep features to

generate high-resolution outputs.

SwinIR outperformed CNN-based models (e. g., EDSR,

RCAN) by 0.14–0.45 dB PSNR on benchmarks like

Urban100 and Manga109 while reducing parameters by up

to 67 %. Its success inspired extensions such as SwinFSR

[22] for stereo SR and omnidirectional SR models

addressing equirectangular projection distortions. By

bridging transformer-based global modeling with CNN-

inspired locality, SwinIR established a robust baseline for

subsequent SISR innovations.

Hybrid attention mechanisms.

Recent advancements in SISR have leveraged hybrid

attention mechanisms to enhance spatial feature utilization in

Transformer architectures. The Hybrid Attention Transformer

(HAT) [4] addresses limited pixel engagement in window-

based Transformers by integrating channel attention

(capturing global statistics) with window self-attention

(modeling local details). An overlapping cross-attention

module (OCAB) further broadens receptive fields by

facilitating cross-window interactions. Combined with same-

task pre-training on ImageNet, HAT achieves state-of-the-art

performance, improving PSNR by up to 1.2 dB over SwinIR.

Attribution analysis via Layer Attribution Maps (LAM)

confirms its expanded spatial utilization. Building on this, the

Hybrid Multi-Axis Aggregation Network (HMANet) [5]

introduces Residual Hybrid Transformer Blocks (RHTB) to

fuse Swin Transformer layers with CNNs via Fused Attention

Blocks (FAB), balancing local-global feature extraction. To

exploit structural self-similarity, Grid Attention Blocks (GAB)

partition features into intervals, enabling sparse cross-region

attention. HMANet’s task-specific pre-training strategy,

initializing models with parameters from different scales,

yields consistent gains (0.05–0.09 dB PSNR), achieving top

results on Urban100 and Manga109. However, its

computational overhead (69.9M parameters) highlights trade-

offs between performance and efficiency.

Table 2. Quantitative comparison of the several SISR methods on benchmark datasets for x4 upscaling.

The best results are highlighted in bold [2–6, 16, 20, 21]

Method

Set5 Set14 BSD100 Urban100 Manga109

PSNR

dB

SSIM PSNR

dB

SSIM PSNR

dB

SSIM PSNR

dB

SSIM PSNR dB SSIM

Bicubic 28.42 0.8104 26 0.7027 25.69 0.6675 23.14 0.6577 24.89 0.7866

SRCNN 30.48 0.8628 27.5 0.7513 26.9 0.7101 24.53 0.7221 27.58 0.8555

FSRCNN 30.72 0.8666 27.61 0.7555 26.98 0.715 24.62 0.728 27.9 0.861

DRCN 31.53 0.8841 28.04 0.7704 27.24 0.7243 25.14 0.7518 28.99 0.8891

EDSR 32.46 0.8968 28.8 0.7876 27.71 0.742 26.64 0.8033 31.02 0.9148

RDN 32.47 0.899 28.81 0.7871 27.72 0.7419 26.61 0.8028 31 0.9151

RCAN 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

VDSR 31.35 0.882 28.02 0.7681 27.29 0.0711 25.18 0.751 28.83 0.887

SwinIR 32.92 0.9044 29.09 0.795 27.92 0.7489 27.45 0.8254 32.03 0.926

SwinFIR 33.08 0.9048 29.21 0.7971 27.98 0.7508 27.87 0.9348 32.52 0.9292

HAT 33.04 0.9056 29.23 0.7973 28 0.7517 27.97 0.8368 32.48 0.9292

HMA 33.15 0.906 29.32 0.7996 28.05 0.753 28.42 0.845 32.97 0.932

DRCT 33.11 0.9064 29.35 0.7984 28.18 0.7532 28.06 0.8378 32.59 0.9304
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Frequency-spatial feature fusion.

Integrating frequency-domain processing has emerged as

a powerful strategy for global dependency modeling.

SwinFIR [6] augments SwinIR with Spatial Frequency

Blocks (SFB), combining Fast Fourier Convolution (FFC)

for global frequency features and residual CNNs for local

spatial details. This hybrid design mitigates SwinIR’s

reliance on local attention, while Charbonnier loss stabilizes

training and pixel-domain augmentations (Mixup, channel

shuffle) enhance generalization. Zero-cost feature ensemble

strategy merges parameters from multiple checkpoints,

improving performance without inference overhead.

SwinFIR outperforms SwinIR by up to 0.8 dB PSNR on

Manga109, demonstrating the efficacy of frequency-spatial

fusion.

Efficient architectures and information flow.

Addressing information bottlenecks in deep SR models,

DRCT [3] introduces dense residual connections within

Swin Transformer blocks (SDRCBs) to stabilize feature

propagation and preserve spatial details. By mitigating

abrupt feature suppression in deeper layers, DRCT [3]

achieves superior reconstruction with fewer parameters than

HAT or SwinIR. A Same-task Progressive Training Strategy

(SPTS) combines L1/L2 losses to enhance high-frequency

recovery, validated by competitive NTIRE 2024 Challenge

results (31.44 dB validation PSNR). Despite its efficiency,

DRCT [3] lacks theoretical analysis of its dense connections’

role in mitigating information loss, warranting future

exploration.

Research results and their discussion 

In this study, we evaluated a range of image upscaling

methods applied to UAV aerial imagery under real-world,

noisy conditions. Two sets of experiments were conducted.

The first assessed the performance of geo-localization models

on restored images compared to the original high-quality data

(Baseline). Results are displayed in Table 3. The second

focused on quantifying the restoration quality using standard

image quality metrics, results are provided in Table 4.

The proposed two-stage framework for visual geo-

localization on low quality images displayed in the Fig. 1.

Fig. 1.Diagram of the proposed two stage framework

Table 3. Quantitative comparison of Sample4Geo performance
on original aerial imagery (Baseline) and after image restoration

on the University-1652 dataset

Method Recall@1, % AP, %

Baseline 92.65 93.81

Bicubic 88.21 90.11

Bilinear 88.22 90.06

NN 69.66 73.72

DRCT 84.43 86.96

HMA 84.96 87.41

HAT 83.36 87.01

SwinFIR 84.2 86.63

DRCT+ESR 87.01 89.09

A low-resolution (LR) UAV image is first passed through

a Super-Resolution (SR) module, which reconstructs a

higher-quality version of the input. The restored image is

then fed into the visual geo-localization component

(Sample4Geo), where spatial features are extracted and

encoded as geo-descriptors. These descriptors serve as the

final output for downstream localization.

Table 4. Performance of Restoration Methods on the University-

1652 dataset. The best result is highlighted in bold

Method PSNR dB SSIM

Bicubic 22.61 0.64

Bilinear 22.08 0.6

NN 21.68 0.6

DRCT 23.1 0.69

HMA 22.88 0.69

HAT 22.6 0.62

SwinFIR 22.58 0.61

DRCT+ESR 22.77 0.63

For the geo-localization task, the Baseline model (applied

to the original images) achieved a Recall@1 of 92.65 % and

an AP of 93.81 %. Classical interpolation methods exhibited
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varying degrees of performance degradation when

processing the downscaled and subsequently upscaled

images. Bicubic and Bilinear interpolation methods

produced Recall@1 values of 88.21 % and 88.22, and AP

values of 90.11 and 90.06, respectively. Notably, the Nearest

Neighbour approach suffered a substantial drop, yielding a

Recall@1 of 69.66 and an AP of 73.72. Among the neural

network-based approaches, DRCT, HMA, HAT, and

SwinFIR demonstrated intermediate performance, with

Recall@1 values ranging from 83.36 to 84.96 and AP values

from 86.63 to 87.41. Although these methods provided

slightly higher restoration metrics than the Nearest

Neighbour method, the overall geo-localization performance

still lagged behind the Baseline.

The quality of the restored images was further quantified

using the Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Measure (SSIM). The classical methods

returned PSNR values of 22.61 dB (Bicubic), 22.08 dB

(Bilinear), and 21.68 dB (Nearest Neighbour), with

corresponding SSIM values around 0.64, 0.60, and 0.60,

respectively. The neural network-based approaches yielded

modest improvements, with DRCT [3] achieving a PSNR of

23.1 dB and SSIM of 0.69, HMA with 22.88 dB PSNR and

0.69 SSIM, HAT with 22.6 dB PSNR and 0.62 SSIM, and

SwinFIR with 22.58 dB PSNR and 0.61 SSIM. To further

reduce artifacts from SR methods and improve both analytical

fidelity and perceptual quality, we propose a patch-based

ensemble. By probabilistically combining patches from neural

restoration outputs with those from classical interpolation and

analytical techniques, our approach harnesses their

complementary strengths – dampening hallucination artifacts

while retaining fine structural detail. In particular, blending

DRCT [3] with bicubic interpolation trough ESR module

improves DRCT’s accuracy and boosts overall performance,

yielding a Recall@1 of 87.01 % while maintaining balanced

perceptual quality.

The process of improved image restoration illustrated in

Fig. 2. A low-resolution (LR) UAV image is simultaneously

fed into a standard Super-Resolution network and a classical

Bicubic interpolation block. The SR network produces an

initial upscaled output, while the Bicubic block generates a

parallel interpolation result. Both outputs are then combined

within the non-learnable, parallelizable ESR module, which

fuses the neural and analytical upscaling streams to suppress

artifacts and preserve fine spatial details. The module’s

output is the final restored image, optimized for subsequent

visual geo-localization tasks. This ensemble aims to improve

the stability and reliability of neural network-based

restoration by leveraging the consistency of classical

methods like Bicubic interpolation. The fused output is then

passed to the Sample4Geo module, which extracts geo-

descriptors necessary for the downstream geo-localization

task. This design effectively balances perceptual quality with

analytical performance, helping mitigate the artifacts

introduced by individual models.

Fig. 2. Diagram of the image restoration with proposed ESR module

Fig. 3. Example of image restoration using the Ensemble (Our), Bicubic, DRCT, and HMA algorithms (from left to right)
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Fig. 3. Example of image restoration using the Ensemble (Our), Bicubic, DRCT, and HMA algorithms (from left to right)

Discussion of research results. A deeper analysis of the

experimental results reveals several critical insights. In our

findings selected restoration methods yield similar PSNR and

SSIM values, however, on standard vision datasets, neural

methods typically achieve PSNR values in the range of

30–40 dB and SSIM values exceeding 0.85. The lower values

observed in this study PSNR in the low 20s and SSIM around

0.6–0.7 are indicative of a pronounced domain shift. This shift

arises because the neural network models, which are usually

optimized on controlled or ideal datasets, encounter

significant challenges when applied to low-quality, noisy

UAV imagery acquired under wild conditions.

The substantial drop in Recall@1 and AP between the

Baseline and the restored images highlights the sensitivity of

geo-localization algorithms to image quality. In particular,

the drastic performance decrease observed with the Nearest

Neighbour method (Recall@1 dropping to 69.66 and AP to

73.72) underscores the limitations of basic interpolation

techniques when dealing with severely degraded input data.

Moreover, although the neural network-based restoration

methods (DRCT [3], HMA [5], HAT [4], and SwinFIR [6])

performed at levels comparable to classical approaches, they

still fell short of the high restoration quality typically expected

from such advanced models. This gap directly affects the

downstream geo-localization task, where even small deviations

in image fidelity can lead to significant errors in target

identification and navigation accuracy. Despite our ensemble’s

ability to boost the accuracy of neural-based restorations and

sustain overall performance – raising Recall@1 to 87.01 % – a

notable gap remains relative to the baseline (original high-

resolution data), underscoring the challenge of fully closing the

performance difference with restored imagery.

Furthermore, PSNR and SSIM emphasize pixel-level

precision and structural similarity but overlook the semantic

details essential for geolocation. An image that appears

statistically “sharper” may still lose the subtle cues that

Sample4Geo depends on. For example, in Image 3, network-

based restoration methods introduce high-frequency artifacts

that compromise features critical for geolocation, whereas

Bicubic interpolation, despite yielding a lower PSNR, better

preserves the edges necessary for Sample4Geo compared to

DRCT [3] or HMA [5].

The Scientific novelty of the obtained research results.

First of all, we propose a two-stage architecture for geo-

localization of low-quality UAV imagery. Second, we

introduce a novel, non-learnable Ensemble Super-Resolution

block that seamlessly fuses classical interpolation with neural

SR models within a single computation graph – stabilizing

outputs and suppressing artifacts without any additional

training. Additionally, our ESR module is hardware-agnostic

and parallelizable, requiring no specialized retraining or

custom accelerator support, and can be integrated plug-and-

play into existing SR pipelines. Moreover, we validate our

approach on 37 000 real “wild” UAV frames, showing that

ESR raises Recall@1 from 84.96 % to 87.00 % and Average

Precision from 87.41 % to 89.10 %.

The Practical significance of the research results. The

proposed ESR block seamlessly integrates with Super-

Resolution approach without requiring additional training,

improving image quality and reducing artifacts. It’s

hardware-agnostic, parallelizable design ensures that it can

run on resource-constrained UAV platforms and edge

accelerators. By producing higher-fidelity imagery, ESR

directly enhances geo-localization accuracy, leading to more

precise visual geo-localization. Also, in this study we

highlighted the importance of addressing domain shifts when

developing restoration algorithms tailored for UAV imagery.

Conclusions 

This study presented a two-stage framework, which

combine Super-Resolution and visual geo-localization

approaches, engineered for low-resolution, noisy UAV

imagery. Central to our design is the Ensemble Super-

Resolution (ESR) module – a non-learnable, parallelizable

block that fuses classical Bicubic interpolation with neural

SR outputs within any Super-Resolution graph, requiring no

retraining and running efficiently on standard accelerators.

Our evaluation on 37000 real-world UAV frames showed

that conventional restoration methods achieve only modest

fidelity gains (PSNR in the low 20s, SSIM of 0.6–0.7) and

limited performance in geo-localization. To address these

shortcomings, we developed a ESR module that

probabilistically combines patches from neural restoration
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outputs with those from classical interpolation and analytical

techniques. By tuning the sampling distribution to favor

higher-accuracy predictors in each region. Our geo-

localization framework with ESR module achieved a

Recall@1 of 87.01 % – surpassing the standalone DRCT [3]

method (84.43 %) – and delivered balanced perceptual

quality. These findings demonstrate that lightweight

ensemble strategies are a powerful tool for closing the

domain gap in UAV imagery.

Future work should focus on restoration models and

ensemble strategies tailored specifically to the noisy, real-

world characteristics of UAV imagery. Mitigating domain

shift through advanced training protocols, adaptive patch

selection, and fine-tuning of neural architectures will be

critical to further improving both image restoration and geo-

localization accuracy.
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